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9Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy

Abstract Laetoli is a well-known palaeontological locality in northern Tanzania whose

outstanding record includes the earliest hominin footprints in the world (3.66 million years old),

discovered in 1978 at Site G and attributed to Australopithecus afarensis. Here, we report hominin

tracks unearthed in the new Site S at Laetoli and referred to two bipedal individuals (S1 and S2)

moving on the same palaeosurface and in the same direction as the three hominins documented at

Site G. The stature estimates for S1 greatly exceed those previously reconstructed for Au. afarensis

from both skeletal material and footprint data. In combination with a comparative reappraisal of

the Site G footprints, the evidence collected here embodies very important additions to the

Pliocene record of hominin behaviour and morphology. Our results are consistent with considerable

body size variation and, probably, degree of sexual dimorphism within a single species of bipedal

hominins as early as 3.66 million years ago.

DOI: 10.7554/eLife.19568.001

Introduction
Estimates of body size and proportions are crucial in the evolutionary interpretation of Plio-Pleisto-

cene hominin palaeobiology (McHenry, 1991, 1992; Ruff et al., 1997; Grabowski et al., 2015) and

have been the subject of ongoing debates, at least since the late 1970s (e.g., Johanson and White,

1979). Within-species variability in body size often relates to sexual dimorphism and/or to adapta-

tion to different ecologies. This is particularly true among extant Hominoidea, which show diverse

patterns of variation (e.g., Plavcan, 2001); for instance, gorillas are polygynous species with strong

sexual dimorphism due to intense male-male competition, whereas chimpanzees are promiscuous

with definitively smaller sexual dimorphism. It is reasonable to assume that complex relationships

among body size, sexual dimorphism, mating system (and/or reproductive strategy) and social struc-

ture/behaviour also applied to extinct hominins, including our bipedal relatives of the Plio-Pleisto-

cene. In fact, claims that size variation in Australopithecus and/or Paranthropus was larger than that

in recent human populations include inferences on sexual dimorphism (Richmond and Jungers,

1995; Plavcan et al., 2005; Lockwood et al., 2007; but see Reno et al., 2003), whereas arguments
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referring to early Homo are usually associated with eco-physiological variants (Antón et al., 2014;

Di Vincenzo et al., 2015).

For Australopithecus afarensis, remarkable variation in size and shape within its alleged hypodigm

was noted in the original description of the species (Johanson et al., 1978). Nevertheless, there

have always been disputes about the nature and degree of sexual dimorphism characterising this

early bipedal hominin, with supporters of either pronounced (e.g., Johanson and White, 1979;

Kimbel and White, 1988; McHenry, 1991; Richmond and Jungers, 1995; Lockwood et al., 1996;

Plavcan et al., 2005; Harmon, 2006; Gordon et al., 2008) or moderate (Lovejoy et al., 1989)

body-size dimorphism.

For example, Richmond and Jungers (1995) wrote: ’If the fossils from Hadar and Maka (and Lae-

toli) are assumed [. . .] to be from one sexually dimorphic species, then the degree of sexual dimor-

phism of Au. afarensis would have been at least as extreme as that of the most dimorphic living

apes [. . .]. It follows that a strictly monogamous structure would have been highly unlikely.’

Reno et al. (2003) (but see Plavcan et al., [2005] and the reply by Reno et al., [2005]) challenged

this premise with an analysis of the sexual dimorphism of femoral head diameter in Au. afarensis,

concluding that these early hominins showed human-like sexual dimorphism and were therefore

characterised by a monogamous mating system. Conversely, Grabowski et al. (2015, p. 90)

obtained comprehensive and thoroughly vetted data, supporting ’arguments that Au. afarensis had

substantial size dimorphism [. . .] leading to a large amount of variation in body size within this

taxon.’

It is clear that our ability to investigate this important and controversial issue depends on the pos-

sibility of evaluating the body size and proportions of extinct creatures. Estimates are largely inferred

from known relationships between metric data in living species, such as bone length (or joint size)

eLife digest Fossil footprints are extremely useful tools in the palaeontological record. Their

physical features can help to identify their makers, but can also be used to infer biological

information. How did the track-maker move? How large was it? How fast was it going?

Footprints of hominins (namely the group to which humans and our ancestors belong) are pretty

rare. Nearly all of the hominin footprints discovered so far are attributed to species of the genus

Homo, to which modern humans belong. The only exceptions are the footprints that were

discovered in the 1970s at Laetoli (in Tanzania) on a cemented ash layer produced by a volcanic

eruption. These are thought to have been made by three members of the hominin species

Australopithecus afarensis – the same species as the famous “Lucy” from Ethiopia – around 3.66

million years ago.

The extent to which body shape and size varied between different members of Au. afarensis – for

example, between males and females – has been the subject of a long debate among researchers.

Based on the skeletal remains found so far in East Africa, some scholars believe that individuals only

varied moderately, as in modern humans, while others state that it was pronounced, as in some

modern apes like gorillas.

Masao et al. have now unearthed new bipedal footprints from two individuals who were moving

on the same surface and in the same direction as the three individuals who made the footprints

documented in the 1970s. The estimated height of one of the new individuals (about 1.65 metres)

greatly exceeds those previously published for Au. afarensis. This evidence supports the theory that

body size varied considerably amongst individuals within the species.

Masao et al. tentatively suggest that the new footprints can be considered as a whole with the

1970s ones. The tall individual may have been the dominant male of a larger group, the others

smaller females and juveniles. Thus, considerable differences may have existed between males and

females in these remote human ancestors, similar to modern gorillas.

The newly discovered tracks are only 150 metres away from the previously discovered sets of

footprints. This leaves open the possibility that additional tracks may be unearthed nearby that will

further our knowledge about the variability and behaviour of our extinct ancestors.

DOI: 10.7554/eLife.19568.002
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and stature (or body mass) (McHenry, 1991, 1992; Grabowski et al., 2015). Similar estimates can

be even more plainly obtained from the analysis of single footprints or – even better – from trails of

footprints (Tuttle, 1987; Dingwall et al., 2013). Among these, one of the most remarkable pieces

of evidence are the renowned trackways from Laetoli Site G (northern Tanzania), which are ascribed

to Au. afarensis (White and Suwa, 1987).

In this paper, we report a novel set of hominin tracks discovered at Laetoli in the new Site S, com-

paring it to a reappraisal of the original evidence. The new tracks can be referred to two different

individuals moving in the same direction and on the same palaeosurface as those documented at

Site G.

The site: a brief overview
Laetoli (Figure 1A,B) is one of the most important palaeontological localities in Africa. It lies within

the Ngorongoro Conservation Area at the southern edge of the Serengeti Plains. The region

includes sites such as Olduvai Gorge, Lake Ndutu and Laetoli itself and provides a long sequence of

Plio-Pleistocene, mostly volcano-sedimentary, deposits that are rich in archaeological and paleonto-

logical remains (Hay, 1987), overlying Precambrian metamorphic rocks. The paleoanthropological

Figure 1. Geographical location and site map. (A) Location of the study area in northern Tanzania. (B) Location of Laetoli within the Ngorongoro

Conservation Area, about 50 km south of Olduvai Gorge. (C) Plan view of the area of Laetoli Locality 8 (Sites G and S).

DOI: 10.7554/eLife.19568.003
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significance of the whole area has been known since the mid 1930s (Reck and Kohl-Larsen, 1936;

Kohl-Larsen, 1943), whereas Laetoli became known worldwide in the 1970s for stimulating discover-

ies, such as the holotype and other remains of Au. afarensis (Leakey et al., 1976; Johanson et al.,

1978) and remarkable evidence of the earliest bipedal hominin tracks (Leakey and Hay, 1979;

Leakey and Harris, 1987) dated to 3.66 million years ago (Ma) (Deino, 2011).

Mammal, bird and insect prints and trails have been identified in 18 sites (labelled from A to R)

out of 33 total palaeontological localities in the Laetoli area (Leakey, 1987a; Musiba et al., 2008;

Harrison and Kweka, 2011). Footprints occur in 10 sublevels within the so-called Footprint Tuff,

corresponding to the lower part of Tuff 7 in the Upper Laetolil Beds stratigraphic sequence

(Hay, 1987). These hominin trackways were found in 1978 at Site G (Locality 8) and were referred to

three individuals (G1, G2, G3) of different body size: the smallest individual, G1, walked side by side

on the left of the largest individual, G2, while the intermediate-sized individual, G3, superimposed

its feet over those of G2 (Leakey, 1981). The trackways are usually ascribed, not without controversy

(Tuttle et al., 1991; Harcourt-Smith, 2005), to Au. afarensis (White and Suwa, 1987), which is the

only hominin taxon found to date in the Upper Laetoli Beds (Harrison, 2011).

Discovery and notes on preservation
The new Site S (situated within Locality 8) is located about 150 m to the south of Site G (Figure 1C),

on the surface of the same morphological terrace. It was discovered during systematic survey and

excavation activities (Cultural Heritage Impact Assessment) aimed at evaluating the impact of a pro-

posed new field museum at Laetoli, in the area of Locality 8. Sixty-two 2 � 2 m test pits were ran-

domly positioned within a grid and were carefully excavated down to the Footprint Tuff and

sometimes deeper.

In 2015, fourteen hominin tracks always associated with tracks of other vertebrates (see Results)

were unearthed in three test-pits, respectively labelled L8, M9 and TP2 from north to south (see

Materials and methods) (Figures 1C and 2). Seven bipedal tracks in different preservation state (see

below) were exposed in L8 (Figure 2; Figure 2—figure supplement 1 and Figures 3–4) and four in

M9 (Figure 2—figure supplement 2 and Figure 5). Two additional tracks of the same individual

were found in the eastern part of TP2 (Figure 6). All these prints are clearly referable to a single indi-

vidual trackway, with an estimated total length of 32 m and trending SSE to NNW (i.e., 320–330˚),
approximately parallel to the G1 and G2/3 trackways. Following the code used for the Site G prints

(Leakey, 1981), we refer to the new individual as S1 (footprint numbers S1-1–7 in L8, S1-1–4 in M9

and S1-1–2 in TP2). At the end of the September 2015 field season, we discovered one more track

referable to a second individual (S2), in the SW corner of TP2. Conversely, we exposed only non-

hominin footprints in test-pit M10 (Figure 2—figure supplement 3).

