Seminar 3

Using OLS in Stata

1 Running a Regression Using OLS

- 1. Import the Stata data file "reg01" from the e-course platform.
- 2. Run the linear regression given by

 $income = \beta_0 + \beta_1 educ + \beta_2 jobexp + \beta_3 race + u$

- 3. Interpret the OLS coefficients (intercept and slope coefficients). When doing it, make sure to discuss the sign of the coefficient, its magnitude and ceteris-paribus interpretations, as well as statistical significance of the coefficients. For reference, income is measured in thousands of US dollars, educ and jobexp in years, and race takes the value of 1 for black and 0 for white.
- 4. What is the estimated effect on **income** if an individual engages in part-time one-year master degree studies, while working at the same time?
- 5. How do you interpret the R-squared obtained from running this regression?

2 Inference and Hypothesis-Testing

- 1. Test the null hypothesis $H_0: \beta_1 = 0$ against the alternative $H_1: \beta_1 > 0$ at 5% significance level. Make the calculations by hand drawing a graph and using the corresponding table. What do the results of hypothesis-testing suggest?
- 2. Test the null hypothesis $H_0: \beta_3 = 0$ against the alternative $H_1: \beta_3 < 0$ at 10% significance level. Make the calculations by hand drawing a graph and using the corresponding table. What do the results of hypothesis-testing suggest?

- 3. Test the null hypothesis $H_0: \beta_2 = 0$ against the alternative $H_1: \beta_2 \neq 0$ at 1% significance level. Make the calculations by hand drawing a graph and using the corresponding table. What do the results of hypothesis-testing suggest?
- 4. Test the null hypothesis $H_0: \beta_1 = 2$ against the alternative $H_1: \beta_1 \neq 2$ at 5% significance level. Make the calculations by hand drawing a graph and using the corresponding table. What do the results of hypothesis-testing suggest?
- 5. Test the null hypothesis H_0 : $\beta_1 = \beta_2$ against the alternative H_1 : $\beta_1 \neq \beta_2$ at 10% significance level. As it is difficult to make the calculations by hand, use Stata for this hypothesis-testing. What do the results suggest?
- 6. Test the null hypothesis H_0 : $\beta_1 = 0, \beta_2 = 0$ against the alternative H_1 : H_0 is not true at 1% significance level. Use Stata for this hypothesis-testing. What do the results suggest?

3 Review of Formulas

1. The following is the regression output linking academic performance of the school api00 to a number of variables, including whether it is a year-round school yr_rnd, the average class size in kindergarten through 3rd grade acs_k3, the percentage of students receiving free meals meals, the percentage of teachers who have full teaching credentials full, etc. Please fill in the gaps in the regression output.

AMERICAN UNIVERSITY - CENTRAL ASIA Econometrics I (ECO 608)

Nurgul Tilenbaeva

Source	SS	df	MS		Number of obs F(,)	=	395 232.41
Model	6740702.01	9	748966.89		Prob > F	=	0.0000
Residual	1240707.78	385	3222.61761		R-squared	=	0.8446
+-					Adj R-squared	=	
Total	7981409.79	394	20257.3852		Root MSE	=	56.768
ani00	Coef	Std F		P> +	[95% Conf	Tn	tervall
ell	8600707	.21063	17	0.000	-1.274203	4	4459382
meals	-2.948216	.17034	-17.31	0.000			
yr_rnd	-19.88875		-2.15	0.032	-38.09218		1.68531
mobility		.43620	-2.98	0.003	-2.158995	4	4437089
acs_k3	1.3187	2.2526	83	0.559			
acs_46	2.032456	.79832	13 2.55	0.011			
full	.609715		1.28	0.201	3258169	1	.545247
emer		.60540	-1.17	0.244	-1.89694		4837018
enroll		.01679	-0.72	0.469	0451798	. (0208517
_cons	778.8305	61.686	63 12.63	0.000	657.5457	90	00.1154

4 Gauss-Markov Assumptions

1. Is <u>Assumption MLR1</u>. Linear in Parameters satisfied for the following models? Explain.

$$\begin{split} y &= \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + u \\ y &= \beta_0 + \beta_1 x_1 + \beta_2 log(x_2) + u \\ y &= \beta_0 + \beta_1^2 x_1 + \beta_2 x_2^2 + u \\ y &= \beta_0 + \beta_1 x_1 + log(\beta_2) x_2 + u \end{split}$$

2. Is <u>Assumption MLR3. No Perfect Collinearity</u> satisfied for the following models? Explain.

 $cons = \beta_0 + \beta_1 income + \beta_2 income^2 + u$

 $income = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 kyrgyz + \beta_4 russian + \beta_5 uzbek + u.$ The assumption is that the population of interest is represented by Kyrgyz, Russian and Uzbek ethnicity.

 $gpa = \beta_0 + \beta_1 attend + \beta_2 expend_{educ} + \beta_3 expend_{health} + \beta_4 expend_{education and health} + \beta_4 expend_{education and health}$

u

- 3. Under which Gauss-Markov Assumptions OLS estimators are unbiased estimators of the population parameters?
- 4. If the errors exhibit heteroskedasticity (i.e. violate <u>MLR5</u>. Homoskedasticity), does it lead to biased OLS estimates?
- 5. Under which Gauss-Markov Assumptions OLS estimators are the best linear unbiased estimators (BLUEs) of the population parameters?