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This paper studies the effectiveness of big data technology in mitigating 
the economic and health impacts of the COVID-19 outbreak. I exploit 
the staggered implementation of contact-tracing apps called "health 
code" in 322 Chinese cities during the COVID-19 pandemic. Using 
high-frequency variations in population movements and greenhouse 
gas emissions across cities before and after the introduction of health 
code, I disentangle the effect of big data technology from confounding 
factors such as public sentiments and government responses. I find 
that big data technology significantly improves the tradeoff between 
human toll and economic costs. Cities adopting health code experience 
a significant increase in economic activities without suffering 
from higher infection rates. Overall, big data technology creates an 
economic value of 0.5%-0.75% of GDP during the COVID-19 outbreak 
in China.
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COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

1 Introduction

Pandemics such as COVID-19 present an impossible choice to policymakers between saving

lives and saving livelihoods. On the one hand, population movement restrictions such as

social distancing and lockdown are deemed necessary to contain the rapid spreads of the

disease. On the other hand, such restrictions inflict steep economic costs as normal activities

are disrupted. The painful tradeoff between human toll and economic costs has led to heated

and sometimes divisive debate in the policy domain.

How can we solve the pandemic dilemma between saving lives and saving the economy?

Many believe that the answer lies in big data technology (Ferretti, Wymant, Kendall, Zhao,

Nurtay, Abeler-Dörner, Parker, Bonsall, and Fraser, 2020). Using the enormous amount of

real-time location data produced by smartphones, we may detect potential carriers of the

disease and break the transmission chains. At the same time, big data technology can also

identify the group of people who are unlikely to carry the disease so that they can resume

normal work and life, which limits the economic damage of the disease. Advocates often

cite the successful experiences in China and South Korea where big data technology was

aggressively deployed to combat the virus.

However, big data technology is also highly controversial. Critics argue that some

countries such as Singapore have seen little success from using contact-tracing apps.1 Im-

plementing big data technology could also divert critical resources from proven containment

methods such as aggressive testing. Big data technology may also disproportionately impact

the rights of those under- or misrepresented by the data.2 Finally, big data technology also

raises concerns about privacy infringement and government surveillance. Therefore, using

big data to address the public health crisis can potentially do more harm than good.

1See WSJ April 22 article, “Singapore Built a Coronavirus App, but It Hasn’t Worked So Far”.
2For instance, the April 12, 2020, AP News article “Europe eyes smartphone location data to stem virus

spread” reports that Israeli government’s cell phone location-tracking program has caused complaints that
the authorities are erroneously confining people to their homes based on inaccurate location data.
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This paper sheds light on this debate by studying the effectiveness of big data technology

in mitigating the economic and human costs of the COVID-19 outbreak in China. I exploit

the staggered implementation of contact-tracing apps called “health code” in 322 Chinese

cities amid the COVID-19 pandemic. Using high-frequency variations in population move-

ments and greenhouse emission across cities, I disentangle the effect of big data technology

from confounding factors such as public sentiments and government responses. I show that

big data technology allows the vast majority of the population to resume economic activities

without risking the public health condition. The estimated benefits of this technology seem

to dominate the potential costs related to privacy.

I start by describing the institutional background. On February 9, 2020, 17 days after

the lockdown of Wuhan, the first “health code” was developed by Ant Financial, a FinTech

company afflicted with Alibaba, and adopted by the Hangzhou municipal government, where

Ant Financial’s headquarter locates. This app uses real-time location data produced by

smartphones to predict holders’ risks of being infected based on whether the holders are

in close contact with confirmed patients. This app assigns a QR code for each holder,

which functions as a “traffic permit” within the city. Holders can travel in the city freely

if they obtain green codes but face quarantine if their codes are yellow or red. Health code

was subsequently expanded to other cities in China. By the end of March 31, 276 cities

out of 322 cities in the sample have implemented this system. The adoption of health code

represents the largest experiment of big data technology in the public health domain. It offers

an invaluable opportunity to examine the effectiveness of big data technology in mitigating

economic and human costs inflicted by pandemics.

I collect the adoption dates of health code in each of 322 cities from local government

websites and news reports. To measure high-frequency variations in economic activities at

the city level, I use within-city population movements constructed from smartphone locations

by Baidu and daily emission of greenhouse gases related to industrial activities. I also use
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daily numbers of confirmed COVID-19 cases, cured patients, and death tolls for each city

provided by the Chinese Center for Disease Control and Prevention (CCDC). The sample

period spans January 1 to March 31, 2020, covering the lockdown of Wuhan on January 23,

2020, and the introduction of the first health code in Hangzhou on February 9, 2020. The

staggered implementation of health code across cities allows me to disentangle the causal

effects of the big data technology from confounding factors.

The empirical analysis yields three main results. First, I find that the introduction

of health code significantly mitigates the negative impact of the COVID-19 outbreak on

economic activities by 2-3%. Second, cities that implemented health code attract greater

population inflows and experience smaller population outflows. Third, I find that the increase

in economic activities does not lead to an increase in infection rates in cities with health

code. Overall, the use of big data technology has significantly improved the tradeoff between

economic activities and public health, creating an economic value of 0.5%-0.75% GDP during

the COVID-19 outbreak in China.

