Seminar 4

Using OLS in Stata: Functional Form, Data Scaling and Selection of Regressors

1 Running a Regression with Different Functional Forms Using OLS

- 1. Import the Stata data file "reg01" from the e-course platform.
- 2. Run the linear regression given by

 $log(income) = \beta_0 + \beta_1 educ + \beta_2 jobexp + \beta_3 race + u$

3. Interpret the OLS coefficients (intercept and slope coefficients). When doing it, make sure to discuss the sign of the coefficient, its magnitude and ceteris-paribus interpretations, as well as statistical significance of the coefficients. How did the results change compared to a case where income was in level form? For reference, below is the regression output where income was in level form:

Source	SS	df	MS	Numb	Number of obs F(3, 16) Prob > F R-squared		20
Model Residual	1538.92019 281.505287	3 16	512.973390 17.5940804	- F(3, 5 Prob 1 R-sq			29.16 0.0000 0.8454
Total	1820.42548	19	95.8118671	- Adj Root	MSE MSE	a =	4.1945
income	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
educ jobexp race _cons	1.981124 .6419622 .5707931 -7.863763	.3231024 .1811106 2.871949 5.369166	6.13 3.54 0.20 -1.46	0.000 0.003 0.845 0.162	1.296 .2580 -5.517 -19.24	178 248 466 589	2.66607 1.0259 6.659052 3.518362

4. Run the linear regression given by

 $income = \beta_0 + \beta_1 educ + \beta_2 jobexp + \beta_3 jobexp^2 + \beta_4 race + u$

5. Interpret the OLS coefficients (intercept and slope coefficients). When doing it, make sure to discuss the sign of the coefficient, its magnitude and ceteris-paribus interpretations, as well as statistical significance of the coefficients.

6. Run the linear regression given by

 $income = \beta_0 + \beta_1 educ + \beta_2 jobexp + \beta_3 jobexp * race + \beta_4 race + u$

7. Interpret the OLS coefficients (intercept and slope coefficients). When doing it, make sure to discuss the sign of the coefficient, its magnitude and ceteris-paribus interpretations, as well as statistical significance of the coefficients.

2 Goodness-of-Fit and Selection of Regressors

1. We want to choose between the following models

 $\begin{aligned} income &= \beta_0 + \beta_1 educ + \beta_2 jobexp + \beta_3 jobexp^2 + \beta_4 race + u \\ \text{and} \\ income &= \beta_0 + \beta_1 educ + \beta_2 log(jobexp) + \beta_3 race + u \end{aligned}$

Run the respective regressions in Stata and make the case for one of the models using adjusted R-squared.