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Preface

Statistical learning refers to a set of tools for making sense of complex
datasets. In recent years, we have seen a staggering increase in the scale and
scope of data collection across virtually all areas of science and industry.
As a result, statistical learning has become a critical toolkit for anyone who
wishes to understand data — and as more and more of today’s jobs involve
data, this means that statistical learning is fast becoming a critical toolkit
for everyone.
One of the first books on statistical learning — The Elements of Statisti-

cal Learning (ESL, by Hastie, Tibshirani, and Friedman) — was published
in 2001, with a second edition in 2009. ESL has become a popular text not
only in statistics but also in related fields. One of the reasons for ESL’s
popularity is its relatively accessible style. But ESL is best-suited for indi-
viduals with advanced training in the mathematical sciences.
An Introduction to Statistical Learning (ISL) arose from the clear need

for a broader and less technical treatment of the key topics in statistical
learning. The intention behind ISL is to concentrate more on the applica-
tions of the methods and less on the mathematical details. Beginning with
Chapter 2, each chapter in ISL contains a lab illustrating how to implement
the statistical learning methods seen in that chapter using the popular sta-
tistical software package R. These labs provide the reader with valuable
hands-on experience.
ISL is appropriate for advanced undergraduates or master’s students in

Statistics or related quantitative fields, or for individuals in other disciplines
who wish to use statistical learning tools to analyze their data. It can be
used as a textbook for a course spanning two semesters.
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The first edition of ISL covered a number of important topics, including
sparse methods for classification and regression, decision trees, boosting,
support vector machines, and clustering. Since it was published in 2013, it
has become a mainstay of undergraduate and graduate classrooms across
the United States and worldwide, as well as a key reference book for data
scientists.
In this second edition of ISL, we have greatly expanded the set of topics

covered. In particular, the second edition includes new chapters on deep
learning (Chapter 10), survival analysis (Chapter 11), and multiple testing
(Chapter 13). We have also substantially expanded some chapters that were
part of the first edition: among other updates, we now include treatments
of naive Bayes and generalized linear models in Chapter 4, Bayesian addi-
tive regression trees in Chapter 8, and matrix completion in Chapter 12.
Furthermore, we have updated the R code throughout the labs to ensure
that the results that they produce agree with recent R releases.
We are grateful to these readers for providing valuable comments on the

first edition of this book: Pallavi Basu, Alexandra Chouldechova, Patrick
Danaher, Will Fithian, Luella Fu, Sam Gross, Max Grazier G’Sell, Court-
ney Paulson, Xinghao Qiao, Elisa Sheng, Noah Simon, Kean Ming Tan,
Xin Lu Tan. We thank these readers for helpful input on the second edi-
tion of this book: Alan Agresti, Iain Carmichael, Yiqun Chen, Erin Craig,
Daisy Ding, Lucy Gao, Ismael Lemhadri, Bryan Martin, Anna Neufeld, Ge-
off Tims, Carsten Voelkmann, Steve Yadlowsky, and James Zou. We also
thank Anna Neufeld for her assistance in reformatting the R code through-
out this book. We are immensely grateful to Balasubramanian “Naras”
Narasimhan for his assistance on both editions of this textbook.
It has been an honor and a privilege for us to see the considerable impact

that the first edition of ISL has had on the way in which statistical learning
is practiced, both in and out of the academic setting. We hope that this new
edition will continue to give today’s and tomorrow’s applied statisticians
and data scientists the tools they need for success in a data-driven world.

It’s tough to make predictions, especially about the future.

-Yogi Berra
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1
Introduction

An Overview of Statistical Learning

Statistical learning refers to a vast set of tools for understanding data. These
tools can be classified as supervised or unsupervised. Broadly speaking,
supervised statistical learning involves building a statistical model for pre-
dicting, or estimating, an output based on one or more inputs. Problems of
this nature occur in fields as diverse as business, medicine, astrophysics, and
public policy. With unsupervised statistical learning, there are inputs but
no supervising output; nevertheless we can learn relationships and struc-
ture from such data. To provide an illustration of some applications of
statistical learning, we briefly discuss three real-world data sets that are
considered in this book.

Wage Data

In this application (which we refer to as the Wage data set throughout this
book), we examine a number of factors that relate to wages for a group of
men from the Atlantic region of the United States. In particular, we wish
to understand the association between an employee’s age and education, as
well as the calendar year, on his wage. Consider, for example, the left-hand
panel of Figure 1.1, which displays wage versus age for each of the individu-
als in the data set. There is evidence that wage increases with age but then
decreases again after approximately age 60. The blue line, which provides
an estimate of the average wage for a given age, makes this trend clearer.
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FIGURE 1.1. Wage data, which contains income survey information for men
from the central Atlantic region of the United States. Left: wage as a function of
age. On average, wage increases with age until about 60 years of age, at which
point it begins to decline. Center: wage as a function of year. There is a slow
but steady increase of approximately $10,000 in the average wage between 2003
and 2009. Right: Boxplots displaying wage as a function of education, with 1
indicating the lowest level (no high school diploma) and 5 the highest level (an
advanced graduate degree). On average, wage increases with the level of education.

Given an employee’s age, we can use this curve to predict his wage. However,
it is also clear from Figure 1.1 that there is a significant amount of vari-
ability associated with this average value, and so age alone is unlikely to
provide an accurate prediction of a particular man’s wage.
We also have information regarding each employee’s education level and

the year in which the wage was earned. The center and right-hand panels of
Figure 1.1, which display wage as a function of both year and education, in-
dicate that both of these factors are associated with wage. Wages increase
by approximately $10,000, in a roughly linear (or straight-line) fashion,
between 2003 and 2009, though this rise is very slight relative to the vari-
ability in the data. Wages are also typically greater for individuals with
higher education levels: men with the lowest education level (1) tend to
have substantially lower wages than those with the highest education level
(5). Clearly, the most accurate prediction of a given man’s wage will be
obtained by combining his age, his education, and the year. In Chapter 3,
we discuss linear regression, which can be used to predict wage from this
data set. Ideally, we should predict wage in a way that accounts for the
non-linear relationship between wage and age. In Chapter 7, we discuss a
class of approaches for addressing this problem.
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FIGURE 1.2. Left: Boxplots of the previous day’s percentage change in the S&P
index for the days for which the market increased or decreased, obtained from the
Smarket data. Center and Right: Same as left panel, but the percentage changes
for 2 and 3 days previous are shown.