One potential concern on the empirical approach is that cities that adopt health code

early could have higher economic importance for the country, thus are forced to reopen

before other cities. I address this concern by matching the treated cities to control cities

with similar pre-COVID-19 economic activities and find the results are robust. One may

also worry that the timing of implementation of health code may be correlated with the

successful containment of the outbreak in a city. I address this concern by matching the

treated cities to control cities with similar active cases when health code was introduced.

The results are also robust to this alternative matching scheme.

Finally, I compare the estimated economic benefits of big data technology with potential

costs. I find that the introduction of health code creates an economic value of $50-75$ per

capita. Comparing this estimate to the value of privacy estimated in the literature (Athey,

Catalini, and Tucker, 2017; Tang, 2019), I find that the benefits of big data technology seem
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to outweigh the potential costs on privacy.

Why is big data technology an effective tool to mitigate the economic and human costs of

pandemics? The answer is that it can address the key amplification mechanism of pandemics:

information frictions. Because of the hidden virus, people are afraid of going out, which

brings offline consumption to a standstill. Governments have to impose quarantines on

the whole population just to stop a few hidden carriers. In such a situation, big data

technology can be a powerful tool. By leveraging the enormous amount of data produced in

our digital age, big data technology can help to identify the hidden carriers, thus contains

the transmission of the virus. Furthermore, it can reduce people’s fear of being infected,

thus restores economic activities depressed by pandemics.

This paper contributes to the fast-growing literature on the optimal policy response

to the pandemic shock (Alvarez, Argente, and Lippi, 2020; Barro, Ursúa, and Weng, 2020;

Correia, Luck, and Verner, 1918; Eichenbaum, Rebelo, and Trabandt, 2020; Hall, Jones,

and Klenow, 2020; Dewatripont, Goldman, Muraille, and Platteau, 2020; Fang, Wang, and

Yang, 2020; Piguillem, Shi, et al., 2020; Jones, Philippon, and Venkateswaran, 2020). This

paper is closely related to Alvarez, Argente, and Lippi (2020) and Jones, Philippon, and

Venkateswaran (2020) which study the optimal lockdown policy to control the fatalities

of a pandemic while minimizing the output costs of the lockdown. Alvarez, Argente, and

Lippi (2020) suggest that 60% of the population should be under tight lockdown to contain

pandemics like COVID-19. The economic costs of such lockdown are estimated to be at least

8% of the GDP. This paper shows that big data technology can significantly improve the

tradeoff between economic and human costs of a pandemic.

This paper also contributes to the literature on the effect of big data on the economy.

Farboodi and Veldkamp (2019) and Jones and Tonetti (2019) construct neoclassical growth

models in which big data are an important contributor to economic growth. This paper

provides micro-level evidence that big data can address frictions that limit economic growth.
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Athey, Catalini, and Tucker (2017) and Tang (2019) use field experiments to estimate the

value of privacy. This paper contributes to this literature by showing that personal location

data can create substantial economic value in pandemics, which seems to outweigh the value

of privacy. Finally, this paper also sheds light on the regulation of big data technology,

an issue studied by Acemoglu, Makhdoumi, Malekian, and Ozdaglar (2019), Bergemann,

Bonatti, and Gan (2020), and Campbell, Goldfarb, and Tucker (2015).

2 Background and Data

Health code. Health code is a big data technology that uses smartphone location data

to predict the risk of an individual to be infected by a disease. It was initially developed

by several tech companies in China such as Ant Financial and Tencent in the height of the

COVID-19 outbreak. Health code are used as “traffic permits” by numerous local govern-

ments. HOlders of green code can freely travel in the city; holders of yellow or red code have

to be quarantined for 7 or 14 days, respectively. The codes turn back to green after the the

quarantine. Figure 1 shows the three levels of color codes used in China.
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Figure 1: Hangzhou Health Code
This figure shows the first health code introduced in China, the Hangzhou health code.
Individuals with green code can freely travel in the city. Individuals with yellow code have
to be quarantined for 7 days. Individuals with red code have to be quarantined for 14 days.
The code turn back to green after the corresponding quarantine periods.

Registering a health code is voluntary and can be easily done in smartphone apps.

Because many cities in China have imposed movement restrictions, people have a strong

incentive to register the code if they want to enter public space such as supermarkets and

subways. Although there is no systematic record on the adoption rates in the population,

anecdotal evidence suggests that the adoption rates are quite high. For instance, in Zhejiang

province where health code was first introduced, around 90% of the provincial population has

obtained health code 15 days after the introduction according to the disclosure of the local

government officials.3 Among all the health codes, 98.2% are green, and 1.8% are yellow or

red.

The first health code app was developed by Ant Financial and implemented in its head-

3See New York Times article on March 1, 2020: “In Coronavirus Fight, China Gives Citizens a Color
Code, With Red Flags”, by Paul Mozur, Raymond Zhong and Aaron Krolik.
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quarter city, Hangzhou, on February 9, 17 days after the lockdown of Wuhan. 2 days later, a

different version of health code app was developed by another tech giant in China, Tencent,

and implemented in its headquarter city, Shenzhen. Following Hangzhou and Shenzhen,

many provinces and cities adopt their version of health code. It is worth noting that the

adoption of health code was not coordinated by the central government. Instead, it is largely

initiated by local governments. The decentralized adoption created a patchwork of policies.

