Seminar 6

Endogeneity (Part II)

1 Measurement Error

1. We would like to run the following regression using "Life in Kyrgyzstan" household survey for 2012:

 $Remittances = \beta_0 + \beta_1 income + \beta_2 hhsize + \beta_3 males_over_15 + \beta_4 child_under_5 + \beta_5 female_hh_head + \beta_6 married_hh_head + u$

where

Remittances=amount of remittances sent by labor migrants in KGS:

- (a) H617="How much money did the migrant send during the last 12 months, for example, carried by migrant himself, by friends/relatives, or sent via bank/money transfer agencies?"
- (b) H502="Amount of the following income source per month, on average: Money transfers from persons living abroad";

income=income excluding remittances in KGS;

hhsize=household size;

males_over_15=number of males over age 15;

child_under_5=number of children under age 5;

female_hh_head=dummy variable equal to "1" if the household head is "female" and "0" otherwise;

married_hh_head=dummy variable equal to "1" if the household head is "married" and "0" otherwise.

- 2. As the required data are contained in different Stata data files ("hh1a", "hh4b", "hh5", "hh6b" from the Household questionnaire, we need to merge them into one data file before proceeding with estimation.
 - (a) Import the Stata data file "hh1a" from the e-course platform.

i. Save it in your computer and name the file "hhla_new".

- ii. Keep only the following variables: hhid pid age h102 h104 h108.
- iii. Generate the new variable hhsize.
- iv. Generate the new variable males_over_15.
- v. Generate the new variable child_under_5.
- vi. Generate the new variable female_hh_head.
- vii. Generate the new variable married_hh_head.
- viii. Drop the variables pid, age, h102, h104, h108.
- ix. Delete duplicate observations.
- x. Check if the variable hhid uniquely identifies observations in the data (i.e. if there are any duplicates), and save the changes.
- (b) Import the Stata data file "hh4b" from the e-course platform.
 - i. Save it in your computer and name the file "hh4b_new".
 - ii. Generate the new variable health_expenses_all, which is the sum of expenditures on medicines and medical care, including dental care, in KGS per month.
 - iii. Drop the variables n4b h403 h404 h405 health_expenses
 - iv. Delete duplicate observations.
 - v. Check if the variable hhid uniquely identifies observations in the data (i.e. if there are any duplicates), and save the changes.
- (c) Import the Stata data file "hh5" from the e-course platform.
 - i. Save it in your computer and name the file "hh5_new".
 - ii. Generate the new variable all_income, which is household income including remittances.
 - iii. Generate the new variable **remittance_2**, which is the amount of money transfers from persons living abroad.
 - iv. Generate the new variable **income**, which is household income excluding remittances.
 - v. Drop the variables n5 h501 h502 all_income.
 - vi. Delete duplicate observations.
 - vii. Check if the variable hhid uniquely identifies observations in the data (i.e. if there are any duplicates), and save the changes.

- (d) Import the Stata data file "hh6b" from the e-course platform.
 - i. Save it in your computer and name the file "hh6b_new".
 - ii. Keep only the following variables: hhid h617_s h617_c h617_t.
 - iii. Generate the new variable **remittance_1**, which is the amount of money that the migrant sent during the last 12 months, for example, carried by migrant himself, by friends/relatives, or sent via bank-money transfer agencies.

Note: the official exchange rate (average for the whole year) for 2012:

USD-KGS: 47.01; RUB-KGS: 1.51; EUR-KGS: 60.44.

- iv. Drop the variables h617_s h617_c h617_t.
- v. Check if the variable hhid uniquely identifies observations in the data (i.e. if there are any duplicates), and save the changes.
- (e) Open the "hhla_new" data file again and merge it with "hh4b_new".
 - i. Now merge the newly merged data with hh5_new.
 - ii. Now merge the newly merged data with hh6b_new.
 - iii. As there are only 414 matched observations during the last merging (remittances were reported only for those households who reported having received them), we need to replace <u>missing</u> values for **remittance_1** with <u>zero</u> values.
 - iv. Now obtain summary statistics of remittance_1 and remittance_2 variables to see if there are any differences between them.
- 3. Run the linear regression given by

 $Remittances = \beta_0 + \beta_1 income + \beta_2 hhsize + \beta_3 males_over_15 + \beta_4 child_under_5 + \beta_5 female_hh_head + \beta_6 married_hh_head + u$

using remittance_1 measure.

- (a) Now run the same regression but using remittance_2 measure.
- (b) Compare the OLS coefficients for income, hhsize, males_over_15, child_under_5, female_hh_head, married_hh_head. What can you say?

4. Now we would like to run the following regression

$$\begin{split} Health_expenses_all &= \beta_0 + \beta_1 remittances + \beta_2 income + \beta_3 hhsize + \beta_4 males_over_15 + \beta_5 child_under_5 + \beta_6 female_hh_head + \beta_7 married_hh_head + u \end{split}$$

where

Health_expenses_all=expenditures on medicines and medical care, including dental care, in KGS per month.

- (a) Run this regression using remittance_1 measure.
- (b) Now run the same regression but using remittance_2 measure.
- (c) Compare the OLS coefficients for remittance_1 and remittance_2. What can you say?