Stock Market Data

The Wage data involves predicting a continuous or quantitative output value.
This is often referred to as a regression problem. However, in certain cases
we may instead wish to predict a non-numerical value—that is, a categorical
or qualitative output. For example, in Chapter 4 we examine a stock market
data set that contains the daily movements in the Standard & Poor’s 500
(S&P) stock index over a 5-year period between 2001 and 2005. We refer
to this as the Smarket data. The goal is to predict whether the index will
increase or decrease on a given day, using the past 5 days’ percentage
changes in the index. Here the statistical learning problem does not involve
predicting a numerical value. Instead it involves predicting whether a given
day’s stock market performance will fall into the Up bucket or the Down

bucket. This is known as a classification problem. A model that could
accurately predict the direction in which the market will move would be
very useful!
The left-hand panel of Figure 1.2 displays two boxplots of the previous

day’s percentage changes in the stock index: one for the 648 days for which
the market increased on the subsequent day, and one for the 602 days for
which the market decreased. The two plots look almost identical, suggest-
ing that there is no simple strategy for using yesterday’s movement in the
S&P to predict today’s returns. The remaining panels, which display box-
plots for the percentage changes 2 and 3 days previous to today, similarly
indicate little association between past and present returns. Of course, this
lack of pattern is to be expected: in the presence of strong correlations be-
tween successive days’ returns, one could adopt a simple trading strategy
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FIGURE 1.3. We fit a quadratic discriminant analysis model to the subset
of the Smarket data corresponding to the 2001–2004 time period, and predicted
the probability of a stock market decrease using the 2005 data. On average, the
predicted probability of decrease is higher for the days in which the market does
decrease. Based on these results, we are able to correctly predict the direction of
movement in the market 60% of the time.

to generate profits from the market. Nevertheless, in Chapter 4, we explore
these data using several different statistical learning methods. Interestingly,
there are hints of some weak trends in the data that suggest that, at least
for this 5-year period, it is possible to correctly predict the direction of
movement in the market approximately 60% of the time (Figure 1.3).

Gene Expression Data

The previous two applications illustrate data sets with both input and
output variables. However, another important class of problems involves
situations in which we only observe input variables, with no corresponding
output. For example, in a marketing setting, we might have demographic
information for a number of current or potential customers. We may wish to
understand which types of customers are similar to each other by grouping
individuals according to their observed characteristics. This is known as a
clustering problem. Unlike in the previous examples, here we are not trying
to predict an output variable.
We devote Chapter 12 to a discussion of statistical learning methods

for problems in which no natural output variable is available. We consider
the NCI60 data set, which consists of 6,830 gene expression measurements
for each of 64 cancer cell lines. Instead of predicting a particular output
variable, we are interested in determining whether there are groups, or
clusters, among the cell lines based on their gene expression measurements.
This is a difficult question to address, in part because there are thousands
of gene expression measurements per cell line, making it hard to visualize
the data.
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FIGURE 1.4. Left: Representation of the NCI60 gene expression data set in
a two-dimensional space, Z1 and Z2. Each point corresponds to one of the 64
cell lines. There appear to be four groups of cell lines, which we have represented
using different colors. Right: Same as left panel except that we have represented
each of the 14 different types of cancer using a different colored symbol. Cell lines
corresponding to the same cancer type tend to be nearby in the two-dimensional
space.

The left-hand panel of Figure 1.4 addresses this problem by represent-
ing each of the 64 cell lines using just two numbers, Z1 and Z2. These
are the first two principal components of the data, which summarize the
6,830 expression measurements for each cell line down to two numbers or
dimensions. While it is likely that this dimension reduction has resulted in
some loss of information, it is now possible to visually examine the data
for evidence of clustering. Deciding on the number of clusters is often a
difficult problem. But the left-hand panel of Figure 1.4 suggests at least
four groups of cell lines, which we have represented using separate colors.
In this particular data set, it turns out that the cell lines correspond

to 14 different types of cancer. (However, this information was not used
to create the left-hand panel of Figure 1.4.) The right-hand panel of Fig-
ure 1.4 is identical to the left-hand panel, except that the 14 cancer types
are shown using distinct colored symbols. There is clear evidence that cell
lines with the same cancer type tend to be located near each other in this
two-dimensional representation. In addition, even though the cancer infor-
mation was not used to produce the left-hand panel, the clustering obtained
does bear some resemblance to some of the actual cancer types observed
in the right-hand panel. This provides some independent verification of the
accuracy of our clustering analysis.
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A Brief History of Statistical Learning

Though the term statistical learning is fairly new, many of the concepts that
underlie the field were developed long ago. At the beginning of the nine-
teenth century, the method of least squares was developed, implementing
the earliest form of what is now known as linear regression. The approach
was first successfully applied to problems in astronomy. Linear regression
is used for predicting quantitative values, such as an individual’s salary. In
order to predict qualitative values, such as whether a patient survives or
dies, or whether the stock market increases or decreases, linear discrim-
inant analysis was proposed in 1936. In the 1940s, various authors put
forth an alternative approach, logistic regression. In the early 1970s, the
term generalized linear model was developed to describe an entire class of
statistical learning methods that include both linear and logistic regression
as special cases.
By the end of the 1970s, many more techniques for learning from data

were available. However, they were almost exclusively linear methods be-
cause fitting non-linear relationships was computationally difficult at the
time. By the 1980s, computing technology had finally improved sufficiently
that non-linear methods were no longer computationally prohibitive. In
the mid 1980s, classification and regression trees were developed, followed
shortly by generalized additive models. Neural networks gained popularity
in the 1980s, and support vector machines arose in the 1990s.
Since that time, statistical learning has emerged as a new subfield in

statistics, focused on supervised and unsupervised modeling and prediction.
In recent years, progress in statistical learning has been marked by the
increasing availability of powerful and relatively user-friendly software, such
as the popular and freely available R system. This has the potential to
continue the transformation of the field from a set of techniques used and
developed by statisticians and computer scientists to an essential toolkit
for a much broader community.

This Book

The Elements of Statistical Learning (ESL) by Hastie, Tibshirani, and
Friedman was first published in 2001. Since that time, it has become an
important reference on the fundamentals of statistical machine learning.
Its success derives from its comprehensive and detailed treatment of many
important topics in statistical learning, as well as the fact that (relative to
many upper-level statistics textbooks) it is accessible to a wide audience.
However, the greatest factor behind the success of ESL has been its topical
nature. At the time of its publication, interest in the field of statistical
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learning was starting to explode. ESL provided one of the first accessible
and comprehensive introductions to the topic.
Since ESL was first published, the field of statistical learning has con-

tinued to flourish. The field’s expansion has taken two forms. The most
obvious growth has involved the development of new and improved statis-
tical learning approaches aimed at answering a range of scientific questions
across a number of fields. However, the field of statistical learning has
also expanded its audience. In the 1990s, increases in computational power
generated a surge of interest in the field from non-statisticians who were
eager to use cutting-edge statistical tools to analyze their data. Unfortu-
nately, the highly technical nature of these approaches meant that the user
community remained primarily restricted to experts in statistics, computer
science, and related fields with the training (and time) to understand and
implement them.
In recent years, new and improved software packages have significantly

eased the implementation burden for many statistical learning methods.
At the same time, there has been growing recognition across a number of
fields, from business to health care to genetics to the social sciences and
beyond, that statistical learning is a powerful tool with important practical
applications. As a result, the field has moved from one of primarily academic
interest to a mainstream discipline, with an enormous potential audience.
This trend will surely continue with the increasing availability of enormous
quantities of data and the software to analyze it.
The purpose of An Introduction to Statistical Learning (ISL) is to facili-

tate the transition of statistical learning from an academic to a mainstream
field. ISL is not intended to replace ESL, which is a far more comprehen-
sive text both in terms of the number of approaches considered and the
depth to which they are explored. We consider ESL to be an important
companion for professionals (with graduate degrees in statistics, machine
learning, or related fields) who need to understand the technical details
behind statistical learning approaches. However, the community of users of
statistical learning techniques has expanded to include individuals with a
wider range of interests and backgrounds. Therefore, there is a place for a
less technical and more accessible version of ESL.
In teaching these topics over the years, we have discovered that they are

of interest to master’s and PhD students in fields as disparate as business
administration, biology, and computer science, as well as to quantitatively-
oriented upper-division undergraduates. It is important for this diverse
group to be able to understand the models, intuitions, and strengths and
weaknesses of the various approaches. But for this audience, many of the
technical details behind statistical learning methods, such as optimiza-
tion algorithms and theoretical properties, are not of primary interest.
We believe that these students do not need a deep understanding of these
aspects in order to become informed users of the various methodologies, and
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in order to contribute to their chosen fields through the use of statistical
learning tools.
ISL is based on the following four premises.