Cities do not recognize each other’s health code. Different versions of health code sometimes

show inconsistent results for the same individual. Some people have been required to scan

multiple health code from different providers at a single location.

The uncoordinated implementation of health code have created inconvenience and con-

fusion for people who travel across cities to the extent that the central government warned

local governments not to go overboard by launching too many versions of health code.4 How-

ever, it is good news for identification purpose. I collect the implementation dates of health

code of 322 Chinese cities from the local government websites and local news media. Figure 2

shows the number of cities that adopted health code over time. The adoption process lasts

for two months after the initial adoption in Hangzhou.

4See South China Morning Post article on March 9, 2020, “National version of China’s controversial
health code isn’t ready”.
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Figure 2: Implementation of Health Code in Chinese Cities
This figure plots the number of cities that adopt health code. The first vertical line indicates
January 23, 2020, the date of Wuhan lockdown. The second vertical line indicates February
9, 2020, the date when the first health code was introduced in Hangzhou. Data source:
government websites, local news report.

Figure 3 shows the fraction of cities that have adopted health code by February 15,

February 29, March 15, and March 31, respectively. The adoption appears to be quite

idiosyncratic: it is not related to the geographical proximity to the epicenter of the virus

outbreak, Hubei. The coastal and inland provinces seem to have a balanced tendency to

adopt health code. The staggered introduction of health codes across Chinese cities will

provide a great laboratory to identify the causal effect of big data technology on the economy

and public health.
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Figure 3: Implementation of Health Code in Chinese Cities
This figure shows the fraction of cities that adopted health code in each province. The four
snapshots are at February 15t, February 29, March 15, and March 31, 2020. Data source:
government websites, local news report.

Economic activities. I use daily within-city population movements as a high-frequency

measure of economic activities across cities. The data are created using real-time smartphone

phone location data from the largest Chinese search engine in China, Baidu.5 The population

movement data covers 322 Chinese cities between January 1 and April 10 in 2020. The final

data is a panel consisting of 28,658 city-day level observations. The high-frequency nature of

this data is important for identification because health code was rolled out within 2 months.

Therefore, typical macroeconomic data at quarterly or monthly frequency may not capture

the effect of the adoption.

Figure 4 plots the national average within-city movement in the sample period. I report

the value as a percentage of the average value in the first week of 2020. Note that the

5The source of the data can be found on the website of CNEMC: http://https://qianxi.baidu.com/.
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sample period contains the Lunar New Year holiday, during which the economic activities

would naturally decrease. To control for the effect of Lunar New Year, I normalize the level

of within-city movement using the same day value of the 2019 lunar calendar. Figure 4 shows

a steep drop in economic activities after January 23, 2020, the day of Wuhan lockdown. The

second vertical red line indicates February 9, 2020, the date when Hangzhou health code was

introduced. The within-city movement slowly recovers in mid-February. By the end of the

sample period, the within-city movement has rebounded to about 95% of the pre-COVID-19

level.
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Figure 4: Economic Activities of Chinese Cities
This figure plots the average economic activities as measured by within-city population
movements. The sample period is from January 1 to March 31, 2020. The first vertical line
indicates January 23, 2020, the date of Wuhan lockdown. The second vertical line indicates
February 9, 2020, the date when the first health code was introduced in Hangzhou. Data
source: Baidu.
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The Baidu data also provides a between-city migration pattern. For each city in the

sample, the data shows the top 100 cities of inflows and outflows and the corresponding

intensities.

Greenhouse gas emission. One may worry that within-city movements may not capture

economic activities that can be conducted without human movements. To address this

concern, I use the daily level of Nitrogen Dioxide (NO2) as an alternative high-frequency

measure of economic activities. NO2 is a green house gas created by factories and automobiles

burning fossil fuels. Because Chinese economy heavily relies on coal as a source of energy,

the amount of Nitrogen Dioxide is a good measure of economic activities of China. I collect

daily level of NO2 from the China National Environmental Monitoring Center (CNEMC)

for each city.6 Figure 5 plots the average NO2 of the sample cities where the values are

normalized by the average of the first two weeks in 2020. A sharp drop occurs after the

Wuhan lockdown on January 23, 2020. Economic activities decreased by 40% of the pre-

lockdown level at the peak of outbreak. The magnitude of the reduction is similar to the

within-city movements. The NO2 level started to slowly recover in March, 2020. The sharp

decrease in the NO2 level during the COVID-19 outbreak documented in the data from the

China National Environmental Monitoring Center (CNEMC) is consistent with the satellite

images produced by the National Aeronautics and Space Administration (NASA) as shown

in Figure 6.

6The source of the data can be found on the website of CNEMC: http://www.cnemc.cn/.

68
C

ov
id

 E
co

no
m

ic
s 1

1,
 2

9 
A

pr
il 

20
20

: 5
7-

90



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Wuhan Lockdown

Hangzhou Health Code

0
20

40
60

80
10

0
N

O
2

01jan2020 01feb2020 01mar2020 01apr2020
Date

Figure 5: Average NO2 Level of Chinese Cities
This figure plots the average NO2 level of Chinese cities. The values are normalized by the
average of the first two weeks in 2020. Data source: the China National Environmental
Monitoring Center (CNEMC).
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Figure 6: Nitrogen Dioxide (NO2) Level over China
This figure shows the heat maps of Nitrogen Dioxide (NO2) level over China. The heat maps
are created by the National Aeronautics and Space Administration (NASA).