The preservation state of the tracks varies considerably along the trackway, depending on the

depth of the Footprint Tuff from the surface.

In L8, the Tuff is very shallow, not deeper than 20 cm to the south, whereas it even crops out on

the scarp of the terrace on the opposite side. Consequently, the Tuff is overlain here only by

reworked loose soil, and the tracks are not filled up with compact and/or cemented sediment. Pres-

ervation issues arise from this situation, because the tuff tends to be rather altered and dislodged

along the natural fractures (Figure 7). The first four tracks in the L8 trail are the best preserved,

whereas the state of preservation of the footprint-bearing surface is particularly critical in the north-

ern part (Figure 8), where the surface appears very damaged by cracks of different size and by plant

roots. Some parts of the surface even subsided into micro-grabens developed along the main faults.

Consequently, the anterior portion of the track L8/S1-6 is no longer visible because it is situated in

one of these lowered parts (Figure 3). Moreover, a zigzag channel, probably formed by a large root,

crosses the northern half of this test-pit from SE to NW, so that L8/S1-5 is virtually indiscernible (Fig-

ure 3). In the western portion of L8, three large rounded holes (green circles in Figure 2) originated

from roots of acacia trees that grew on the surface. Raindrop imprints are visible to the northern

edge of the test-pit (Figure 2) on two relatively well-preserved portions of the tuff surrounded by

weathered and lowered areas. These features have also been described in several other footprint-

bearing sites at Laetoli (Leakey, 1987a).

The situation is different in M9, where about 72 cm of grey soil and unaltered sediments overlie

the Footprint Tuff. Here, the tracks are sealed by the upper, laminated part of Tuff seven and filled

with strongly cemented sediment. The tuff is here in reasonably good condition, even if it is crossed
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Figure 2. Plan view of the four test-pits excavated at Laetoli Site S. Dashed lines indicate uncertain contours. Some of the most interesting tracks are

coloured: hominins in orange (heel drags in dark grey), equid in dark green (M9), rhinoceros in red (M9), giraffe in light brown (M10), and guineafowl in

blue (M10). Large roots and the bases of trees are in light green (L8). The main faults/fractures are indicated by brown lines. Raindrop impressions

occur in the northern part of L8 (dotted areas).

DOI: 10.7554/eLife.19568.004

The following figure supplements are available for figure 2:

Figure supplement 1. Orthophotos of selected hominin tracks from test-pit L8 at Site S.

DOI: 10.7554/eLife.19568.005

Figure 2 continued on next page
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by old tectonic fractures re-cemented by calcite (Figures 5 and 9). Moreover, deeply expanding

roots penetrate preferentially into the subhorizontal fissures situated between bedding planes, dis-

lodging the rock and fostering carbonate dissolution.

The taphonomic state of the Footprint Tuff and of the tracks is very similar in M10, which is about

80 cm deep. In M9, the infilling matrix was removed from two hominin tracks (M9/S1-2 and M9/S1-

3) (Figures 5 and 9) in order to examine their inner morphology. Small amounts of water were used

during the excavation, in order to soften the sediment and darken its hue to better distinguish it

from the surrounding tuff. The infill was finally removed by small dental tools, trying not to damage

the very thin calcite film covering the original footprint surface (White and Suwa, 1987). Unfortu-

nately, some vertical crisscross fractures filled by hard calcite veins (Figures 5 and 9) preclude a

detailed morphological study of the two footprints. An about 4-cm-thick layer of tuff was removed

from a footprint-free area of the M9 SW corner, putting into light a deeper horizon containing bovid

tracks (Figure 2).

In TP2, the preservation state of the ~66-cm-deep printed tuff is intermediate between the L8

and M9/M10 ones. The southern part is in better condition: the hominin track TP2/S1-1 is rather well

preserved and some of the other animal prints are still filled by the sediment of the overlying unit.

Unfortunately, the SW portion of the test-pit is crossed longitudinally by north-running roots that

cross TP2/S2-1, partially damaging it (Figures 2 and 6). On the contrary, the northern part of the

test-pit is poorly preserved because of a micro-graben developed along an EW-trending fault, which

also crosses TP2/S1-2, causing the lowering of its anterior portion (Figures 2 and 6).

Geological setting
The assessment of the Laetoli Site S sequence within the wider framework of the Eyasi Plateau for-

mations is crucial to understand the stratigraphic relationships between the footprint-bearing units

of the newly discovered Site S and those of the historical Site G. These relationships can be dis-

cussed at two levels of increasing detail, each one affecting different and similarly more detailed

aspects of the study of the tracks.

Figure 2 continued

Figure supplement 2. Orthophotos of selected hominin tracks from test-pit M9 at Site S.

DOI: 10.7554/eLife.19568.006

Figure supplement 3. Orthophotos of selected tracks from test-pit M10 at Site S.

DOI: 10.7554/eLife.19568.007

Figure 3. Shaded 3D photogrammetric elevation model of the L8 trackway. Colour renders heights as in the colour bar. The empty circles indicate the

position of the targets of the 3D-imaging control point system (see Materials and methods for details).

DOI: 10.7554/eLife.19568.008
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Figure 4. Shaded 3D photogrammetric elevation model of test-pit L8 and close-up of the best-preserved tracks with contour lines. Colour renders

heights as in the colour bar; distance between elevation contour lines is 2 mm. The empty circles indicate the position of the targets.

DOI: 10.7554/eLife.19568.009
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The first – and most relevant – level regards verifying whether the unit bearing the new tracks cor-

responds to the Footprint Tuff, part of Tuff 7 together with the overlying Augite Biotite Tuff

(Leakey and Hay, 1979, p. 317; Hay, 1987, p. 36), where the Site G tracks were printed. This would

imply that the trackways are contemporaneous from a geological/geochronometric point of view.

Moreover, considering that Tuff 7 includes a sequence of several sublevels originated by distinct

eruptions closely spaced in time, and that its overall deposition time was estimated in weeks

(Hay and Leakey, 1982, p. 55; Hay, 1987, p. 36, it can be concluded that all the tracks belong to

the same general population of hominins.

Secondarily, stratigraphic relationships can be explored at higher detail, in order to assess

whether the tracks of Site S were printed on exactly the same sublevel of the Footprint Tuff as

those in Site G. This aspect would mostly concern the behavioural aspects of a hypothetical single

group of hominins, but it must be pointed out that extra-fine correlation between outcrops, even in

a depositional environment with moderate lateral variability like the Footprint Tuff deposition area,

can be affected by major uncertainty.

Figure 5. Shaded 3D photogrammetric elevation model of the central portion of test-pit M9 and close-up of the best-preserved tracks with contour

lines. Colour renders heights as in the colour bar; distance between elevation contour lines is 2 mm. The empty circles indicate the position of the

targets

DOI: 10.7554/eLife.19568.010
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Figure 6. Shaded 3D photogrammetric elevation model of test-pit TP2 and close-up of the three hominin tracks with contour lines. Colour renders

heights as in the colour bar; distance between elevation contour lines is 2 mm. The empty circles indicate the position of the targets.

DOI: 10.7554/eLife.19568.011
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Field description of the sequences
The eye-scale characteristics of the profiles exposed in the test-pits are reported here from the top

downwards.

Test-pit L8
The Footprint Tuff is extremely shallow and partly eroded in this area, which is limited by the ero-

sional surface of a gully side. Only the lower subunit is preserved, whereas the upper one is

completely pedogenised. Consequently, the tracks are not filled-up with compact sediment but only

with modern soil: dark grey (2,5Y 4/1–4/2 dark grey-dark greyish brown) clay loam to sandy clay

loam, with well-developed coarse subangular blocky structure, extremely loose and weak. To the

north, the Tuff is no longer covered by soil and crops out directly from the ground surface; the rock,

already fractured by tectonic stress, is partly dislodged into decimetre-size blocklets. To the south,

the Tuff is overlain by 20–25 cm of soil.

Test-pit M9 (Figure 10)

1. Modern soil. Dark grey (2,5Y 4/1–4/2 dark grey-dark greyish brown) clay loam to sandy clay
loam, with well-developed coarse subangular blocky structure, rather loose and moderately
weak; sand is more common at the base, where the structure is somewhat less developed.
Few coarse unsorted skeleton. Few Fe/Mn-oxide mottles. Thickness 20–25 cm; abrupt and
slightly undulating limit.

2. Grey augite-rich tuff. Greyish (2.5Y 4/1–5/1 dark grey-grey) silty sand, poorly sorted, with com-
mon very coarse sand-size black rounded grains. Massive structure, moderately strong; no sed-
imentary structures. Thickness 32–35 cm; sharp subhorizontal limit, frequently marked by
recent roots occupying a 0–1-cm-thick planar void. Poorly sorted very fine sand to coarse
sand-size particles, including common anhedral to subhedral augite, grey rounded particles,
greyish-brownish aggregates, other unidentified lithics. Light grey micro- to cryptocrystalline
cement.

Figure 7. Southern part of the hominin trackway in test-pit L8. Footprints L8/S1-1, L8/S1-2, L8/S1-3 and L8/S1-4 are visible from left to right. The heel

drag mark is well visible posteriorly to L8/S1-3.

DOI: 10.7554/eLife.19568.012
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3. Laminated grey tuff. Sequence of light grey to brownish to black (2.5Y 6/2 light brownish gray-
2.5Y 5/4 light olive brown-N 2/5 black) sandy laminae and thin layers 1–3 mm thick. Massive,
very strong. Thickness 5–7 cm; sharp limit marked by a fine white crust, and in some cases by a
2–5-mm-thick planar void. Moderately well-sorted anhedral to subhedral, subrounded to sub-
angular, medium to fine sand-size light grey to greenish grains; white microcrystalline cement.
In the uppermost layers, the grain-size is slightly coarser (medium sand), and the particles are
subrounded to rounded; biotite laminae and brownish rounded aggregates are common. The
darker laminae usually include finer grains, and the cement is generally less abundant.