1. Many statistical learning methods are relevant and useful in a wide
range of academic and non-academic disciplines, beyond just the sta-
tistical sciences.We believe that many contemporary statistical learn-
ing procedures should, and will, become as widely available and used
as is currently the case for classical methods such as linear regres-
sion. As a result, rather than attempting to consider every possible
approach (an impossible task), we have concentrated on presenting
the methods that we believe are most widely applicable.

2. Statistical learning should not be viewed as a series of black boxes. No
single approach will perform well in all possible applications. With-
out understanding all of the cogs inside the box, or the interaction
between those cogs, it is impossible to select the best box. Hence, we
have attempted to carefully describe the model, intuition, assump-
tions, and trade-offs behind each of the methods that we consider.

3. While it is important to know what job is performed by each cog, it
is not necessary to have the skills to construct the machine inside the
box! Thus, we have minimized discussion of technical details related
to fitting procedures and theoretical properties. We assume that the
reader is comfortable with basic mathematical concepts, but we do
not assume a graduate degree in the mathematical sciences. For in-
stance, we have almost completely avoided the use of matrix algebra,
and it is possible to understand the entire book without a detailed
knowledge of matrices and vectors.

4. We presume that the reader is interested in applying statistical learn-
ing methods to real-world problems. In order to facilitate this, as well
as to motivate the techniques discussed, we have devoted a section
within each chapter to R computer labs. In each lab, we walk the
reader through a realistic application of the methods considered in
that chapter. When we have taught this material in our courses,
we have allocated roughly one-third of classroom time to working
through the labs, and we have found them to be extremely useful.
Many of the less computationally-oriented students who were ini-
tially intimidated by R’s command level interface got the hang of
things over the course of the quarter or semester. We have used R

because it is freely available and is powerful enough to implement all
of the methods discussed in the book. It also has optional packages
that can be downloaded to implement literally thousands of addi-
tional methods. Most importantly, R is the language of choice for
academic statisticians, and new approaches often become available in



1. Introduction 9

R years before they are implemented in commercial packages. How-
ever, the labs in ISL are self-contained, and can be skipped if the
reader wishes to use a different software package or does not wish to
apply the methods discussed to real-world problems.

Who Should Read This Book?

This book is intended for anyone who is interested in using modern statis-
tical methods for modeling and prediction from data. This group includes
scientists, engineers, data analysts, data scientists, and quants, but also
less technical individuals with degrees in non-quantitative fields such as
the social sciences or business. We expect that the reader will have had at
least one elementary course in statistics. Background in linear regression is
also useful, though not required, since we review the key concepts behind
linear regression in Chapter 3. The mathematical level of this book is mod-
est, and a detailed knowledge of matrix operations is not required. This
book provides an introduction to the statistical programming language R.
Previous exposure to a programming language, such as MATLAB or Python,
is useful but not required.
The first edition of this textbook has been used as to teach master’s and

PhD students in business, economics, computer science, biology, earth sci-
ences, psychology, and many other areas of the physical and social sciences.
It has also been used to teach advanced undergraduates who have already
taken a course on linear regression. In the context of a more mathemat-
ically rigorous course in which ESL serves as the primary textbook, ISL
could be used as a supplementary text for teaching computational aspects
of the various approaches.

Notation and Simple Matrix Algebra

Choosing notation for a textbook is always a difficult task. For the most
part we adopt the same notational conventions as ESL.
We will use n to represent the number of distinct data points, or observa-

tions, in our sample. We will let p denote the number of variables that are
available for use in making predictions. For example, the Wage data set con-
sists of 11 variables for 3,000 people, so we have n = 3,000 observations and
p = 11 variables (such as year, age, race, and more). Note that throughout
this book, we indicate variable names using colored font: Variable Name.
In some examples, p might be quite large, such as on the order of thou-

sands or even millions; this situation arises quite often, for example, in the
analysis of modern biological data or web-based advertising data.
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In general, we will let xij represent the value of the jth variable for the
ith observation, where i = 1, 2, . . . , n and j = 1, 2, . . . , p. Throughout this
book, i will be used to index the samples or observations (from 1 to n) and
j will be used to index the variables (from 1 to p). We let X denote an
n× p matrix whose (i, j)th element is xij . That is,

X =

⎛

⎜⎜⎜⎝

x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
. . .

...
xn1 xn2 . . . xnp

⎞

⎟⎟⎟⎠
.

For readers who are unfamiliar with matrices, it is useful to visualize X as
a spreadsheet of numbers with n rows and p columns.
At times we will be interested in the rows of X, which we write as

x1, x2, . . . , xn. Here xi is a vector of length p, containing the p variable
measurements for the ith observation. That is,

xi =

⎛

⎜⎜⎜⎝

xi1

xi2
...

xip

⎞

⎟⎟⎟⎠
. (1.1)

(Vectors are by default represented as columns.) For example, for the Wage

data, xi is a vector of length 11, consisting of year, age, race, and other
values for the ith individual. At other times we will instead be interested
in the columns of X, which we write as x1,x2, . . . ,xp. Each is a vector of
length n. That is,

xj =

⎛

⎜⎜⎜⎝

x1j

x2j
...

xnj

⎞

⎟⎟⎟⎠
.

For example, for the Wage data, x1 contains the n = 3,000 values for year.
Using this notation, the matrix X can be written as

X =
(
x1 x2 · · · xp

)
,

or

X =

⎛

⎜⎜⎜⎝

xT
1

xT
2
...
xT
n

⎞

⎟⎟⎟⎠
.
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The T notation denotes the transpose of a matrix or vector. So, for example,

XT =

⎛

⎜⎜⎜⎝

x11 x21 . . . xn1

x12 x22 . . . xn2
...

...
...

x1p x2p . . . xnp

⎞

⎟⎟⎟⎠
,

while
xT
i =

(
xi1 xi2 · · · xip

)
.

We use yi to denote the ith observation of the variable on which we
wish to make predictions, such as wage. Hence, we write the set of all n
observations in vector form as

y =

⎛

⎜⎜⎜⎝

y1
y2
...
yn

⎞

⎟⎟⎟⎠
.

Then our observed data consists of {(x1, y1), (x2, y2), . . . , (xn, yn)}, where
each xi is a vector of length p. (If p = 1, then xi is simply a scalar.)
In this text, a vector of length n will always be denoted in lower case

bold ; e.g.

a =

⎛

⎜⎜⎜⎝

a1
a2
...
an

⎞

⎟⎟⎟⎠
.