In addition to NO2, I also use the daily level of fine particulate matter (PM2.5), which

is produced by chemical reactions between gases such as Sulfur Dioxide, Nitrogen Oxides,

and volatile organic compounds with dust from industrial activities, as a high-frequency

measure of economic activities. I also collect daily level of PM2.5 for each city from the

China National Environmental Monitoring Center (CNEMC).

Virus outbreak. I collect the daily count of confirmed, dead, and recovered COVID-19

cases of each of 322 cities from the Centers for Disease Control and Prevention of China

(CDC).7 Figure 7 plots the time series of COVID-19 cases in the sample. From January 11

to April 3, 2020, the data cover 81,198 confirmed COVID-19 cases, 3,302 dead cases, and

75,887 recovered cases. The fatality rate amount the confirmed cases is around 4%, which is

7The source of the data can be found on the website of CDC: http://2019nCoV.chinacdc.cn/2019-nCoV/.
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in line with the fatality rates in other countries. The increase in the confirmed cases levels

off in early March. Using this data, I calculate the infection rate, defined as the ratio of

newly confirmed cases over the active cases as a measure of the severity of the outbreak.
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Figure 7: Confirmed, Cured, Dead, and Current Cases of COVID-19
This figure plots the cumulative confirmed, cured, dead, and current cases of COVID-19 in
the sample. Data source: Chinese Center for Disease Control and Prevention.

One may worry that the numbers of cases in Wuhan and other cities of Hubei can

be underestimated because testing capacity was limited at the early stage of the outbreak.

Furthermore, government officials in the epicenter cities initially may have also downplayed

the severity of the outbreak. Fang, Wang, and Yang (2020) found that there were substantial

undocumented infection cases in the early days of the COVID-19 outbreak in cities of Hubei

province. Still, they find the gap between the officially reported cases and their estimated

71
C

ov
id

 E
co

no
m

ic
s 1

1,
 2

9 
A

pr
il 

20
20

: 5
7-

90



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

actual cases narrows significantly as the testing capacity was strengthened in Wuhan. To

address this concern, I conduct robustness checks for all the regressions by excluding the

observations in Hubei province. It is worth noting that economic activity measures are

based on smartphone location or air pollution data, which are unlikely to be subject to the

same measurement issue as the confirmed COVID-19 cases.

Summary statistics. Table 1 provides the summary statistics of the final sample. Panel

A reports the city-date sample. I use this sample to study the impact of health code on

city-level economic activities and the COVID-19 infection rates. The sample period starts

from January 1, 2020, and ends on March 31, 2020. All three measures suggest consistent

reduction in economic activities: the average within-city movements, NO2, and PM2.5 are

around 78%, 63%, and 78% of their normal levels. The average daily infection rate is 2%,

which implies that the new confirmed case grows by 2% of the active cases each day.

In addition to the three main data sources, I collect information on the level of the

emergency response of each province from the local government websites and news reports.

A higher level of emergency gives local governments greater power to impose exceptional

measures such as lockdown and social distancing rules. This system classifies the emergency

event into four levels. The lowest level is coded as 0 and the highest as 4. The average

emergency level in the sample is 2.

Panel B and C report two city pair-day samples on population inflows and outflows,

respectively. I use these two samples to study the impact of health code on the between-city

migration pattern. The inflows and outflows are expressed as the percentage of the total

flows of the corresponding city. The average inflow and outflows are both 1%.
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Table 1: Summary Statistics

Panel A: City-level economic activities

N mean sd p5 p25 p50 p75 p95

Within-city movements 28658 78 26 32 56 84 99 109

NO2 24742 63 30 23 40 58 81 119

PM2.5 24742 78 51 20 43 68 102 171

Infection rate 28658 2 5 0 0 0 0 20

Confirmed cases 28658 144 1986 0 0 8 31 213

Cured cases 28658 83 1252 0 0 3 18 140

Dead cases 28658 5 91 0 0 0 0 3

Emergency level 28658 2 1 0 0 2 3 3

Panel B: City-to-city population inflows

N mean sd p5 p25 p50 p75 p95

Outflow 1964052 1 4 0 0 0 0 4

Confirmed cases (source) 1964052 143 2020 0 0 8 30 169

Cured cases (source) 1964052 82 1270 0 0 3 18 126

Dead cases (source) 1964052 5 93 0 0 0 0 2

Existing cases (source) 1964052 56 1004 0 0 0 6 54

Emergency level 1964052 2 1 0 0 2 3 3

Panel C: City-to-city population outflows

N mean sd p5 p25 p50 p75 p95

Outflow 1896486 1 4 0 0 0 0 4

Confirmed cases (source) 1896486 116 1548 0 0 17 49 252

Cured cases (source) 1896486 75 1083 0 0 6 35 173

Dead cases (source) 1896486 3 72 0 0 0 0 3

Existing cases (source) 1896486 37 725 0 0 0 11 76

Emergency level 1896486 2 1 0 0 2 3 3

Note: This table reports summary statistics of the regression sample. The sample is a panel of 322 cities
from January 1, 2020 to March 31, 2020. Data sources: Baidu, Chinese Center for Disease Control and
Prevention.
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3 Empirical Results

In this section, I exploit the staggered implementation of health code in 322 Chinese cities

to identify the causal effects of big data technology on economic activities and public health

conditions. Specifically, I use a difference-in-differences (DID) research design to test three

main hypotheses: (1) whether the introduction of health code increases local economic activ-

ities, (2) whether the introduction of health code affects the migration pattern between cities,

and (3) whether the introduction of health code reduces the infection rates of COVID-19.