4. Finely layered grey and white tuff. Sequence of light grey to white (N6/ gray-10YR 8/1 white)
sandy layers, 2–3 mm to 25–30 mm-thick. The uppermost level is white and thicker, even if its
thickness can vary significantly throughout the surface. Platy and rounded fragments of grey
sediment, probably clods deriving from disarticulation of desiccation polygons, lie horizontally
within the overlying white sediment. Massive, strong. Thickness 7–8 cm; sharp subhorizontal

Figure 8. Test-pit L8 at Laetoli Site S. In the northern part of the test-pit (at the top), the Footprint Tuff is

particularly altered, damaged by plant roots and dislodged along natural fractures.

DOI: 10.7554/eLife.19568.013
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and plain limit. Footprints at the top. The grey layers include dark grey fine sand-size particles,
moderately well-sorted, rounded to subrounded, often concentrated in mm-thick laminae at
the base of the layer. Some grading is not uncommon. The cement is light grey, apparently
micro- or cryptocrystalline. The grains of the white layer are somewhat larger and less sorted,
subrounded to angular; medium sand-size biotite laminae are frequent, as well as very light
green subhedral to anhedral crystals; brownish rounded grains occur sparsely. The cement is
white, apparently micro- to cryptocrystalline.

5. Light brown tuff. Homogeneous silty sand (7.5 year 6/3 light yellowish brown) with whitish
mottles (10 year 7/1 light gray-5Y 8/1 white), poorly sorted and with common coarse sand-size
rounded grains. Massive structure, very firm to moderately strong. Homogeneous, with traces
of burrowers at the top. Base not observed. Very poorly sorted, silt to coarse sand-size par-
ticles, rounded to angular. Dominant grey rounded particles, frequent subhedral augite, few
to frequent medium sand-size biotite laminae; rounded fragments of fine grey ash fall tuff and
other still unidentified lithics occur sparsely. Whitish micro- to cryptocrystalline cement.

Figure 9. Central part of the hominin trackway in test-pit M9. Tracks M9/S1-3 and M9/S1-2 are visible from left to right. The two tracks are crossed by

some fractures filled by hard calcite veins, which were not removed. In M9, the Footprint Tuff is in almost pristine condition, and most of the tracks are

still filled by compact sediment.

DOI: 10.7554/eLife.19568.014

Masao et al. eLife 2016;5:e19568. DOI: 10.7554/eLife.19568 12 of 29

Research article Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.19568.014
http://dx.doi.org/10.7554/eLife.19568


Figure 10. Laetoli Site S geology. (A) Stratigraphic sketch of the sequence, as in test-pit M9. Numbers on the left

(1–5) correspond to the lithologic units observed in the field: 1 — modern soil; 2 — grey augite-rich tuff; 3 —

laminated grey tuff; 4 — finely layered grey and white tuff; 5 — light brown tuff. Unit two corresponds to the

Augite Biotite Tuff (Hay, 1987); units 3 and 4 correspond respectively to the upper and lower horizons of the

Footprint Tuff (Hay, 1987). Numbers on the right indicate the four and fourteen sublevels included, respectively,

in the upper and lower part (Hay, 1987). Hominin tracks occur on the topmost sublevel of unit 4 (red line); a

similar thick whitish footprint-bearing level can be observed in the same stratigraphic position at Localities 6 and

7. Oblique hatch: open cracks. White patches in unit 5 are burrower tunnels and disturbances. Green rectangle:

location of panel B image. (B) Photomosaic showing the Footprint Tuff and part of the overlying unit.

DOI: 10.7554/eLife.19568.015
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Test-pit M10

1. Modern soil. Dark grey (2,5Y 4/1–4/2 dark grey-dark greyish brown) clay loam to sandy clay
loam, with well-developed medium to very coarse subangular blocky structure, rather loose
and moderately weak; sand is more common at the base, where the structure is somewhat less
developed. Few Fe/Mn-oxide mottles. Thickness 20–45 cm; abrupt undulating limit.

2. Grey augite-rich tuff. Greyish (2.5Y 4/1–5/1 dark grey-grey) silty sand, poorly sorted, with com-
mon coarse to very coarse sand-size black rounded grains. Massive structure, strong; no sedi-
mentary structures. Thickness 25–45 cm; sharp subhorizontal limit. Poorly sorted very fine sand
to coarse sand-size particles, including common anhedral to subhedral augite, grey rounded
particles, greyish-brownish aggregates, other unidentified lithics.

3. Laminated grey tuff. Finely interbedded light grey to brownish to black (2.5Y 6/2 light brown-
ish grey-2.5Y 5/4 light olive brown-N 2/5 black) sandy laminae and thin layers 1–3 mm thick.
Massive, very strong. Thickness 4–6 cm; sharp limit marked by a thin planar void. Moderately
well-sorted anhedral to subhedral, subrounded to subangular, medium to fine sand-size light
grey to greenish grains; white microcrystalline cement. In the uppermost layers, the grain-size
is slightly coarser (medium sand), and the particles are subrounded to rounded; biotite laminae
and brownish rounded aggregates are common. The darker laminae usually include finer
grains, and the cement is generally less abundant.

4. Finely layered grey and white tuff. Only the top surface was observed. Common animal tracks.

Test-pit TP2

1. Modern soil. Dark grey (2,5Y 4/1–4/2 dark grey-dark greyish brown) clay loam to sandy clay
loam, with well-developed fine to very coarse subangular blocky structure, loose and moder-
ately weak. Few Fe/Mn-oxide mottles. Thickness 35–45 cm; abrupt undulating limit.

2. Grey augite-rich tuff. Greyish (2.5Y 4/1–5/1 dark grey-grey) silty sand, poorly sorted, with com-
mon coarse to very coarse sand-size black rounded grains. Massive structure, strong; no sedi-
mentary structures. Thickness 6–23 cm; sharp subhorizontal limit. Poorly sorted very fine sand
to coarse sand-size particles, including common anhedral to subhedral augite, grey rounded
particles, greyish-brownish aggregates, other unidentified lithics.

3. Laminated grey tuff. Finely interbedded light grey to brownish to black (2.5Y 6/2 light brown-
ish grey-2.5Y 5/4 light olive brown-N 2/5 black) sandy laminae and thin layers 1–3 mm thick.
Massive, very strong. Thickness 4–5 cm; sharp limit marked by a thin planar void. Moderately
well-sorted anhedral to subhedal, subrounded to subangular, medium to fine sand-size light
grey to greenish grains; white microcrystalline cement. In the uppermost layers, the grain-size
is slightly coarser (medium sand), and the particles are subrounded to rounded; biotite laminae
and brownish rounded aggregates are common. The darker laminae usually include finer
grains, and the cement is generally less abundant.

4. Finely layered grey and white tuff. Only the top surface was observed. Common animal and
three hominin tracks.

Results

Non-hominin tracks
Tracks and trackways of mammals, birds and insects, as well as raindrop impressions, are recorded

from 18 sites at Laetoli, named alphabetically from A to R. Sites from A to P were listed and geo-

graphically located by Leakey (1987b), who also described in detail the ichnological record of the

most important exposures. Sites Q and R were discovered and described by Musiba et al. (2008).

More than 11,300 single footprints are recorded from Sites A–R. These tracks testify to a very rich

ichnofauna, although a very high percentage of them (more than 88%) can be ascribed to small

mammals such as lagomorphs and/or Madoqua-like bovids (Leakey, 1987a; Musiba et al., 2008).

Numerous footprints were discovered in the new exposures (test-pits L8, M9, TP2 and M10) of

the Footprint Tuff at Site S in Locality 8 (Figure 2). A total of 529 footprints of mammals (excluding

hominins) and birds (Table 1) were recorded during the September 2015 field season. The prints

were carefully cleaned using soft brushes to reveal detailed features, measured, photographed,

traced, mapped and identified in a preliminary study.

Mammal tracks – mostly of small and medium-size bovids – are very abundant in M10, L8 and M9

and occur less frequently in TP2. Their size (30–40 mm long and 20–36 mm wide) and morphological
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features suggest that most of them can be ascribed to the genus Madoqua (Figure 2 and Figure 2—

figure supplement 3). Some slightly larger prints (60–80 � 40–60 mm) can be referred to medium-

sized bovids such as Gazella, Eudorcas or Nanger.

It is very difficult to distinguish the footprints of Madoqua-like bovids from lagomorph footprints

because of their very similar morphology and size (Leakey, 1987a). Consequently, we decided to

ascribe to Lagomorpha only trails that clearly include at least four footprints arranged in the normal

hare gait pattern, i.e. two single prints left by the front feet followed by a couple of prints made by

the hind feet in the direction of gait. Each single trail (i.e., four footprints) is approximately 200 mm

long and 100 mm wide.

We identified very few prints of giraffids (about 170 � 125 mm) in M10, equids (about 50–95 �

45–70 mm) in L8 and M9 and rhinoceroses (about 150–135 mm) in M9 (Figure 2 and Figure 2—fig-

ure supplement 3C). In M9 and M10, some avian prints (about 60 � 75 mm) often organised in

trails, can be referred to Galliformes of the family Numididae, such as the guinea fowl (genus

Numida) (Figure 2 and Figure 2—figure supplement 3A,B). Finally, we report some very small

(about 10 � 10 mm) tracks of unidentified animals, probably micromammals, in M9 and M10.

The above-mentioned assemblage of terrestrial mammal and bird footprints suggests that the

local palaeoenvironment was characterised by a mosaic of dry tropical bushland, woodland, open

grassland and riverine forest similar to the extant one.

Morphology of hominin tracks
The morphology of the S1 tracks can be described in detail, but unfortunately the only preserved

track of S2 shows an abnormal widening of the anterior part. This enlarged morphology is possibly

due to a lateral slipping of the foot before the toe-off; alternatively, it could be due to taphonomic

factors as a thick root crossing the footprint longitudinally may have altered its original morphology.