However, vectors that are not of length n (such as feature vectors of length
p, as in (1.1)) will be denoted in lower case normal font, e.g. a. Scalars will
also be denoted in lower case normal font, e.g. a. In the rare cases in which
these two uses for lower case normal font lead to ambiguity, we will clarify
which use is intended. Matrices will be denoted using bold capitals, such
as A. Random variables will be denoted using capital normal font, e.g. A,
regardless of their dimensions.
Occasionally we will want to indicate the dimension of a particular ob-

ject. To indicate that an object is a scalar, we will use the notation a ∈ R.
To indicate that it is a vector of length k, we will use a ∈ Rk (or a ∈ Rn if
it is of length n). We will indicate that an object is an r × s matrix using
A ∈ Rr×s.
We have avoided using matrix algebra whenever possible. However, in

a few instances it becomes too cumbersome to avoid it entirely. In these
rare instances it is important to understand the concept of multiplying
two matrices. Suppose that A ∈ Rr×d and B ∈ Rd×s. Then the product
of A and B is denoted AB. The (i, j)th element of AB is computed by
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multiplying each element of the ith row of A by the corresponding element
of the jth column of B. That is, (AB)ij =

∑d
k=1 aikbkj . As an example,

consider

A =

(
1 2
3 4

)
and B =

(
5 6
7 8

)
.

Then

AB =

(
1 2
3 4

)(
5 6
7 8

)
=

(
1× 5 + 2× 7 1× 6 + 2× 8
3× 5 + 4× 7 3× 6 + 4× 8

)
=

(
19 22
43 50

)
.

Note that this operation produces an r × s matrix. It is only possible to
compute AB if the number of columns of A is the same as the number of
rows of B.

Organization of This Book

Chapter 2 introduces the basic terminology and concepts behind statisti-
cal learning. This chapter also presents the K-nearest neighbor classifier, a
very simple method that works surprisingly well on many problems. Chap-
ters 3 and 4 cover classical linear methods for regression and classification.
In particular, Chapter 3 reviews linear regression, the fundamental start-
ing point for all regression methods. In Chapter 4 we discuss two of the
most important classical classification methods, logistic regression and lin-
ear discriminant analysis.
A central problem in all statistical learning situations involves choosing

the best method for a given application. Hence, in Chapter 5 we intro-
duce cross-validation and the bootstrap, which can be used to estimate the
accuracy of a number of different methods in order to choose the best one.
Much of the recent research in statistical learning has concentrated on

non-linear methods. However, linear methods often have advantages over
their non-linear competitors in terms of interpretability and sometimes also
accuracy. Hence, in Chapter 6 we consider a host of linear methods, both
classical and more modern, which offer potential improvements over stan-
dard linear regression. These include stepwise selection, ridge regression,
principal components regression, and the lasso.
The remaining chapters move into the world of non-linear statistical

learning. We first introduce in Chapter 7 a number of non-linear meth-
ods that work well for problems with a single input variable. We then
show how these methods can be used to fit non-linear additive models for
which there is more than one input. In Chapter 8, we investigate tree-based
methods, including bagging, boosting, and random forests. Support vector
machines, a set of approaches for performing both linear and non-linear
classification, are discussed in Chapter 9. We cover deep learning, an ap-
proach for non-linear regression and classification that has received a lot
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of attention in recent years, in Chapter 10. Chapter 11 explores survival
analysis, a regression approach that is specialized to the setting in which
the output variable is censored, i.e. not fully observed.
In Chapter 12, we consider the unsupervised setting in which we have

input variables but no output variable. In particular, we present princi-
pal components analysis, K-means clustering, and hierarchical clustering.
Finally, in Chapter 13 we cover the very important topic of multiple hy-
pothesis testing.
At the end of each chapter, we present one or more R lab sections in

which we systematically work through applications of the various meth-
ods discussed in that chapter. These labs demonstrate the strengths and
weaknesses of the various approaches, and also provide a useful reference
for the syntax required to implement the various methods. The reader may
choose to work through the labs at his or her own pace, or the labs may
be the focus of group sessions as part of a classroom environment. Within
each R lab, we present the results that we obtained when we performed
the lab at the time of writing this book. However, new versions of R are
continuously released, and over time, the packages called in the labs will be
updated. Therefore, in the future, it is possible that the results shown in
the lab sections may no longer correspond precisely to the results obtained
by the reader who performs the labs. As necessary, we will post updates to
the labs on the book website.

We use the symbol to denote sections or exercises that contain more
challenging concepts. These can be easily skipped by readers who do not
wish to delve as deeply into the material, or who lack the mathematical
background.

Data Sets Used in Labs and Exercises

In this textbook, we illustrate statistical learning methods using applica-
tions from marketing, finance, biology, and other areas. The ISLR2 package
available on the book website and CRAN contains a number of data sets
that are required in order to perform the labs and exercises associated with
this book. One other data set is part of the base R distribution. Table 1.1
contains a summary of the data sets required to perform the labs and ex-
ercises. A couple of these data sets are also available as text files on the
book website, for use in Chapter 2.



14 1. Introduction

Name Description
Auto Gas mileage, horsepower, and other information for cars.
Bikeshare Hourly usage of a bike sharing program in Washington, DC.
Boston Housing values and other information about Boston census tracts.
BrainCancer Survival times for patients diagnosed with brain cancer.
Caravan Information about individuals offered caravan insurance.
Carseats Information about car seat sales in 400 stores.
College Demographic characteristics, tuition, and more for USA colleges.
Credit Information about credit card debt for 10,000 customers.
Default Customer default records for a credit card company.
Fund Returns of 2,000 hedge fund managers over 50 months.
Hitters Records and salaries for baseball players.
Khan Gene expression measurements for four cancer types.
NCI60 Gene expression measurements for 64 cancer cell lines.
NYSE Returns, volatility, and volume for the New York Stock Exchange.
OJ Sales information for Citrus Hill and Minute Maid orange juice.
Portfolio Past values of financial assets, for use in portfolio allocation.
Publication Time to publication for 244 clinical trials.
Smarket Daily percentage returns for S&P 500 over a 5-year period.
USArrests Crime statistics per 100,000 residents in 50 states of USA.
Wage Income survey data for men in central Atlantic region of USA.
Weekly 1,089 weekly stock market returns for 21 years.

TABLE 1.1. A list of data sets needed to perform the labs and exercises in this
textbook. All data sets are available in the ISLR2 library, with the exception of
USArrests, which is part of the base R distribution.

Book Website

The website for this book is located at

It contains a number of resources, including the R package associated with
this book, and some additional data sets.
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2
Statistical Learning

2.1 What Is Statistical Learning?

In order to motivate our study of statistical learning, we begin with a simple
example. Suppose that we are statistical consultants hired by a client to
investigate the association between advertising and sales of a particular
product. The Advertising data set consists of the sales of that product
in 200 different markets, along with advertising budgets for the product in
each of those markets for three different media: TV, radio, and newspaper.
The data are displayed in Figure 2.1. It is not possible for our client to
directly increase sales of the product. On the other hand, they can control
the advertising expenditure in each of the three media. Therefore, if we
determine that there is an association between advertising and sales, then
we can instruct our client to adjust advertising budgets, thereby indirectly
increasing sales. In other words, our goal is to develop an accurate model
that can be used to predict sales on the basis of the three media budgets.
In this setting, the advertising budgets are input variables while sales

input
variableis an output variable. The input variables are typically denoted using the

output
variable

symbol X, with a subscript to distinguish them. So X1 might be the TV

budget, X2 the radio budget, and X3 the newspaper budget. The inputs
go by different names, such as predictors, independent variables, features,

predictor

independent
variable
feature

or sometimes just variables. The output variable—in this case, sales—is

variable

often called the response or dependent variable, and is typically denoted

response

dependent
variable

using the symbol Y . Throughout this book, we will use all of these terms
interchangeably.