3.1 Economic activities

I study the effects of big data technology on economic activities measured by within-city

population movements:

EconomicActivityi,t = βHealthCodei,t + γXi,t + εi,t, (1)

where EconomicActivityi,t is measured by within-city population movements of city i on

date t, HealthCodei,t is a dummy variable which equals to 1 if city i has health code at

time t, and 0 otherwise. The vector of the control variables, Xi,t, includes the emergency

level of the city and the log number of confirmed, cured, and dead cases. I also include

city fixed effects to absorb time-invariant city characteristics, time fixed effects to absorb

aggregate shocks. Therefore, the empirical design effectively compares differential changes

in economic activities of the treated cities with those of the untreated cities before and after

the introduction of health code.

Column 1 of Table 2 presents the baseline results. I find that the introduction of health

code significantly increases local economic activities. The regression also shows that the

severity of the outbreak also significantly affects local economic activities. In particular, an
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increase in confirmed and dead cases significantly reduce local economic activities while an

increase in cured cases increases local economic activities.

One may worry whether the above result is purely driven by comparing cities in Hubei

province, the epicenter of the virus outbreak, with the rest of the country. Column 2 of

Table 2 presents the results, excluding cities in Hubei province. I find the result is largely

the same as the baseline.

Another potential concern on the empirical approach is that cities that adopt health

code early could have higher economic importance for the country, thus are forced to reopen

before other cities. I address this concern by matching treated cities to control cities with

similar pre-COVID-19 economic activities. The result is presented in Column 3 of Table 2.

The result is robust in the matching sample.

Finally, one may worry that the timing of implementation of health code may be corre-

lated with a differential trajectory of outbreaks in each city. Cities may choose to implement

health code because the outbreak is over. I address this concern by matching the treated

cities to control cities with a similar number of active cases when health code was introduced.

The result is presented in Column 4 of Table 2. The results are also robust to this alternative

matching scheme.
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Table 2: Health Code and Economic Activities

(1) (2) (3) (4)
Economic activity Economic activity Economic activity Economic activity

Health code 1.038∗∗∗ 0.996∗∗∗ 2.105∗∗∗ 2.106∗∗∗

[0.307] [0.226] [0.393] [0.393]

Confirmed cases -4.569∗∗∗ -4.519∗∗∗ -4.450∗∗∗ -4.436∗∗∗

[0.194] [0.274] [0.210] [0.215]

Cured cases 2.204∗∗∗ 2.156∗∗∗ 1.896∗∗∗ 1.878∗∗∗

[0.200] [0.212] [0.215] [0.216]

Dead cases -2.687∗∗∗ -6.082∗∗∗ -2.515∗∗∗ -2.551∗∗∗

[0.649] [0.701] [0.641] [0.638]

City F.E. Yes Yes Yes Yes
Time F.E. Yes Yes Yes Yes
Emergency F.E. Yes Yes Yes Yes
Sample Full sample Excl. Hubei Match by cases Match by act.
Observations 28,658 27,145 26,077 27,857
Adj. R-squared 0.851 0.862 0.850 0.850

Note: This table reports the results of the following regression

EconomicActivityi,t = βHealthCodei,t + γXi,t + εi,t

where EconomicActivityi,t is measured by within-city movement of city i on date t, HealthCodei,t is a dummy
variable which equals to 1 if city i has health code at time t, and 0 otherwise. The vector of the control
variables, Xi,t, includes the emergency level of the city, the log number of confirmed/dead/cured cases, city
fixed effects, and time fixed effects. The sample is a panel of 322 cities from January 1, 2020 to March 31,
2020. Standard errors are clustered at date level. Data sources: Baidu, Chinese Center for Disease Control
and Prevention.

To investigate the dynamic effects of health code introduction, Figure 8 plots the differ-

ence in the economic activities between treated and control cities 20 days before and after the

implementation of health code. Before the introduction of health code, there is no pre-trend

between the treated and control cities, suggesting that the parallel trend assumption seems

to hold in the data. After the introduction of health code, the economic activities of the

treatment cities increases by around 2%-3% compared to the controlled cities.
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Figure 8: Difference in Economic Activities in Treated and Control Cities
This figure plots the difference in economic activities in treated and control cities. The
horizontal axis is the date since the adoption of health code. Standard errors are clustered
at date level. Data source: Baidu, Chinese Center for Disease Control and Prevention,

Within-city movements may not capture the economic activities can conducted without

population movements. To address this concern, I use the concentration level of NO2 and

PM2.5 as alternative measures of economic activities. The results are reported in Table 3.