The overall morphology of the S1 tracks matches those at Site G (Figure 11) and is similar in particu-

lar to the prints of the larger individual, G2 (Robbins, 1987): the heel has an oval shape and is

pressed deeply into the ground; the medial side of the arch is higher than the lateral one; the ball

region is oriented at an angle of about 75˚ with respect to the longitudinal axis of the foot and is

delimited anteriorly by a transversal ridge, formed when the toes gripped the wet ash and pushed it

posteriorly. No clear distinction among the toes is visible. The adducted hallux extends more anteri-

orly than the other toes in all visible footprints. In TP2/S1-1, the hallux apparently shuffled anteriorly

when the foot was lifted from the ground. Some tracks (especially L8/S1-3, M9/S1-2, M9/S1-3 and

TP2/S1-1) are characterised by a posterior drag mark about 100 mm long (Figures 4–7 and Fig-

ure 2—figure supplements 1 and 2). These marks were possibly left by the heel shuffling on the ash

before being firmly placed into the soil. The two latter features were also recognised in some of the

G2 prints (Robbins, 1987) and suggest that the feet were probably lifted above the ground at a low

oblique angle. The depth distribution pattern indicates that the weight transfer of S1 was similar to

that described for G1–3 (Robbins, 1987): starting from the heel, the weight was transferred along

the lateral part of the foot (note the steep slope of the lateral wall of the tracks compared to that on

Table 1. Number of individual tracks (excluding hominins) at Laetoli Site S.

Taxon L8 M9 TP2 M10 Total

Numididae (?Numida) - 4 - 9 13

Bovidae, small size (?Madoqua) 107 39 16 211 373

Bovidae, medium size (?Gazella) 39 9 - 21 79

Equidae (?Hipparion) 1 2 - - 3

Giraffidae - - - 4 4

Lagomorpha (?Lepus) 8 - - 4 12

Rhinocerotidae - 1 - - 1

Unidentified micromammals - 27 - 17 44

Total 155 82 26 266 529

DOI: 10.7554/eLife.19568.016
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Figure 11. Shaded 3D photogrammetric elevation model of a cast of the southern portion of the Site G trackway with close-ups of selected hominin

tracks with contour lines. Colour renders heights as in the colour bar; distance between elevation contour lines is 2 mm. The empty circles and squares

indicate the position of the targets.

DOI: 10.7554/eLife.19568.017

The following figure supplement is available for figure 11:

Figure supplement 1. Orthophotos of selected hominin footprints from a cast of the southern portion of the Site G trackway.

DOI: 10.7554/eLife.19568.018
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the medial side) up to the distal metatarsal region, and from here to the toes. In some of the S1

tracks (L8/S1-1, L8/S1-3 and TP2/S1-8, all of the right side), however, the area of maximum depth is

located beneath toes 2–5. This may suggest a somewhat asymmetrical walking, in which the weight

was sometimes loaded on the anterolateral part of the foot before the toe-off. Alternatively, this pat-

tern may be indicative of a rotation of the upper body during the gait (Schmid, 2004). The angle of

gait ranges approximately from 2˚ to 11˚, without any particular difference between the right and

left sides. Regarding this aspect, S1 resembles more G2/3, for which very low average angles are

reported, whereas G1 shows instead wide asymmetrical angles (Tuttle, 1987).

Speed, stature and body mass estimates
The main dimensional parameters of the tracks at Site S are presented in Table 2 (the single meas-

urements are explained in Materials and methods).

Speed estimates for S1 and G1–3 were computed starting from stride length (Figure 3) (see

Materials and methods). The obtained values (Table 3) show that these hominins were all walking at

similar low speed (about 0.44 to 0.9 m/s, depending on the analysis method).

The average length of the tracks in the S1 trackway is 261 mm (range 245–274). Lower values

were measured for the three individuals at Site G. The average lengths are 180 mm for G1, 225 mm

for G2 and 209 mm for G3 (Leakey, 1981; Tuttle, 1987) (Table 3), although a digital analysis-based

study (Bennett et al., 2016) of some Site G footprint casts suggests higher values for G1 (193 mm)

and G3 (228 mm). The main metrical features of the S1 and S2 tracks (footprint length and width,

step and stride lengths) are larger than the G1–3 equivalents (Table 3).

The stature and mass of the Laetoli print-makers were estimated following the relationships

between foot/footprint size and body dimensions (Tuttle, 1987; Dingwall et al., 2013). It must be

pointed out that stature and body-mass estimates obtained by linear regressions from modern

humans (Tuttle, 1987; first method by Dingwall et al., 2013 are probably exaggerations, as the

body proportions of modern Homo sapiens are considerably different from those of the Laetoli puta-

tive track-makers. Consequently, we focused our interpretations on the more appropriate predic-

tions inferred from the relationship between foot size and body dimensions in Australopithecus

(second method by (Dingwall et al., 2013; see Materials and methods for details). The data in

Tables 2–3 indicate that stature and mass estimates for S1 and S2 (about 165 cm and 44.7 kg, and

146 cm and 39.5 kg, respectively) are higher than those obtained for G1, G2 and G3 (with S2 partly

overlapping the higher estimates for G2).

Discussion

Stratigraphic position of the new tracks
Site S is situated on an almost level or very gently dipping surface, situated at the foot of the left

(southern) side of the Garusi River valley. Site G is situated about 150 m to the north, on the same

surface but 1.5–2 m lower than Site S. Several shallow gullies dissect this surface, producing a com-

plexly terraced morphology: consequently, there is no observable stratigraphic continuity between

the two sites. However, the gullies put into light about 2–3 m of the underlying sequence, whose

units are horizontally layered and characterised by almost constant thickness. Only a shallow depres-

sion elongated E-W can be observed between the sites; this is probably an ancient erosion channel

filled by a constant thickness of the Site S footprint-bearing tuff. Even if the area of possible outcrop

of the Footprint Tuff on gully sides close to Site S is covered by debris, the correlation between G

and S is in general straightforward.

All previous literature describing the original stratigraphic setting at Laetoli (Leakey and Hay,

1979; Hay and Leakey, 1982; Hay, 1987) indicates that the Footprint Tuff can be divided into two

main units – the lower and the upper one – which can be subdivided into 14 and 4

sublevels, respectively. Footprints occur on several sublevels of each unit all over the Laetoli area:

eight within the lower one (mostly on sublevel 9 and on the topmost sublevel 14), and two within

the upper one (sublevels 1 and 2).

Leakey and Hay (1979, pp. 317–318 and fig. 4) provided a brief description of the type-

sequence of the Footprint Tuff at Locality 6 (Site A), where a short trackway of human-like footprints

– later referred to an ursid (Tuttle, 2008) – was also found. Later, Hay and Leakey (1982, p. 55 and

Masao et al. eLife 2016;5:e19568. DOI: 10.7554/eLife.19568 17 of 29

Research article Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.19568


T
a
b
le

2
.
D
im

e
n
si
o
n
a
l
p
a
ra
m
e
te
rs

m
e
a
su
re
d
a
n
d
d
e
ri
ve

d
fr
o
m

th
e
La

e
to
li
S
it
e
S
tr
a
ck
s
a
n
d
st
a
tu
re

a
n
d
b
o
d
y
m
a
ss

e
st
im

a
te
s
fo
r
S
1
a
n
d
S
2
.

F
o
o
tp
ri
n
t

S
id
e

Le
n
g
th

(m
m
)

M
ax

w
id
th

(m
m
)

F
o
o
t
in
d
e
x
(%

)
H
e
e
l
w
id
th

(m
m
)

A
n
g
le

o
f
g
ai
t
(d
e
g
re
e
s)

E
st
im

at
e
d
st
at
u
re

(c
m
)

E
st
im

at
e
d
b
o
d
y
m
as
s
(k
g
)

H
.
sa
p
ie
n
s§

H
.
sa
p
ie
n
s˚

A
u
.
af
ar
e
n
si
s‡

H
.
sa
p
ie
n
s˚

A
u
.
af
ar
e
n
si
s‡

T
P
2
/S
1
-1

ri
g
h
t

2
7
1

1
0
1

3
7
.2

8
3

6
1
9
4
–1

7
0

1
7
5
.4

1
6
7
–1

7
5

5
3
.8

4
2
.9
–5

0
.0

T
P
2
/S
1
-2

le
ft

2
7
1

9
9

3
6
.6

8
1

4
1
9
3
–1

6
9

1
7
5
.1

1
6
7
–1

7
5

5
3
.1

4
2
.8
–4

9
.8

M
9
/S
1
-1

le
ft

2
5
0

1
0
2

4
0
.6

7
3

2
1
7
9
–1

5
6

1
6
7
.5

1
5
4
–1

6
1

5
1
.6

3
9
.6
–4

6
.0

M
9
/S
1
-2

ri
g
h
t

2
6
4

1
0
5

3
9
.7

8
0

3
1
8
9
–1

6
5

1
7
2
.8

1
6
3
–1

7
1

5
4
.2

4
1
.8
–4

8
.7

M
9
/S
1
-3

le
ft

2
6
8

1
1
1

4
1
.2

9
1

4
1
9
2
–1

6
8

1
7
4
.3

1
6
6
–1

7
3

5
6
.3

4
2
.5
–4

9
.4

M
9
/S
1
-4

ri
g
h
t

2
4
5

1
0
1

4
1
.2

7
1

4
1
7
5
–1

5
3

1
6
5
.6

1
5
1
–1

5
8

5
0
.9

3
8
.8
–4

5
.1

L8
/S
1
-1

ri
g
h
t

2
4
5

1
0
4

4
2
.4

7
8

8
1
7
5
–1

5
3

1
6
5
.6

1
5
1
–1

5
8

5
1
.7

3
8
.8
–4

5
.1

L8
/S
1
-2

le
ft

2
6
5

1
0
6

4
0
.0

8
2

1
1

1
8
9
–1

6
6

1
7
3
.1

1
6
4
–1

7
1

5
4
.5

4
1
.9
–4

8
.8

L8
/S
1
-3

ri
g
h
t

2
6
0

1
0
3

3
9
.6

7
7

3
1
8
6
–1

6
3

1
7
1
.3

1
6
1
–1

6
8

5
3
.1

4
1
.2
–4

7
.9

L8
/S
1
-4

le
ft

2
7
4

1
0
6

3
8
.6

8
1

1
0

1
9
6
–1

7
1

1
7
6
.5

1
6
9
–1

7
7

5
5
.6

4
3
.4
–5

0
.5

L8
/S
1
-5

ri
g
h
t

-
-

-
-

-
-

-
-

-
-

L8
/S
1
-6

le
ft

-
-

-
8
6

3
-

-
-

-
-

L8
/S
1
-7

ri
g
h
t

2
5
8

1
1
0

4
2
.7

9
0

8
1
8
4
–1

6
1

1
7
0
.3

1
5
9
–1

6
6

5
4
.8

4
0
.7
–4

7
.4

A
ve

ra
g
e
S
1

-
2
6
1

1
0
4

4
0
.0

8
1

6
1
8
4
–1

6
3

1
7
1
.6

1
6
1
–1

6
8

5
3
.6

4
1
.3
–4

8
.1

T
P
2
/S
2
-1

ri
g
h
t

2
3
1

1
2
0
*

5
1
.9

*
8
6

-
1
6
5
–1

4
4

1
6
0

1
4
2
–1

4
9

4
6
.7

3
6
.5
–4

2
.4

S
te
p
le
n
g
th

S
tr
id
e
le
n
g
th

F
o
o
tp
ri
n
ts

S
id
e

S
te
p
le
n
g
th

(m
m
)