© Springer Science+Business Media, LLC, part of Springer Nature 2021
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FIGURE 2.1. The Advertising data set. The plot displays sales, in thousands
of units, as a function of TV, radio, and newspaper budgets, in thousands of
dollars, for 200 different markets. In each plot we show the simple least squares
fit of sales to that variable, as described in Chapter 3. In other words, each blue
line represents a simple model that can be used to predict sales using TV, radio,
and newspaper, respectively.

More generally, suppose that we observe a quantitative response Y and p
different predictors, X1, X2, . . . , Xp. We assume that there is some
relationship between Y and X = (X1, X2, . . . , Xp), which can be written
in the very general form

Y = f(X) + ϵ. (2.1)

Here f is some fixed but unknown function of X1, . . . , Xp, and ϵ is a random
error term, which is independent of X and has mean zero. In this formula-

error term
tion, f represents the systematic information that X provides about Y .

systematic
As another example, consider the left-hand panel of Figure 2.2, a plot of

income versus years of education for 30 individuals in the Income data set.
The plot suggests that one might be able to predict income using years of

education. However, the function f that connects the input variable to the
output variable is in general unknown. In this situation one must estimate
f based on the observed points. Since Income is a simulated data set, f is
known and is shown by the blue curve in the right-hand panel of Figure 2.2.
The vertical lines represent the error terms ϵ. We note that some of the
30 observations lie above the blue curve and some lie below it; overall, the
errors have approximately mean zero.
In general, the function f may involve more than one input variable.

In Figure 2.3 we plot income as a function of years of education and
seniority. Here f is a two-dimensional surface that must be estimated
based on the observed data.
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FIGURE 2.2. The Income data set. Left: The red dots are the observed values
of income (in tens of thousands of dollars) and years of education for 30 indi-
viduals. Right: The blue curve represents the true underlying relationship between
income and years of education, which is generally unknown (but is known in
this case because the data were simulated). The black lines represent the error
associated with each observation. Note that some errors are positive (if an ob-
servation lies above the blue curve) and some are negative (if an observation lies
below the curve). Overall, these errors have approximately mean zero.

In essence, statistical learning refers to a set of approaches for estimating
f . In this chapter we outline some of the key theoretical concepts that arise
in estimating f , as well as tools for evaluating the estimates obtained.

2.1.1 Why Estimate f?

There are two main reasons that we may wish to estimate f : prediction
and inference. We discuss each in turn.

Prediction

In many situations, a set of inputs X are readily available, but the output
Y cannot be easily obtained. In this setting, since the error term averages
to zero, we can predict Y using

Ŷ = f̂(X), (2.2)

where f̂ represents our estimate for f , and Ŷ represents the resulting pre-
diction for Y . In this setting, f̂ is often treated as a black box, in the sense
that one is not typically concerned with the exact form of f̂ , provided that
it yields accurate predictions for Y .
As an example, suppose that X1, . . . , Xp are characteristics of a patient’s

blood sample that can be easily measured in a lab, and Y is a variable
encoding the patient’s risk for a severe adverse reaction to a particular
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FIGURE 2.3. The plot displays income as a function of years of education
and seniority in the Income data set. The blue surface represents the true un-
derlying relationship between income and years of education and seniority,
which is known since the data are simulated. The red dots indicate the observed
values of these quantities for 30 individuals.

drug. It is natural to seek to predict Y using X, since we can then avoid
giving the drug in question to patients who are at high risk of an adverse
reaction—that is, patients for whom the estimate of Y is high.
The accuracy of Ŷ as a prediction for Y depends on two quantities,

which we will call the reducible error and the irreducible error. In general,
reducible
error
irreducible
error

f̂ will not be a perfect estimate for f , and this inaccuracy will introduce
some error. This error is reducible because we can potentially improve the
accuracy of f̂ by using the most appropriate statistical learning technique to
estimate f . However, even if it were possible to form a perfect estimate for
f , so that our estimated response took the form Ŷ = f(X), our prediction
would still have some error in it! This is because Y is also a function of
ϵ, which, by definition, cannot be predicted using X. Therefore, variability
associated with ϵ also affects the accuracy of our predictions. This is known
as the irreducible error, because no matter how well we estimate f , we
cannot reduce the error introduced by ϵ.
Why is the irreducible error larger than zero? The quantity ϵ may con-

tain unmeasured variables that are useful in predicting Y : since we don’t
measure them, f cannot use them for its prediction. The quantity ϵ may
also contain unmeasurable variation. For example, the risk of an adverse
reaction might vary for a given patient on a given day, depending on
manufacturing variation in the drug itself or the patient’s general feeling
of well-being on that day.
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Consider a given estimate f̂ and a set of predictors X, which yields the
prediction Ŷ = f̂(X). Assume for a moment that both f̂ and X are fixed,
so that the only variability comes from ϵ. Then, it is easy to show that

E(Y − Ŷ )2 = E[f(X) + ϵ− f̂(X)]2

= [f(X)− f̂(X)]2︸ ︷︷ ︸
Reducible

+ Var(ϵ)︸ ︷︷ ︸
Irreducible

, (2.3)

where E(Y − Ŷ )2 represents the average, or expected value, of the squared
expected
valuedifference between the predicted and actual value of Y , and Var(ϵ) repre-

sents the variance associated with the error term ϵ.
variance

The focus of this book is on techniques for estimating f with the aim of
minimizing the reducible error. It is important to keep in mind that the
irreducible error will always provide an upper bound on the accuracy of
our prediction for Y . This bound is almost always unknown in practice.

Inference

We are often interested in understanding the association between Y and
X1, . . . , Xp. In this situation we wish to estimate f , but our goal is not

necessarily to make predictions for Y . Now f̂ cannot be treated as a black
box, because we need to know its exact form. In this setting, one may be
interested in answering the following questions:

• Which predictors are associated with the response? It is often the case
that only a small fraction of the available predictors are substantially
associated with Y . Identifying the few important predictors among a
large set of possible variables can be extremely useful, depending on
the application.

• What is the relationship between the response and each predictor?
Some predictors may have a positive relationship with Y , in the sense
that larger values of the predictor are associated with larger values of
Y . Other predictors may have the opposite relationship. Depending
on the complexity of f , the relationship between the response and a
given predictor may also depend on the values of the other predictors.

• Can the relationship between Y and each predictor be adequately sum-
marized using a linear equation, or is the relationship more compli-
cated? Historically, most methods for estimating f have taken a linear
form. In some situations, such an assumption is reasonable or even de-
sirable. But often the true relationship is more complicated, in which
case a linear model may not provide an accurate representation of
the relationship between the input and output variables.