Consistent with the baseline measure, I find that the introduction of health code significantly

increase economic activities as proxies by the concentration level of NO2 and PM2.5. The

economic magnitude is also quite similar: economic activities increase by 2-3% in cities where

health code is implemented.
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Table 3: Health Code and Economic Activities (Alternative Measures)

(1) (2) (3) (4)
NO2 NO2 PM2.5 PM2.5

Health code 2.470∗∗∗ 2.689∗∗∗ 4.636∗∗∗ 4.529∗∗∗

[0.838] [0.875] [1.503] [1.586]

Confirmed cases -1.698∗∗ -2.386∗∗∗ -0.145 -0.687
[0.661] [0.658] [1.821] [1.752]

Cured cases 3.872∗∗∗ 4.568∗∗∗ -0.865 -0.236
[0.646] [0.646] [1.729] [1.707]

Dead cases -5.737∗∗∗ -8.812∗∗∗ -2.433∗ -10.524∗∗∗

[0.765] [1.322] [1.410] [3.513]

City F.E. Yes Yes Yes Yes
Time F.E. Yes Yes Yes Yes
Emergency F.E. Yes Yes Yes Yes
Sample Full sample Excl. Hubei Full sample Excl. Hubei
Observations 24,742 23,674 24,742 23,674
Adj. R-squared 0.542 0.534 0.358 0.352

Note: This table reports the results of the following regression

EconomicActivityi,t = βHealthCodei,t + γXi,t + εi,t

where EconomicActivityi,t is measured by the NO2 or PM2.5 levels of city i on date t, HealthCodei,t is a
dummy variable which equals to 1 if city i has health code at time t, and 0 otherwise. The vector of the
control variables, Xi,t, includes the emergency level of the city, the log number of confirmed/dead/cured
cases, city fixed effects, and time fixed effects. The sample is a panel of 322 cities from January 1, 2020
to March 31, 2020. Standard errors are clustered at date level. Data sources: Baidu, Chinese Center for
Disease Control and Prevention.

3.2 Between-city migration pattern

Next, I investigate how health code affects the migration pattern between cities. Specifically,

I first examine the effect of health code on inflows into cities. The regression model is the

following:

Inflowi,j,t = βDestinationHealthCodej,t + γXi,j,t + εi,t,

where Inflowi,j,t is the flow from city i to city j on date t, DestinationHealthCodej,t is a

dummy variable which equals to 1 if destination city j has health code at time t, and 0
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otherwise. The vector of the control variables, Xi,j,t, includes the emergency level, and

the log number of confirmed, cured, and dead cases in the destination city. I also include

destination-city fixed effects to absorb time-invariant city characteristics. Finally, I include

source city-time fixed effects. The regression compares the flows from the same source city to

two similar destination cities, of which one has health code, but the other does not. Table 4

shows the results. I find that the introduction of health code significantly increase the inflows

to cities with health code by 11%. This result suggests that cities with health code become

more attractive as most residents can move freely and economic activities recover.

Table 4: Health Code and Population Inflows

(1) (2) (3) (4)
Inflow Inflow Inflow Inflow

Health Code (destination) 10.276∗∗∗ 10.539∗∗∗ 10.281∗∗∗ 10.267∗∗∗

[1.658] [1.654] [1.703] [1.701]

Confirmed cases (destination) 3.486∗∗ 3.943∗∗ 3.651∗∗ 3.643∗∗

[1.476] [1.511] [1.497] [1.496]

Cured cases (destination) 2.965∗∗ 2.929∗∗ 2.825∗∗ 2.828∗∗

[1.277] [1.318] [1.287] [1.286]

Dead cases (destination) -18.916∗∗∗ -20.169∗∗∗ -18.899∗∗∗ -18.890∗∗∗

[1.015] [1.249] [1.051] [1.050]

City pair F.E. Yes Yes Yes Yes
Destination-time F.E. Yes Yes Yes Yes
Emergency level F.E. Yes Yes Yes Yes
Sample Full sample Excl. Hubei Match by cases Match by act.
Observations 1,888,652 1,798,439 1,724,150 1,834,948
Adj. R-squared 0.857 0.859 0.855 0.855

Note: This table reports the results of the following regression

Inflowi,j,t = βDestinationHealthCodej,t + γXi,j,t + εi,j,t,

where Inflowi,j,t is the flow from city i to city j on date t, DestinationHealthCodej,t is a dummy variable
which equals to 1 if destination city j has health code at time t, and 0 otherwise. The vector of the control
variables, Xi,j,t, includes the emergency level, and the log number of confirmed/dead/cured cases in the
destination city, destination-city fixed effects, and source city-time fixed effects. The sample is a panel of 322
cities from January 1, 2020 to March 31, 2020. Standard errors are clustered at date level. Data sources:
Baidu, Chinese Center for Disease Control and Prevention.
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I then examine how health code affects the population outflows from a city. The regres-

sion model is the following:

Outflowi,j,t = βSourceHealthCodei,t + γXi,j,t + εi,t

where Outflowi,j,t is the flow from city i to city j on date t, SourceHealthCodei,t is a dummy

variable which equals to 1 if source city i has health code at time t, and 0 otherwise. The

vector of the control variables, Xi,j,t, includes the emergency level, and the log number of

confirmed, cured, and dead cases in the source city. I also include source-city fixed effects

to absorb time-invariant city characteristics. Finally, I include source city-time fixed effects.

The regression compares the flows from two similar source cities to the same destination city.