F
o
o
tp
ri
n
ts

S
id
e

S
tr
id
e
le
n
g
th

(m
m
)

T
P
2
/S
1
-1

fi
2

ri
g
h
t
fi

le
ft

5
5
3

M
9
/S
1
-1

fi
3

le
ft

1
0
4
4

M
9
/S
1
-1

fi
2

le
ft
fi

ri
g
h
t

5
4
8

M
9
/S
1
-2

fi
4

ri
g
h
t

1
0
6
9

M
9
/S
1
-2

fi
3

ri
g
h
t
fi

le
ft

5
0
5

L8
/S
1
-1

fi
3

ri
g
h
t

1
1
4
0

M
9
/S
1
-3

fi
4

le
ft
fi

ri
g
h
t

5
7
1

L8
/S
1
-2

fi
4

le
ft

1
1
5
9

L8
/S
1
-1

fi
2

ri
g
h
t
fi

le
ft

5
5
2

L8
/S
1
-4

fi
6

le
ft

1
2
8
4

L8
/S
1
-2

fi
3

le
ft
fi

ri
g
h
t

5
8
7

A
ve

ra
g
e
ri
g
h
t

1
1
0
5

L8
/S
1
-3

fi
4

ri
g
h
t
fi

le
ft

5
7
3

A
ve

ra
g
e
le
ft

1
1
6
2

L8
/S
1
-6

fi
7

le
ft
fi

ri
g
h
t

6
6
0

A
ve

ra
g
e

1
1
3
9

A
ve

ra
g
e
ri
g
h
t
fi

le
ft

5
4
5

A
ve

ra
g
e
le
ft
fi

ri
g
h
t

5
9
1

A
ve

ra
g
e

5
6
8

*V
a
lu
e
s
o
ve

re
st
im

a
te
d
b
e
ca
u
se

o
f
th
e
e
n
la
rg
e
d
m
o
rp
h
o
lo
g
y
o
f
th
e
o
n
ly
p
re
se
rv
e
d
tr
a
ck

o
f
S
2
.
§
E
st
im

a
ti
o
n
b
a
se
d
o
n
th
e
re
la
ti
o
n
sh
ip

b
e
tw

e
e
n
fo
o
t
le
n
g
th

a
n
d
st
a
tu
re

in
H
o
m
o
sa
p
ie
n
s
(T
u
t-

tl
e
,
1
9
8
7
).
˚ E
st
im

a
ti
o
n
b
a
se
d
o
n
th
e
re
la
ti
o
n
sh
ip

b
e
tw

e
e
n
fo
o
tp
ri
n
t
le
n
g
th

a
n
d
st
a
tu
re
/b
o
d
y
m
a
ss

in
H
.
sa
p
ie
n
s
(D

in
g
w
a
ll
e
t
a
l.
,
2
0
1
3
).

‡
E
st
im

a
ti
o
n
b
a
se
d
o
n
th
e
re
la
ti
o
n
sh
ip

b
e
tw

e
e
n
fo
o
t

le
n
g
th

a
n
d
st
a
tu
re
/b
o
d
y
m
a
ss

in
A
u
.
a
fa
re
n
si
s
(D

in
g
w
a
ll
e
t
a
l.
,
2
0
1
3
).
S
e
e
M
a
te
ri
a
ls
a
n
d
m
e
th
o
d
s
fo
r
d
e
ta
ils
.

D
O
I:
1
0
.7
5
5
4
/e
Li
fe
.1
9
5
6
8
.0
1
9

Masao et al. eLife 2016;5:e19568. DOI: 10.7554/eLife.19568 18 of 29

Research article Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.19568.019Table%202.Dimensional%20parameters%20measured%20and%20derived%20from%20the%20Laetoli%20Site%20S%20tracks%20and%20stature%20and%20body%20mass%20estimates%20for%20S1%20and%20S2.%2010.7554/eLife.19568.019FootprintSideLength%20(mm)Max%20width%20(mm)Foot%20index%20(%)Heel%20width%20(mm)Angle%20of%20gait%20(degrees)Estimated%20stature%20(cm)Estimated%20body%20mass%20(kg)H.%20sapiens&x00A7;H.%20sapiens&x00B0;Au.%20afarensis&x2021;H.%20sapiens&x00B0;Au.%20afarensis&x2021;TP2/S1-1right27110137.2836194&x2013;170175.4167&x2013;17553.842.9&x2013;50.0TP2/S1-2left2719936.6814193&x2013;169175.1167&x2013;17553.142.8&x2013;49.8M9/S1-1left25010240.6732179&x2013;156167.5154&x2013;16151.639.6&x2013;46.0M9/S1-2right26410539.7803189&x2013;165172.8163&x2013;17154.241.8&x2013;48.7M9/S1-3left26811141.2914192&x2013;168174.3166&x2013;17356.342.5&x2013;49.4M9/S1-4right24510141.2714175&x2013;153165.6151&x2013;15850.938.8&x2013;45.1L8/S1-1right24510442.4788175&x2013;153165.6151&x2013;15851.738.8&x2013;45.1L8/S1-2left26510640.08211189&x2013;166173.1164&x2013;17154.541.9&x2013;48.8L8/S1-3right26010339.6773186&x2013;163171.3161&x2013;16853.141.2&x2013;47.9L8/S1-4left27410638.68110196&x2013;171176.5169&x2013;17755.643.4&x2013;50.5L8/S1-5right----------L8/S1-6left---863-----L8/S1-7right25811042.7908184&x2013;161170.3159&x2013;16654.840.7&x2013;47.4Average%20S1-26110440.0816184&x2013;163171.6161&x2013;16853.641.3&x2013;48.1TP2/S2-1right231120&x002A;51.9&x002A;86-165&x2013;144160142&x2013;14946.736.5&x2013;42.4Step%20lengthStride%20lengthFootprintsSideStep%20length%20(mm)FootprintsSideStride%20length%20(mm)TP2/S1-1%20&x2192;%202right%20&x2192;%20left553M9/S1-1%20&x2192;%203left1044M9/S1-1%20&x2192;%202left%20&x2192;%20right548M9/S1-2%20&x2192;%204right1069M9/S1-2%20&x2192;%203right%20&x2192;%20left505L8/S1-1%20&x2192;%203right1140M9/S1-3%20&x2192;%204left%20&x2192;%20right571L8/S1-2%20&x2192;%204left1159L8/S1-1%20&x2192;%202right%20&x2192;%20left552L8/S1-4%20&x2192;%206left1284L8/S1-2%20&x2192;%203left%20&x2192;%20right587Average%20right1105L8/S1-3%20&x2192;%204right%20&x2192;%20left573Average%20left1162L8/S1-6%20&x2192;%207left%20&x2192;%20right660Average1139Average%20right%20&x2192;%20left545Average%20left%20&x2192;%20right591Average568&x002A;Values%20overestimated%20because%20of%20the%20enlarged%20morphology%20of%20the%20only%20preserved%20track%20of%20S2.%20&x00A7;Estimation%20based%20on%20the%20relationship%20between%20foot%20length%20and%20stature%20in%20Homo%20sapiens%20(Tuttle,%201987).%20&x00B0;Estimation%20based%20on%20the%20relationship%20between%20footprint%20length%20and%20stature/body%20mass%20in%20H.%20sapiens%20(Dingwall%20et�al.,%202013).%20&x2021;Estimation%20based%20on%20the%20relationship%20between%20foot%20length%20and%20stature/body%20mass%20in%20Au.%20afarensis%20(Dingwall%20et�al.,%202013).%20See%20Materials%20and%20methods%20for%20details.
http://dx.doi.org/10.7554/eLife.19568


White and Suwa (1987, p. 488 specified that the hominin tracks at Site G are situated on the top of

horizon B, i.e. on the top of sublevel 14 within the lower unit of the Footprint Tuff. Eventually,

Hay (1987, pp. 34–35 and fig. 6) provided a generalised columnar profile of the Footprint

Tuff; this is by far the most accurate description available, but is averaged over all the Laetoli area

sites. Although the stratigraphic descriptions above are very accurate, they do not provide details

about the eye-scale characteristics of the tuffs, i.e. colour, texture, limits, and so on, and no photo-

graphs of the sequence have been published.

The Site S sequence does not fit the aforementioned descriptions perfectly, at least not within

the observed area, which is rather narrow. The grey augite-rich tuff of Site S largely matches the

description of the Augite Biotite Tuff described by Hay (1987, p. 34 and following, level 4 in fig. 2.6,

p. 35). Regarding the Footprint Tuff, the upper unit corresponds to Site S Laminated Grey Tuff, but

the sublevels here are layered rather crudely, whereas the most evident sedimentary structure is a

very fine and almost continuous lamination, which makes the subdivision rather problematic. Energy-

sorting of denser grains is apparently a relevant aspect of the depositional processes. The Finely Lay-

ered Grey and White Tuff of Site S corresponds to the lower subunit of the Footprint Tuff; 14 suble-

vels are apparent as in the standard description, but this number may be imprecise (or evaluated

differently) because some of them are extremely thin and apparently discontinuous; in fact, some of

the thinner (and darker) ones look more like concentrations of gravity-sorted coarser/denser grains

situated at the bottom of graded layers. The top sublevel is rather thicker than the others and some-

what whitish instead of greyish, as apparent also in Localities 6 and 7.