In this book, we will see a number of examples that fall into the prediction
setting, the inference setting, or a combination of the two.
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For instance, consider a company that is interested in conducting a
direct-marketing campaign. The goal is to identify individuals who are
likely to respond positively to a mailing, based on observations of demo-
graphic variables measured on each individual. In this case, the demo-
graphic variables serve as predictors, and response to the marketing cam-
paign (either positive or negative) serves as the outcome. The company is
not interested in obtaining a deep understanding of the relationships be-
tween each individual predictor and the response; instead, the company
simply wants to accurately predict the response using the predictors. This
is an example of modeling for prediction.
In contrast, consider the Advertising data illustrated in Figure 2.1. One

may be interested in answering questions such as:

– Which media are associated with sales?

– Which media generate the biggest boost in sales? or

– How large of an increase in sales is associated with a given increase
in TV advertising?

This situation falls into the inference paradigm. Another example involves
modeling the brand of a product that a customer might purchase based on
variables such as price, store location, discount levels, competition price,
and so forth. In this situation one might really be most interested in the
association between each variable and the probability of purchase. For in-
stance, to what extent is the product’s price associated with sales? This is
an example of modeling for inference.
Finally, some modeling could be conducted both for prediction and in-

ference. For example, in a real estate setting, one may seek to relate values
of homes to inputs such as crime rate, zoning, distance from a river, air
quality, schools, income level of community, size of houses, and so forth. In
this case one might be interested in the association between each individ-
ual input variable and housing price—for instance, how much extra will a
house be worth if it has a view of the river? This is an inference problem.
Alternatively, one may simply be interested in predicting the value of a
home given its characteristics: is this house under- or over-valued? This is
a prediction problem.
Depending on whether our ultimate goal is prediction, inference, or a

combination of the two, different methods for estimating f may be appro-
priate. For example, linear models allow for relatively simple and inter-

linear model
pretable inference, but may not yield as accurate predictions as some other
approaches. In contrast, some of the highly non-linear approaches that we
discuss in the later chapters of this book can potentially provide quite accu-
rate predictions for Y , but this comes at the expense of a less interpretable
model for which inference is more challenging.
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2.1.2 How Do We Estimate f?

Throughout this book, we explore many linear and non-linear approaches
for estimating f . However, these methods generally share certain charac-
teristics. We provide an overview of these shared characteristics in this
section. We will always assume that we have observed a set of n different
data points. For example in Figure 2.2 we observed n = 30 data points.
These observations are called the training data because we will use these

training
dataobservations to train, or teach, our method how to estimate f . Let xij

represent the value of the jth predictor, or input, for observation i, where
i = 1, 2, . . . , n and j = 1, 2, . . . , p. Correspondingly, let yi represent the
response variable for the ith observation. Then our training data consist of
{(x1, y1), (x2, y2), . . . , (xn, yn)} where xi = (xi1, xi2, . . . , xip)T .
Our goal is to apply a statistical learning method to the training data

in order to estimate the unknown function f . In other words, we want to
find a function f̂ such that Y ≈ f̂(X) for any observation (X,Y ). Broadly
speaking, most statistical learning methods for this task can be character-
ized as either parametric or non-parametric. We now briefly discuss these

parametric
non-
parametric

two types of approaches.

Parametric Methods

Parametric methods involve a two-step model-based approach.

1. First, we make an assumption about the functional form, or shape,
of f . For example, one very simple assumption is that f is linear in
X:

f(X) = β0 + β1X1 + β2X2 + · · ·+ βpXp. (2.4)

This is a linear model, which will be discussed extensively in Chap-
ter 3. Once we have assumed that f is linear, the problem of estimat-
ing f is greatly simplified. Instead of having to estimate an entirely
arbitrary p-dimensional function f(X), one only needs to estimate
the p+ 1 coefficients β0,β1, . . . ,βp.

2. After a model has been selected, we need a procedure that uses the
training data to fit or train the model. In the case of the linear model

fit
train(2.4), we need to estimate the parameters β0,β1, . . . ,βp. That is, we

want to find values of these parameters such that

Y ≈ β0 + β1X1 + β2X2 + · · ·+ βpXp.

The most common approach to fitting the model (2.4) is referred to
as (ordinary) least squares, which we discuss in Chapter 3. However,

least squares
least squares is one of many possible ways to fit the linear model. In
Chapter 6, we discuss other approaches for estimating the parameters
in (2.4).
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FIGURE 2.4. A linear model fit by least squares to the Income data from Fig-
ure 2.3. The observations are shown in red, and the yellow plane indicates the
least squares fit to the data.

The model-based approach just described is referred to as parametric;
it reduces the problem of estimating f down to one of estimating a set of
parameters. Assuming a parametric form for f simplifies the problem of
estimating f because it is generally much easier to estimate a set of pa-
rameters, such as β0,β1, . . . ,βp in the linear model (2.4), than it is to fit
an entirely arbitrary function f . The potential disadvantage of a paramet-
ric approach is that the model we choose will usually not match the true
unknown form of f . If the chosen model is too far from the true f , then
our estimate will be poor. We can try to address this problem by choos-
ing flexible models that can fit many different possible functional forms

flexible
for f . But in general, fitting a more flexible model requires estimating a
greater number of parameters. These more complex models can lead to a
phenomenon known as overfitting the data, which essentially means they

overfitting
follow the errors, or noise, too closely. These issues are discussed through-

noise
out this book.
Figure 2.4 shows an example of the parametric approach applied to the

Income data from Figure 2.3. We have fit a linear model of the form

income ≈ β0 + β1 × education+ β2 × seniority.

Since we have assumed a linear relationship between the response and the
two predictors, the entire fitting problem reduces to estimating β0, β1, and
β2, which we do using least squares linear regression. Comparing Figure 2.3
to Figure 2.4, we can see that the linear fit given in Figure 2.4 is not quite
right: the true f has some curvature that is not captured in the linear fit.
However, the linear fit still appears to do a reasonable job of capturing the
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FIGURE 2.5. A smooth thin-plate spline fit to the Income data from Figure 2.3
is shown in yellow; the observations are displayed in red. Splines are discussed in
Chapter 7.

positive relationship between years of education and income, as well as the
slightly less positive relationship between seniority and income. It may be
that with such a small number of observations, this is the best we can do.

Non-Parametric Methods

Non-parametric methods do not make explicit assumptions about the func-
tional form of f . Instead they seek an estimate of f that gets as close to the
data points as possible without being too rough or wiggly. Such approaches
can have a major advantage over parametric approaches: by avoiding the
assumption of a particular functional form for f , they have the potential
to accurately fit a wider range of possible shapes for f . Any parametric
approach brings with it the possibility that the functional form used to
estimate f is very different from the true f , in which case the resulting
model will not fit the data well. In contrast, non-parametric approaches
completely avoid this danger, since essentially no assumption about the
form of f is made. But non-parametric approaches do suffer from a major
disadvantage: since they do not reduce the problem of estimating f to a
small number of parameters, a very large number of observations (far more
than is typically needed for a parametric approach) is required in order to
obtain an accurate estimate for f .
An example of a non-parametric approach to fitting the Income data is

shown in Figure 2.5. A thin-plate spline is used to estimate f . This ap-
thin-plate
splineproach does not impose any pre-specified model on f . It instead attempts

to produce an estimate for f that is as close as possible to the observed
data, subject to the fit—that is, the yellow surface in Figure 2.5—being
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FIGURE 2.6. A rough thin-plate spline fit to the Income data from Figure 2.3.
This fit makes zero errors on the training data.

smooth. In this case, the non-parametric fit has produced a remarkably ac-
curate estimate of the true f shown in Figure 2.3. In order to fit a thin-plate
spline, the data analyst must select a level of smoothness. Figure 2.6 shows
the same thin-plate spline fit using a lower level of smoothness, allowing
for a rougher fit. The resulting estimate fits the observed data perfectly!
However, the spline fit shown in Figure 2.6 is far more variable than the
true function f , from Figure 2.3. This is an example of overfitting the
data, which we discussed previously. It is an undesirable situation because
the fit obtained will not yield accurate estimates of the response on new
observations that were not part of the original training data set. We dis-
cuss methods for choosing the correct amount of smoothness in Chapter 5.
Splines are discussed in Chapter 7.
As we have seen, there are advantages and disadvantages to parametric

and non-parametric methods for statistical learning. We explore both types
of methods throughout this book.