One of the source cities has health code, but the other does not. Table 5 shows the results. I

find that the introduction of health code significantly decrease the outflows from cities with

health code by 14%. This result suggests that residents in cities with health code seem to

be more willing to stay in the cities, presumably due to the recovery of economic activities.
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Table 5: Health Code and Population Outflows

(1) (2) (3) (4)
Outflow Outflow Outflow Outflow

Health Code (source) -14.120∗∗∗ -13.200∗∗∗ -15.080∗∗∗ -15.233∗∗∗

[1.774] [1.701] [1.740] [1.735]

Confirmed cases (source) -12.913∗∗∗ -15.333∗∗∗ -14.245∗∗∗ -14.626∗∗∗

[1.675] [1.807] [1.809] [1.811]

Cured cases (source) -4.130∗∗∗ -3.220∗∗ -4.687∗∗∗ -4.660∗∗∗

[1.251] [1.220] [1.389] [1.387]

Dead cases (source) 7.578∗∗∗ -11.209∗∗∗ 8.867∗∗∗ 8.165∗∗∗

[1.657] [1.866] [1.772] [1.807]

City pair F.E. Yes Yes Yes Yes
Source-time F.E. Yes Yes Yes Yes
Emergency level F.E. Yes Yes Yes Yes
Sample Full sample Excl. Hubei Match by cases Match by act.
Observations 1,887,544 1,834,631 1,784,667 1,846,851
Adj. R-squared 0.860 0.862 0.858 0.858

Note: This table reports the results of the following regression

Outflowi,j,t = βSourceHealthCodei,t + γXi,j,t + εi,j,t,

where Outflowi,j,t is the flow from city i to city j on date t, SourceHealthCodei,t is a dummy variable which
equals to 1 if source city i has health code at time t, and 0 otherwise. The vector of the control variables,
Xi,j,t, includes the emergency level, and the log number of confirmed/dead/cured cases in the source city,
source-city fixed effects, and destination city-time fixed effects. The sample is a panel of 322 cities from
January 1, 2020 to March 31, 2020. Standard errors are clustered at date level. Data sources: Baidu,
Chinese Center for Disease Control and Prevention.

3.3 Infection rate of COVID-19

The previous results offer evidence that the introduction of health code allow the economy

to return to normal. However, one important question is whether the reopen of the economy

will lead to a resurgence of virus infection in the future. To test this hypothesis, I estimate

the following regression model:

InfectionRatei,t+7 = βHealthCodei,t + γXi,t + εi,t
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where InfectionRatei,t+7 is the infection rate of COVID-19 in city i on date t+7; HealthCodei,t

is a dummy variable which equals to 1 if city i has health code at time t, and 0 otherwise.

The vector of the control variables, Xi,t, includes the emergency level of the city and the log

number of confirmed, cured, and dead cases. I also include city fixed effects to absorb time-

invariant city characteristics, time fixed effects to absorb aggregate shocks. It is worth noting

that I use the infection rate in 7 days because 7 days is the median time when symptoms

appear after exposure to the virus.

Column 1 of Table 6 presents the baseline results. I find that the introduction of

health code does not seem to increase the infection rates of COVID-19 despite that economic

activities have significantly increased. Column 2 of Table 6 presents the results excluding

cities in Hubei province. I find the result is largely the same as the baseline. This result

alleviates the concern that under-reporting in the epicenter of the virus outbreak could drive

the result. One may also worry that the timing of implementation of health code may be

endogenous to whether the virus outbreak was successfully stopped in a city. I address this

concern by matching the existing confirmed cases at the time of the introduction of health

code. Column 3 of Table 6 shows that the result in the matched sample is quite similar to

the baseline regression as well. Finally, in the sample matched by economic activities, as

shown in Column 4, I find the result is virtually the same.
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Table 6: Health Code and Infection Rates

(1) (2) (3) (4)
Infection rate Infection rate Infection rate Infection rate

Health code 0.079 0.075 0.020 0.026
[0.076] [0.076] [0.086] [0.085]

Confirmed cases -0.526∗ -0.746∗∗ -0.545∗ -0.539∗

[0.314] [0.317] [0.322] [0.316]

Cured cases -0.889∗∗∗ -0.759∗∗∗ -0.862∗∗∗ -0.861∗∗∗

[0.121] [0.113] [0.121] [0.112]

Dead cases 0.411∗∗ 1.269∗∗ 0.405∗ 0.415∗∗

[0.204] [0.493] [0.220] [0.190]

City F.E. Yes Yes Yes Yes
Time F.E. Yes Yes Yes Yes
Emergency F.E. Yes Yes Yes Yes
Sample Full sample Excl. Hubei Match by cases Match by act.
Observations 26,404 25,010 24,026 25,666
Adj. R-squared 0.411 0.388 0.423 0.422

Note: This table reports the results of the following regression

InfectionRatei,t+7 = βHealthCodei,t + γXi,t + εi,t

where InfectionRatei,t+7 is infection rate of city i on date t + 7, HealthCodei,t is a dummy variable which
equals to 1 if city i has health code at time t, and 0 otherwise. The vector of the control variables, Xi,t,
includes the emergency level of the city, the log number of confirmed/dead/cured cases, city fixed effects,
and time fixed effects. The sample is a panel of 322 cities from January 1, 2020 to March 31, 2020. Standard
errors are clustered at date level. Data sources: Baidu, Chinese Center for Disease Control and Prevention.

Figure 7 reports the dynamic effect of the introduction of health code on infection rates

of COVID-19. Again, there is no pre-trend between treated and control cities suggesting the

parallel trend assumption is stratified in the data. Furthermore, the introduction of health

code do not significantly increase the infection rate.