Some lateral variability is not surprising in continental environments, which are normally affected

by strong morphogenetic processes and/or lateral changes in the sedimentary environments. Conse-

quently, lateral variability can also be expected within the sequence of the Footprint Tuff, even if the

involved volcanic depositional processes were rather uniform over a wide area around Laetoli and

gave the whole sequence a remarkably homogeneous aspect throughout its outcrops.

The correlation between Site G and Site S cannot be absolutely undisputable, at least for the

time being, because the original profile could not be examined directly. However, the geological

and morphological setting of the area, as well as the characteristics of the newly exposed sequence,

indicate with a very good margin of confidence that the newly discovered tracks belong to the Foot-

print Tuff.

To provide a more accurate correlation within the Footprint Tuff, we observe that the Site S tracks

were printed on the uppermost level of the Finely Layered Grey and White Tuff (unit 4 in the descrip-

tion provided in this paper), which corresponds to the lower subunit of the Footprint Tuff. The litho-

logical change to the overlying subunit is very evident and marked by a sharp surface, often

underlined by a thin crack. However, because of the aforementioned dissimilarities, it is not possible

to assess with reasonable confidence whether this stratigraphic position also corresponds to the top

of level 14 in the standard sequence (Hay, 1987, p. 35, fig. 2.6), i.e. to the same stratigraphic posi-

tion as the Site G trackways.

Implications of the new Laetoli footprints
Our results show that no matter which method is employed to estimate stature and body mass (see

Material and methods), the two individuals S1 and S2 were taller and had a larger body mass than

the G individuals. The estimated about 165 cm stature of S1 is quite remarkable, exceeding G2 by

more than 20 cm (Table 3).

In order to contextualise the australopithecine and early Homo stature estimates and range of

variability obtained from the footprints within a broader picture (Figure 12), and to compare them

with a larger sample, we extended our analysis to consistent data based on skeletal elements,

namely femurs (see Materials and methods for details). Figure 12 shows the estimated stature of

australopithecine and early Homo individuals by species between 4.0 and 1.0 Ma. The predicted

stature of S1 exceeds any australopithecine: a mean value of 158 cm was estimated for the large Au.

afarensis individual from Woranso-Mille (Haile-Selassie et al., 2010; Lovejoy et al., 2016), while the

Hadar individuals range from 109 to 143 cm (McHenry, 1991; Ward et al., 2012) (Figure 12). The

stature of S1 falls within the range of modern Homo sapiens maximum values; it also fits the avail-

able Homo erectus sensu lato estimates based on fossil remains (Ruff and Walker, 1993) and on

footprints (Bennett et al., 2009) (Figure 12). At the same time, the 41 to 48 kg body mass range

estimated for S1 (Table 3) falls easily within the range of male Au. afarensis (40.2–61.0 kg)
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(Grabowski et al., 2015). These results extend the dimensional range of the Laetoli track-makers

and identify S1 as a large-size individual, probably a male (Plavcan, 1994; Grabowski et al., 2015).

These findings provide independent evidence for large body-size individuals among hominins as

ancient as 3.66 Ma. Consequently, we may emphasise the conclusions by Grabowski et al. (2015)

and Jungers et al. (2016), who reported that the body sizes of the australopithecines and of the

early Homo representatives were similar, but also that certain australopithecine individuals (at least

of Au. afarensis) were comparable with later Homo species, including H. erectus s. l. and H. sapiens.

Thus, our results support a nonlinear evolutionary trend in hominin body size (Di Vincenzo et al.,

2015; Jungers et al., 2016) and contrast with the idea that the emergence of the genus Homo and/

or the first dispersal out of Africa was related to an abrupt increase in body size (McHenry and Coff-

ing, 2000; Antón et al., 2014; Maslin et al., 2015). The identification of large-size individuals

among the australopithecines – i.e. hominins commonly presumed to be small-bodied on average –

shows also that the available fossil record can be misleading, resulting in an underestimate of the

hominin phenotypic diversity in any given period.

Moreover, ascribing the S1 tracks to a possible male requires that we reconsider the sex and age

of the other Laetoli individuals, who have been object of a plethora of interpretations (and associ-

ated illustrations largely disseminated to the public) since Mary Leakey’s work (Leakey, 1981). The

most parsimonious option is that sex and age of the hominins represented at Site G cannot be

determined, as subadult individuals could possibly be present among them. However, the body-

mass estimates suggest some observations as G1 and G3 fall within the range of putative Au. afaren-

sis females (25.5–38.1 kg, according to Grabowski et al. [2015]), whereas G2 and S2 span across

the upper female and the lower male ranges (40.2–61.0 kg, according to Grabowski et al. [2015]) .

All of these individuals are definitively smaller than the body mass calculated from the S1 tracks. A

possible tentative conclusion is that the various individuals represented at Laetoli are: S1, a male; G2

and S2, females; G1 and G3, smaller females or juvenile individuals.

Evidence for either marked or moderate body-size variation in Au. afarensis, based on data col-

lected in a single site, was limited until now to the fossil assemblage from the Hadar 333 locality,

dated to 3.2 Ma (with body masses ranging from 24.5 to 63.6 kg). The new estimates for the Laetoli

individuals indicate an even more marked variation in body size within the same hominin population,

at 3.66 Ma. Consequently, the combined records from Laetoli and Hadar suggest that large-bodied

hominins existed in the African Pliocene for over 400,000 years, between 3.66 and 3.2 Ma. At the

Table 3. Data and estimates for the five Laetoli track-makers from Sites S and G. Limited to S1, mean values, standard deviation and

range are provided.

Trackway S1 S2 G1 G2 G3

Number of measurable footprints 11 1 9 2 8

Average footprint length (mm) 261 ± 10.5 (245–273) 231 180 225 209

Average footprint max width (mm) 104 ± 3.7 (99–111) 120* 79 117 85

Average foot index (%) 40.0 ± 1.9 (36.6–42.7) 51.9* 43.8 48.0 41.5

Average step length (mm) 568 ± 44.3 (505–660) - 416 453 433

Average stride length (mm) 1139 ± 94.0 (1044–1284) - 829 880 876

Estimated stature (cm) H. sapiens§ 163–186 144–165 113–129 141–161 130–149

H. sapiens˚ 171.6 ± 5.4 160 ± 5.4 141.4 ± 5.4 158.2 ± 5.4 152.2 ± 5.4

Au. afarensis‡ 161–168 142–149 111–116 139–145 129–135

Estimated body mass (kg) H. sapiens˚ 53.6 ± 3.7 46.7 ± 3.8 39.3 ± 3.7 52.6 ± 3.7 43.2 ± 3.7

Au. afarensis‡ 41.3–48.1 36.5–42.4 28.5–33.1 35.6–41.4 33.1–38.5

Walking speed (m/s) 0.47–0.55 (0.93) – 0.43–0.50 (1.00) 0.36–0.42 (0.79) 0.39–0.46 (0.88)

Relative speed (s�1) 0.25–0.34 (0.54) – 0.33–0.44 (0.71) 0.23–0.30 (0.50) 0.26–0.35 (0.58)

*Values overestimated because of the enlarged morphology of the only preserved track of S2. §As in Table 2. ˚As in Table 2. ‡ As in Table 2. For walk-

ing speed and relative speed, values outside the brackets are based on the method of Alexander (1976), those inside the brackets are based on the

method of Dingwall et al. (2013). See Materials and methods for details.

DOI: 10.7554/eLife.19568.020

Masao et al. eLife 2016;5:e19568. DOI: 10.7554/eLife.19568 20 of 29

Research article Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.19568.020Table%203.Data%20and%20estimates%20for%20the%20five%20Laetoli%20track-makers%20from%20Sites%20S%20and%20G.%20Limited%20to%20S1,%20mean%20values,%20standard%20deviation%20and%20range%20are%20provided.%2010.7554/eLife.19568.020TrackwayS1S2G1G2G3Number%20of%20measurable%20footprints111928Average%20footprint%20length%20(mm)261&x00A0;&x00B1;&x00A0;10.5%20(245&x2013;273)231180225209Average%20footprint%20max%20width%20(mm)104&x00A0;&x00B1;&x00A0;3.7%20(99&x2013;111)120&x002A;7911785Average%20foot%20index%20(%)40.0&x00A0;&x00B1;&x00A0;1.9%20(36.6&x2013;42.7)51.9&x002A;43.848.041.5Average%20step%20length%20(mm)568&x00A0;&x00B1;&x00A0;44.3%20(505&x2013;660)-416453433Average%20stride%20length%20(mm)1139&x00A0;&x00B1;&x00A0;94.0%20(1044&x2013;1284)-829880876Estimated%20stature%20(cm)H.%20sapiens&x00A7;163&x2013;186144&x2013;165113&x2013;129141&x2013;161130&x2013;149H.%20sapiens&x00B0;171.6&x00A0;&x00B1;&x00A0;5.4160&x00A0;&x00B1;&x00A0;5.4141.4&x00A0;&x00B1;&x00A0;5.4158.2&x00A0;&x00B1;&x00A0;5.4152.2&x00A0;&x00B1;&x00A0;5.4Au.%20afarensis&x2021;161&x2013;168142&x2013;149111&x2013;116139&x2013;145129&x2013;135Estimated%20body%20mass%20(kg)H.%20sapiens&x00B0;53.6&x00A0;&x00B1;&x00A0;3.746.7&x00A0;&x00B1;&x00A0;3.839.3&x00A0;&x00B1;&x00A0;3.752.6&x00A0;&x00B1;&x00A0;3.743.2&x00A0;&x00B1;&x00A0;3.7Au.%20afarensis&x2021;41.3&x2013;48.136.5&x2013;42.428.5&x2013;33.135.6&x2013;41.433.1&x2013;38.5Walking%20speed%20(m/s)0.47&x2013;0.55%20(0.93)&x2013;0.43&x2013;0.50%20(1.00)0.36&x2013;0.42%20(0.79)0.39&x2013;0.46%20(0.88)Relative%20speed%20(s&x2212;1)0.25&x2013;0.34%20(0.54)&x2013;0.33&x2013;0.44%20(0.71)0.23&x2013;0.30%20(0.50)0.26&x2013;0.35%20(0.58)&x002A;Values%20overestimated%20because%20of%20the%20enlarged%20morphology%20of%20the%20only%20preserved%20track%20of%20S2.%20&x00A7;As%20in%20Table%202.%20&x00B0;As%20in%20Table%202.%20&x2021;%20As%20in%20Table%202.%20For%20walking%20speed%20and%20relative%20speed,%20values%20outside%20the%20brackets%20are%20based%20on%20the%20method%20of%20Alexander%20(1976),%20those%20inside%20the%20brackets%20are%20based%20on%20the%20method%20of%20Dingwall%20et�al.%20(2013).%20See%20Materials%20and%20methods%20for%20details.
http://dx.doi.org/10.7554/eLife.19568


same time, these data contrast with the hypothesis of a temporal trend of body-size increase among

Au. afarensis between the more ancient Laetoli and the more recent Hadar fossil samples

(Lockwood et al., 2000).