2.1.3 The Trade-Off Between Prediction Accuracy and Model
Interpretability

Of the many methods that we examine in this book, some are less flexible,
or more restrictive, in the sense that they can produce just a relatively
small range of shapes to estimate f . For example, linear regression is a
relatively inflexible approach, because it can only generate linear functions
such as the lines shown in Figure 2.1 or the plane shown in Figure 2.4.
Other methods, such as the thin plate splines shown in Figures 2.5 and 2.6,
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FIGURE 2.7. A representation of the tradeoff between flexibility and inter-
pretability, using different statistical learning methods. In general, as the flexibil-
ity of a method increases, its interpretability decreases.

are considerably more flexible because they can generate a much wider
range of possible shapes to estimate f .
One might reasonably ask the following question: why would we ever

choose to use a more restrictive method instead of a very flexible approach?
There are several reasons that we might prefer a more restrictive model.
If we are mainly interested in inference, then restrictive models are much
more interpretable. For instance, when inference is the goal, the linear
model may be a good choice since it will be quite easy to understand
the relationship between Y and X1, X2, . . . , Xp. In contrast, very flexible
approaches, such as the splines discussed in Chapter 7 and displayed in
Figures 2.5 and 2.6, and the boosting methods discussed in Chapter 8, can
lead to such complicated estimates of f that it is difficult to understand
how any individual predictor is associated with the response.
Figure 2.7 provides an illustration of the trade-off between flexibility and

interpretability for some of the methods that we cover in this book. Least
squares linear regression, discussed in Chapter 3, is relatively inflexible but
is quite interpretable. The lasso, discussed in Chapter 6, relies upon the

lasso
linear model (2.4) but uses an alternative fitting procedure for estimating
the coefficients β0,β1, . . . ,βp. The new procedure is more restrictive in es-
timating the coefficients, and sets a number of them to exactly zero. Hence
in this sense the lasso is a less flexible approach than linear regression.
It is also more interpretable than linear regression, because in the final
model the response variable will only be related to a small subset of the
predictors—namely, those with nonzero coefficient estimates. Generalized
additive models (GAMs), discussed in Chapter 7, instead extend the lin-

generalized
additive
model

ear model (2.4) to allow for certain non-linear relationships. Consequently,
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GAMs are more flexible than linear regression. They are also somewhat
less interpretable than linear regression, because the relationship between
each predictor and the response is now modeled using a curve. Finally,
fully non-linear methods such as bagging, boosting, support vector machines

bagging

boosting
with non-linear kernels, and neural networks (deep learning), discussed in

support
vector
machine

Chapters 8, 9, and 10, are highly flexible approaches that are harder to
interpret.
We have established that when inference is the goal, there are clear ad-

vantages to using simple and relatively inflexible statistical learning meth-
ods. In some settings, however, we are only interested in prediction, and
the interpretability of the predictive model is simply not of interest. For
instance, if we seek to develop an algorithm to predict the price of a
stock, our sole requirement for the algorithm is that it predict accurately—
interpretability is not a concern. In this setting, we might expect that it
will be best to use the most flexible model available. Surprisingly, this is
not always the case! We will often obtain more accurate predictions using
a less flexible method. This phenomenon, which may seem counterintuitive
at first glance, has to do with the potential for overfitting in highly flexible
methods. We saw an example of overfitting in Figure 2.6. We will discuss
this very important concept further in Section 2.2 and throughout this
book.

2.1.4 Supervised Versus Unsupervised Learning

Most statistical learning problems fall into one of two categories: supervised
supervised

or unsupervised. The examples that we have discussed so far in this chap-
unsupervised

ter all fall into the supervised learning domain. For each observation of the
predictor measurement(s) xi, i = 1, . . . , n there is an associated response
measurement yi. We wish to fit a model that relates the response to the
predictors, with the aim of accurately predicting the response for future
observations (prediction) or better understanding the relationship between
the response and the predictors (inference). Many classical statistical learn-
ing methods such as linear regression and logistic regression (Chapter 4), as

logistic
regressionwell as more modern approaches such as GAM, boosting, and support vec-

tor machines, operate in the supervised learning domain. The vast majority
of this book is devoted to this setting.
By contrast, unsupervised learning describes the somewhat more chal-

lenging situation in which for every observation i = 1, . . . , n, we observe
a vector of measurements xi but no associated response yi. It is not pos-
sible to fit a linear regression model, since there is no response variable
to predict. In this setting, we are in some sense working blind; the sit-
uation is referred to as unsupervised because we lack a response vari-
able that can supervise our analysis. What sort of statistical analysis is
possible? We can seek to understand the relationships between the variables
or between the observations. One statistical learning tool that we may use
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FIGURE 2.8. A clustering data set involving three groups. Each group is shown
using a different colored symbol. Left: The three groups are well-separated. In
this setting, a clustering approach should successfully identify the three groups.
Right: There is some overlap among the groups. Now the clustering task is more
challenging.

in this setting is cluster analysis, or clustering. The goal of cluster analysis
cluster
analysisis to ascertain, on the basis of x1, . . . , xn, whether the observations fall into

relatively distinct groups. For example, in a market segmentation study we
might observe multiple characteristics (variables) for potential customers,
such as zip code, family income, and shopping habits. We might believe
that the customers fall into different groups, such as big spenders versus
low spenders. If the information about each customer’s spending patterns
were available, then a supervised analysis would be possible. However, this
information is not available—that is, we do not know whether each poten-
tial customer is a big spender or not. In this setting, we can try to cluster
the customers on the basis of the variables measured, in order to identify
distinct groups of potential customers. Identifying such groups can be of
interest because it might be that the groups differ with respect to some
property of interest, such as spending habits.
Figure 2.8 provides a simple illustration of the clustering problem. We

have plotted 150 observations with measurements on two variables, X1

and X2. Each observation corresponds to one of three distinct groups. For
illustrative purposes, we have plotted the members of each group using dif-
ferent colors and symbols. However, in practice the group memberships are
unknown, and the goal is to determine the group to which each observa-
tion belongs. In the left-hand panel of Figure 2.8, this is a relatively easy
task because the groups are well-separated. By contrast, the right-hand
panel illustrates a more challenging setting in which there is some overlap
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between the groups. A clustering method could not be expected to assign
all of the overlapping points to their correct group (blue, green, or orange).
In the examples shown in Figure 2.8, there are only two variables, and