83
C

ov
id

 E
co

no
m

ic
s 1

1,
 2

9 
A

pr
il 

20
20

: 5
7-

90



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

-2
-1

0
1

2
Tr

ea
tm

en
t e

ffe
ct

-20-19-18-17-16-15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time since treatment

Figure 9: Difference in Infection Rates in Treated and Control Cities
This figure plots the difference in infection rates in treated and control cities. The horizontal
axis is the date since the adoption of health code. Standard errors are clustered at date
level. Data source: Baidu, Chinese Center for Disease Control and Prevention,

3.4 Trade-off between lives and livelihoods?

Finally, I examine whether the big data technology helps to improve the trade-off between

lives and livelihoods. Specifically, I estimate the relationship between economic activities

and future infection rates with and without health code.

InfectionRatei,t+7 = β1HealthCodei,t × EconomicActivityi,t + γXi,t + εi,t
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where InfectionRatei,t+7 is the infection rate of COVID-19 in city i on date t+7; HealthCodei,t

is a dummy variable which equals to 1 if city i has health code at time t, and 0 otherwise;

EconomicActivityi,t is measured by the index of within-city movement of city i on date t.

The vector of the control variables, Xi,t, includes the current infection rate, emergency level

fixed effects, city fixed effects, and time fixed effects.

Figure 10 plots the predicted infection rates for each level of economic activities with

and without health code, respectively. I find that health code improve the tradeoff between

economic activities and virus infection. Specifically, without health code, a 50% increase in

economic activities is associated with a 6 bps increase in the daily infection rate. However,

with health code, a 50% increase in the economic activities is associated with only 3 bps

increase in the daily infection rate.
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Figure 10: Trade-off Between Economic Activities and COVID-19 Infection Rate
This figure plots the trade-off between economic activities and COVID-19 infection rates.
Data source: Baidu, Chinese Center for Disease Control and Prevention.

3.5 Do the benefits of health code justify the costs?

The above results show that health code can significantly improve economic activities without

sacrificing the public health. However, using big data technology could lead to other types of

costs. The most prominent concern is privacy. Do the benefits created by health code justify

its costs on privacy? In this section, I conduct a back-of-the-envelope calculation of the

benefits of health code and compare it with the costs of privacy estimated in the literature.

Section 3.1 shows that the introduction of health code increase economic activities by

around 2-3%. Assuming that the COVID-19 outbreak lasts for a quarter, then the in-
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troduction of health code creates an economic value of 0.5%-0.75% GDP. Given the GDP

per capita in China is around $10,000 as of 2018, a 0.5% increase in GDP translates to

0.5% × $10, 000 = $50 per person.8 In comparison, Tang (2019) estimate that in a field

experiment that Chinese people value their privacy at a value of $33. It seems that the

benefits of the health code technology dominate the potential costs of privacy.

A caveat of this cost-benefit analysis is that people in different countries may value

privacy differently. However, Athey, Catalini, and Tucker (2017) conduct experiments in the

U.S. and find that, even for people who claim to value privacy, they are willing to relinquish

their private data to exchange for small benefits. Therefore, big data technology could be

welfare improving in many countries where people appear to value privacy a lot. The second

caveat is that the above estimate is constructed based on the assumption that the COVID-

19 outbreak lasts for a quarter. However, if the COVID-19 outbreak lasts longer, then the

benefits should be adjusted accordingly. Third, the value of privacy estimated by Tang

(2019) is based on sharing social network ID and employer contact while health code require

location data, which may be valued differently by people. Fourth, using big data technology

does not necessarily lead to a loss of privacy. If health code is implemented by a trusted

entity or is protected by data anonymization technology, then people may be more willing

to share their data. Finally, the effectiveness of every big data technology depends on the

quality of data input. To make health code effective, it is estimated that three-quarter of the

population needs to register. The adoption rate appears to be an issue for Singapore where

only 20% of 5.7 million population has registered for their contact tracing app one month

after the introduction. The low adoption rate seems to compromise the effectiveness of this

technology as the number of cases keeps rising.9

8See the World Bank data: https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?locations=CN
9See WSJ April 22 article, “Singapore Built a Coronavirus App, but It Hasn’t Worked So Far”.
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4 Conclusion

Pandemics such as COVID-19 inflicts enormous costs to the economy. Policymakers are

facing the impossible choice between saving human lives and saving the economy. This

paper examines the effectiveness of big data technology in addressing the pandemic dilemma

using a large experiment of health code in China. Exploiting the staggered implementation of

health code in 322 cities in China, I find that the introduction of this technology significantly

revives economic activities while keeping the outbreak under control. I find that the benefits

of this big data technology seem to outweigh its potential costs on privacy. Given the medical

cure of the disease is still elusive, big data technology presents a promising solution to the

pandemic dilemma between lives and livelihoods.

This paper argues that big data technology addresses the key amplifier of the economic

costs caused pandemics, that is, information friction. This result has many important impli-

cations because information friction lies in the hearts of many social and economic problems.

By leveraging the enormous amount of data produced in our digital age, big data technology

can alleviate this friction and provide better solutions for many existing problems. How

to harness the power of big data technology without threatening our privacy will be a big

question in the post-COVID-19 world.
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