The impressive record of bipedal tracks from Laetoli Locality 8 (Site G and the new Site S) may

open a window on the behaviour of a group of remote human ancestors, envisaging a scenario

in which at least five individuals (G1, G2, G3, S1 and S2) were walking in the same time frame, in the

same direction and at a similar moderate speed. This aspect must be evaluated in association with

the pronounced body-size variation within the sample, which implies marked differences between

age ranges and a considerable degree of sexual dimorphism in Au. afarensis. Significant implications

about the social structure of this stem hominin species derive from these physical and behavioural

characteristics, suggesting that reproductive strategies and social structure among at least some of

the early bipedal hominins were closer to a gorilla-like model than to chimpanzees or modern

humans.

Finally, the discovery reported here opens up the intriguing possibility that additional hominin

trails may also occur in the area between Site G and Site S.

Materials and methods

Geology
Extended geological observations were carried out in the Laetoli area, mostly in the nearby historical

Localities 6 and 7 (Leakey, 1987b), in order to compare the sequences exposed there with the new

Site S sequence and to assess its stratigraphic position. Unfortunately, correlation with the strati-

graphic sequence of Site G (Locality 8) is impossible because this historical site is completely covered

by protection features and cannot be used for direct comparison.

Figure 12. Estimates of predicted stature of fossil hominin individuals by species over time for the interval 4–1 Ma. Solid symbols (or crosses in bold)

refer to stature estimates based on actual femur length; open symbols refer to stature estimates based on estimated femur length, in turn based on

femur head diameter. For Laetoli and Ileret, stature estimates are based on footprint length (see Materials and methods). For Laetoli, Ileret and

Woranso-Mille, the average value and range of predicted stature are shown. Colours are associated to the geographical location of each fossil/

footprint site on the map. See Supplementary file 5 for details.

DOI: 10.7554/eLife.19568.021
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In Site S, field observation and detailed sequence descriptions were carried out on excavation

profiles following the standard formalized by Catt (1990).

Basic observations on grain size, shape and mineralogy were carried out in the field using a 10x

magnification hand lens. Higher-detail analyses were carried out in the laboratory, using a standard

Leica stereomicroscope.

Excavation and footprint imaging
The survey of the new tracks at Site S in September 2015 was focused on obtaining 3D models for

documentation and morphometric analysis. The survey method is the Structure from Motion tech-

nique, an image-based process supported by in situ topographic measurements. This technique was

chosen because of its technical advantages (relatively short time of data acquisition and processing;

light and handy equipment; reduced costs) and excellent results in terms of resolution.

The equipment used in the fieldwork is a DSLR camera with 15.3 (4853 � 3198) megapixels and

two different lenses: EF 24 mm f/2.8 for general shots of the excavations and EF 50 mm f/1.4 USM

for details of the tracks. When necessary, the camera was mounted on a 4 m-long telescopic rod. A

measuring tape and a water level were used for the measurement of the control points (i.e., circular

targets with 35 mm diameter). Considering the small size of the surfaces to be detected, this mea-

suring technique provided very high accuracy results.

Fieldwork
The Ngorongoro Conservation Area Authority (NCAA), in whose jurisdiction the site is, provided the

permit for the fieldwork as per letter with Ref. No. NCAA/D/157/Vol. IV of June 5, 2015.

Hominin and non-hominin tracks were recognised in four test-pits at Site S, namely L8, M9, TP2

and M10. The original 2 � 2 m square shape of L8 – the first test-pit where bipedal tracks were dis-

covered – was modified during the study in order to follow the trail, and consequently took the com-

plex shape in Figure 2 (southern side: 2 m; western oblique side: 4 m). M9 was excavated some 14

m to the SSE of L8 and kept the planned size of 2 � 2 m. Following the interpolated alignment of

the bipedal trackway, a third smaller test-pit, TP2 (1 � 1.2 m) (Figure 6) was excavated at some 8 m

to the SSE of M9. Finally, a fourth test-pit, M9 (2 � 3 m) was excavated about 15 m to the east of

M9 (Figure 2).

After the excavation, the 52 targets of the control point system were immediately positioned: 14

in L8, 10 in M9, 14 in TP2 and 14 in M10. Each test-pit was entirely surveyed at lower resolution and

then detailed 3D models of some inner portions (single prints or groups of close prints) were

acquired (Figures 4–6). We positioned four perimeter targets on the ground at the corners of each

test-pit, and four inner targets around each sub-area surveyed in detail. The following list shows the

target IDs in relation to the four test-pits and selected areas (AF: animal footprints):

. L8. Perimeter control points: A-B-C-D; footprint L8/S1-1: target 1–2-3–4; footprint L8/S1-2: tar-
get 3–4-5–6; footprint L8/S1-3: target 5–6-7–8; footprint L8/S1-4: target 7–8-9–10.

. M9. Perimeter control points: E-F-G-H; footprint M9/S1-2: target 21–22-23–24; footprint M9/
S1-3: target 23–24-25–26.

. TP2. Perimeter control points: I-J-K-L; footprint TP2/S2-1: target 27–28-29–30; footprint TP2/
S1-1: target 31–32-33–34; footprint TP2/S1-2: target 33–34-35–36.

. M10. Perimeter control points: M-N-O-P; AF1: target 11–12-13–14; AF2: target 13–15-19–20;
AF3: target 15–16-17–18.

In order to optimize the timing of the fieldwork, we decided not to model in detail some of the

hominin tracks, i.e. L8/S1-5 (visible only in its posterior portion), L8/S1-6 (virtually invisible due to the

poor state of preservation of the Footprint Tuff), L8/S1-7 (damaged and excessively deep due to the

lowering of the tuff cropping out on the scarp of the terrace), M9/S1-1 and M9/S1-4 (both filled by

compact matrix).

In the second step, the perimeter target positions were measured. We placed two rods equipped

with a spherical level on successive pairs of targets and we marked points at the same height on the

rods for each pair by using the water level device. The vertical distance between these points and

the targets, as well as their mutual distance, were recorded. Repeating this process for all pairs of

targets, the relative plan position and the height of the control points were determined respectively

by trilateration and by levelling.
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A preliminary accuracy check was carried out during fieldwork, by using trilateration graphic rules

in plan and by the method of successive levelling for heights. By assigning a z-coordinate to the first

control point, all subsequent coordinates were derived from addition and subtraction of heights

between two successive points. The check was performed by computing the algebraic sum of all

height differences, and by verifying that the obtained value was close to zero. Finally, the error

obtained in each test-pit was distributed to every z-coordinate of the points, in order to reduce it

(Supplementary file 1).

The photographic survey was carried out by three shooting modes: (i) using the camera with the

24 mm lens, mounted on a telescopic rod at 4 m above the test-pits, in order to record each test-

pit, as well as the spatial connection between test-pits; (ii) using the camera freehand with the 24

mm lens, in order to acquire additional shots of each test-pit; and (iii) using the camera close to the

ground with the 50 mm lens, in order to acquire detailed sub-areas. More than 2,000 photos were

taken, for a total of about 50 GB.

Data processing
Data processing started by checking measurements in plan and height. This step is preliminary to

the definition of the control point coordinates. The trilateration method was used to obtain x,y coor-

dinates of the control points in plan. For each test-pit, six measurements were taken at the same

height: the length of the four sides of the perimeter and the length of the two diagonals. Redundant

measurements were used to compute the errors. In addition to a preliminary graphical control by

CAD software (Autodesk AutoCAD), the automatic calculation software MicroSurvey STAR*NET was

used to adjust, by least squares technique, a new set of x,y coordinates and heights of the control

points (Supplementary file 2). The report provided by the software shows that the residues of

adjustments never exceeded 10 mm (Supplementary file 2), which is a fully acceptable figure con-

sidering the size of the test-pits.

Once the adjusted x,y,z coordinate of all the control points (Supplementary file 3) were com-

puted, we used them to scale and locate in the 3D space the 3D models built by the Structure from

Motion technique (see below).

The pictures were first calibrated to reduce lens geometric distortion, and tone adjustment was

applied in order to homogenize them and to reduce the effects of different lighting conditions dur-

ing shooting. Subsequently, the software Agisoft Photoscan was used to generate 3D spatial data

starting from the pictures, through the following phases: (i) alignment of the images; (ii) creation of

the dense point cloud; (iii) transformation of the dense point cloud into a surface (mesh); (iv) applica-

tion of the texture to the mesh (Supplementary file 4). A series of orthophotos (with and without

textures) were extracted from the 3D models (Figure 2—figure supplements 1, 2 and 3 and Fig-

ure 11—figure supplement 1). A check on dense point cloud density was also carried out by Cloud-

Compare, software for 3D point cloud and triangular mesh processing (Figure 2—figure

supplements 1, 2 and 3 and Figure 11—figure supplement 1).

Digital survey of the cast of the G1 and G2/G3 trails
At the end of the September 2015 field season, we also surveyed a first-generation fiberglass cast of

the southern portion of the Site G trackway (about 4.7 m in length) (Figure 11) kept at the Leakey

Camp at Olduvai Gorge. The cast includes the following tracks in the direction of walking: G1–39,

38, 37, 36, 35, 34, 33, 27, 26, 25 on the western side and G2/G3–31, 30, 29, 28, 27, 26, 25, 24, 20,

19 and 18 on the eastern side. Data acquisition and processing (Supplementary file 4) were per-

formed following the workflow described above for the Site S test-pits. We positioned four perime-

ter control points and 11 inner targets. The latter were used to model in detail six selected tracks

(G2/G3–29, G1–35, G1–34, G2/3–26, G2/3–25 and G2/3–18, listed in the direction of walking) (Fig-

ure 11—figure supplement 1).

Morphometric analysis
Morphometric data acquisition
The 3D data obtained by the above-explained procedures were also used in the morphometric anal-

ysis of the hominin tracks by Golden Software Surfer software. This contouring and surface model-

ling software transforms x,y,z data into maps (Figures 4–6 and 11). The x,y,z-format files were
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imported into the software and transformed into grid files. The software uses randomly spaced x,y,z

data to create regularly spaced grids composed of nodes with x,y,z coordinates. The triangulation

with linear interpolation gridding method was applied, because it works best with data that are

evenly distributed over the grid area. This method uses data points to create a network of triangles

without edge intersections and computes new values along the edges. It is fast and does not extrap-

olate beyond the z-value of the data range; in addition, it assigns blanking values to grid nodes

located outside the data limits. The grid spacing was set at 1 mm.

The following morphometric measures were taken on the contour maps:

. footprint length – maximum distance between the anterior tip of the hallux and the posterior
tip of the heel;

. footprint max width – width across the distal metatarsal region;

. footprint heel width;

. angle of gait – angle between the midline of the trackway and the longitudinal axis of the foot;

. step length – distance between the posterior tip of the heel in two successive tracks;

. stride length – distance between the posterior tip of the heel in two successive tracks on the
same side.

All of the above measurements were also taken manually both on the original tracks during the

September 2015 field season, and on 1:1 scale sketches of the test-pits, hand-drawn on transparent

plastic sheets. Morphometric values in Table 2 are averaged from the results provided by the three

methods described above in order to reduce errors. A synthesis of data extracted from Table 2 is

reported in Table 3. The foot index is defined as the percentage ratio between the max width and

length of footprints.

Morphometric data of the G1 and G2/G3 trails
Seventy human-like tracks arranged in two parallel trails (39 prints in G1 and 31 in G2/G3) are

reported at Laetoli Site G (Leakey, 1981). Unfortunately, the whole set of morphometric data for

the unearthed tracks was never published; only average values obtained from a selected number of

tracks were provided. In the case of G2/G3, data are incomplete, largely because the prints of G3

are superimposed onto those of G2, so that it is difficult to collect the measurements (Tuttle, 1987).

According to Leakey (1981), only two (unspecified) prints of G2 are measurable. Morphometric

data describing the Site G bipedal trails are summarized in Table 3, where they are also compared

to the equivalent measurements taken on S1 and S2. Footprint length and maximum width for G1

and G3 are from Tuttle (1987) (average values obtained from nine and eight prints, respectively).

Similar values are reported by Leakey (1981), and slightly higher length values were recently pub-

lished (Bennett et al., 2016) based on digital analysis of footprints casts (G1: 193 mm, N = 11; G3:

228 mm, N = 5). The length of G2 footprints (225 mm) is averaged from the two values of 210 and

240 mm reported for the only two measurable prints of G2 (Leakey, 1981). Similarly, the footprint

max width of G2 (117 mm) is taken from Leakey (1981) (unknown sample size for this average). The

average step and stride lengths for G1 and G3 are from Tuttle (1987), whereas those for G2 are

from Robbins (1987).

Stature, body mass and speed estimates
We used footprint size to estimate the stature of the Laetoli track-makers by means of different

approaches. The easiest method follows Tuttle (1987) and consists of estimating the stature starting

from the footprint length considering the ratio between foot length and stature in modern humans.

Given that the foot length in H. sapiens is generally about 14% to 16% of stature (Tuttle [1987], and

references therein), we computed two estimates for the Laetoli hominins assuming that their feet

were, respectively, 14% and 16% of their body height (Tables 2–3). This method, however, is not

fully reliable because it is based on the body proportions of modern humans, and because it does

not take into account that the footprint length does not accurately reflect the foot length. For this

last reason, we also estimated stature using the method of Dingwall et al. (2013), who published

some equations based on regressions of stature by footprint length in modern Daasanach people

(from the Lake Turkana area, Kenya). In particular, given the probable low walking speed of the Lae-

toli hominins (see below), we used the ’walk only’ equation (Standard Error of Estimate, SEE = 5.4)

(Dingwall et al., 2013). The obtained results (Tables 2–3) fall within the range of statures estimated
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with the first method (except for G1 and G3, for which slightly taller statures were calculated).

Finally, to assess how the results were influenced by considering modern human data, we also com-

puted some estimates using the foot:stature ratio known for Au. afarensis (Dingwall et al., 2013).

This ratio is 0.155–0.162 (Dingwall et al., 2013), so we obtained stature estimates (Tables 2–3) pre-

dictably close to or slightly lower than the lower limit of the estimates given by the Tuttle (1987)

method.

Similarly, we estimated the body mass of the Laetoli track-makers using the ’walk only’ regression

equation that relates footprint area (i.e., footprint length x max. width) to body mass (SEE = 3.7)

(Dingwall et al., 2013). For S2 only, we used the relationship between the footprint length and

body mass (SEE = 3.8) (Dingwall et al., 2013) because of the enlarged morphology of TP2/S2-1. As

for the stature, we re-calculated the mass using the known ratio between foot length and body mass

in Au. afarensis (0.543–0.632) (Dingwall et al. [2013], and references therein). The latter method

resulted in estimates significantly lower than those computed by the aforementioned regression

equation based on modern human data (Tables 2 and 3).

For both of the described methods, mean estimates of stature and body mass for S1 were com-

puted by averaging the estimates obtained from individual tracks (Tables 2 and 3). The average

footprint length values were considered more reliable than minimum values (which from a theoretical

point of view could be regarded as more representative of the foot length) for the following

reasons.

1. Previous studies demonstrated that footprint length can overestimate (White and Suwa,
1987) or underestimate (Dingwall et al., 2013) the actual foot length. Consequently, the aver-
age footprint length can be considered to be the most reliable parameter for the estimation
of body dimensions (White, 1980; Tuttle, 1987; Tuttle et al., 1990; Dingwall et al., 2013;
Avanzini et al., 2008; Bennett et al., 2009; Roberts, 2009).

2. In the specific case of the S1 trackway, the lengths of the three smaller tracks (Table 2)
are probably underestimated: in L8/S1-1 (length: 250 mm) the anterior edge is poorly pre-
served and M9/S1-1 and M9/S1-4 (length: 245 mm) are still filled with sediment (see
Introduction).

It must be pointed out that the stature and body-mass estimates for S2 must be considered with

caution because they are based on a single preserved footprint. The same goes for G2, given the

very low number of tracks for which the length can be measured (Leakey, 1981).

We also drew some inferences about the walking speed (Table 3), which is closely related to the

stride length: in two individuals of the same body size, the one walking faster shows longer stride

length. Nevertheless, the body proportions (i.e., stature, h) of the track-maker must be considered,

because they influence the stride length (L) and consequently the velocity (v). We followed the power

law computed by Alexander (1976):

v¼ 0:25g0:5L1:67h�1:17 (1)

where g is the gravitational acceleration (9.81 m/s2). Equation (1) is widely used to estimate walking

speed in humans and other animals (Bennett and Morse [2014], and references therein).

Speed was further estimated following the method of Dingwall et al. (2013). We used the

regression equation that relates the speed to the ratio between stride length and average footprint

length for each trail, obtaining values (Table 3) about twice those calculated with the equation (1).

The transitional speed from walk to run is around 2.2 m/s (Dingwall et al., 2013). As the speed of

the Laetoli track-makers is significantly lower than 2.2 m/s, we used the ’walk only’ regression equa-

tion (Dingwall et al., 2013) for our speed estimates.

After computing the walking speed of S1 and G1–G3 with the aforementioned two methods, we

obtained the relative speed (i.e., walking speed/estimated stature) (Table 3), which is a good indica-

tor with which to compare the gait of different individuals regardless of their body proportions.

Stature estimate comparisons
Figure 12 was designed in order to compare graphically the stature estimates of the Laetoli individ-

uals with those obtained for other hominin specimens. With the exception of the other footprint

locality taken into account, Ileret in Kenya (Bennett et al., 2009; Dingwall et al., 2013), all other

stature data are based on skeletal elements, namely femurs.
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Early hominin stature reconstructions are notoriously difficult to assess: the limited number of

intact long bones available in the fossil record often requires reconstruction of the long bone length

from fragmentary remains, before different methods can be used to estimate the stature; the

eventual results can differ according to the method employed. Thus, in an attempt to provide a syn-

thetic picture of stature among australopithecines and early Homo, and to ensure that the results

are comparable, we relied on a limited number of different datasets. Data are presented in

Supplementary file 5.

For the geological age of the considered specimens and for their taxonomic attributions, we fol-

lowed Grabowski et al. (2015), unless otherwise indicated.

Two kinds of femur lengths were used for stature reconstruction: (i) the femur lengths of intact

bones or femur length estimates based on reconstructions of incomplete bones; (ii) femur length

estimates based on femur head diameters (FHD), according to the method given in McHenry (1991).

Morphometric data about complete or reconstructed femurs derive from McHenry (1991), unless

otherwise indicated (mostly fossils discovered after 1991). FHD values are from Grabowski et al.

(2015).

The two different equations cited in McHenry (1991) and in Jungers et al. (2016) were

employed in stature reconstructions. As put into evidence in Supplementary file 5, the results are

largely equivalent, with minor differences not relevant for the purpose of this analysis. Consequently,

we used stature estimates obtained using the equation published by Jungers et al. (2016) to com-

pile Figure 12.

Access to material
Three-dimensional research-quality data are available from the MorphoSource digital repository

(http://morphosource.org) without restrictions.
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Marco Cherin
Angelo Barili
Giovanni Boschian
Dawid A Iurino
Sofia Menconero
Giorgio Manzi

Dipartimento di Biologia Am-
bientale, Sapienza Università di
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