so one can simply visually inspect the scatterplots of the observations in
order to identify clusters. However, in practice, we often encounter data
sets that contain many more than two variables. In this case, we cannot
easily plot the observations. For instance, if there are p variables in our
data set, then p(p − 1)/2 distinct scatterplots can be made, and visual
inspection is simply not a viable way to identify clusters. For this reason,
automated clustering methods are important. We discuss clustering and
other unsupervised learning approaches in Chapter 12.
Many problems fall naturally into the supervised or unsupervised learn-

ing paradigms. However, sometimes the question of whether an analysis
should be considered supervised or unsupervised is less clear-cut. For in-
stance, suppose that we have a set of n observations. For m of the observa-
tions, where m < n, we have both predictor measurements and a response
measurement. For the remaining n − m observations, we have predictor
measurements but no response measurement. Such a scenario can arise if
the predictors can be measured relatively cheaply but the corresponding
responses are much more expensive to collect. We refer to this setting as
a semi-supervised learning problem. In this setting, we wish to use a sta-

semi-
supervised
learning

tistical learning method that can incorporate the m observations for which
response measurements are available as well as the n−m observations for
which they are not. Although this is an interesting topic, it is beyond the
scope of this book.

2.1.5 Regression Versus Classification Problems

Variables can be characterized as either quantitative or qualitative (also
quantitative

qualitative
known as categorical). Quantitative variables take on numerical values.

categorical
Examples include a person’s age, height, or income, the value of a house,
and the price of a stock. In contrast, qualitative variables take on values
in one of K different classes, or categories. Examples of qualitative vari-

class
ables include a person’s marital status (married or not), the brand of prod-
uct purchased (brand A, B, or C), whether a person defaults on a debt
(yes or no), or a cancer diagnosis (Acute Myelogenous Leukemia, Acute
Lymphoblastic Leukemia, or No Leukemia). We tend to refer to problems
with a quantitative response as regression problems, while those involv-

regression
ing a qualitative response are often referred to as classification problems.

classification
However, the distinction is not always that crisp. Least squares linear re-
gression (Chapter 3) is used with a quantitative response, whereas logistic
regression (Chapter 4) is typically used with a qualitative (two-class, or
binary) response. Thus, despite its name, logistic regression is a classifica-

binary
tion method. But since it estimates class probabilities, it can be thought of
as a regression method as well. Some statistical methods, such as K-nearest
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neighbors (Chapters 2 and 4) and boosting (Chapter 8), can be used in the
case of either quantitative or qualitative responses.
We tend to select statistical learning methods on the basis of whether

the response is quantitative or qualitative; i.e. we might use linear regres-
sion when quantitative and logistic regression when qualitative. However,
whether the predictors are qualitative or quantitative is generally consid-
ered less important. Most of the statistical learning methods discussed in
this book can be applied regardless of the predictor variable type, provided
that any qualitative predictors are properly coded before the analysis is
performed. This is discussed in Chapter 3.

2.2 Assessing Model Accuracy

One of the key aims of this book is to introduce the reader to a wide range
of statistical learning methods that extend far beyond the standard linear
regression approach. Why is it necessary to introduce so many different
statistical learning approaches, rather than just a single bestmethod? There
is no free lunch in statistics: no one method dominates all others over all
possible data sets. On a particular data set, one specific method may work
best, but some other method may work better on a similar but different
data set. Hence it is an important task to decide for any given set of data
which method produces the best results. Selecting the best approach can
be one of the most challenging parts of performing statistical learning in
practice.
In this section, we discuss some of the most important concepts that

arise in selecting a statistical learning procedure for a specific data set. As
the book progresses, we will explain how the concepts presented here can
be applied in practice.

2.2.1 Measuring the Quality of Fit

In order to evaluate the performance of a statistical learning method on
a given data set, we need some way to measure how well its predictions
actually match the observed data. That is, we need to quantify the extent
to which the predicted response value for a given observation is close to
the true response value for that observation. In the regression setting, the
most commonly-used measure is the mean squared error (MSE), given by mean

squared
error

MSE =
1

n

n∑

i=1

(yi − f̂(xi))
2, (2.5)

where f̂(xi) is the prediction that f̂ gives for the ith observation. The MSE
will be small if the predicted responses are very close to the true responses,
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and will be large if for some of the observations, the predicted and true
responses differ substantially.
The MSE in (2.5) is computed using the training data that was used to

fit the model, and so should more accurately be referred to as the training
MSE. But in general, we do not really care how well the method works

training
MSEon the training data. Rather, we are interested in the accuracy of the pre-

dictions that we obtain when we apply our method to previously unseen
test data. Why is this what we care about? Suppose that we are interested

test data
in developing an algorithm to predict a stock’s price based on previous
stock returns. We can train the method using stock returns from the past
6 months. But we don’t really care how well our method predicts last week’s
stock price. We instead care about how well it will predict tomorrow’s price
or next month’s price. On a similar note, suppose that we have clinical
measurements (e.g. weight, blood pressure, height, age, family history of
disease) for a number of patients, as well as information about whether each
patient has diabetes. We can use these patients to train a statistical learn-
ing method to predict risk of diabetes based on clinical measurements. In
practice, we want this method to accurately predict diabetes risk for future
patients based on their clinical measurements. We are not very interested
in whether or not the method accurately predicts diabetes risk for patients
used to train the model, since we already know which of those patients
have diabetes.
To state it more mathematically, suppose that we fit our statistical learn-

ing method on our training observations {(x1, y1), (x2, y2), . . . , (xn, yn)},
and we obtain the estimate f̂ . We can then compute f̂(x1), f̂(x2), . . . , f̂(xn).
If these are approximately equal to y1, y2, . . . , yn, then the training MSE
given by (2.5) is small. However, we are really not interested in whether
f̂(xi) ≈ yi; instead, we want to know whether f̂(x0) is approximately equal
to y0, where (x0, y0) is a previously unseen test observation not used to train
the statistical learning method. We want to choose the method that gives
the lowest test MSE, as opposed to the lowest training MSE. In other words,

test MSE
if we had a large number of test observations, we could compute

Ave(y0 − f̂(x0))
2, (2.6)

the average squared prediction error for these test observations (x0, y0).
We’d like to select the model for which this quantity is as small as possible.
How can we go about trying to select a method that minimizes the test

MSE? In some settings, we may have a test data set available—that is,
we may have access to a set of observations that were not used to train
the statistical learning method. We can then simply evaluate (2.6) on the
test observations, and select the learning method for which the test MSE is
smallest. But what if no test observations are available? In that case, one
might imagine simply selecting a statistical learning method that minimizes
the training MSE (2.5). This seems like it might be a sensible approach,
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FIGURE 2.9. Left: Data simulated from f , shown in black. Three estimates of
f are shown: the linear regression line (orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red
curve), and minimum possible test MSE over all methods (dashed line). Squares
represent the training and test MSEs for the three fits shown in the left-hand
panel.

since the training MSE and the test MSE appear to be closely related.
Unfortunately, there is a fundamental problem with this strategy: there
is no guarantee that the method with the lowest training MSE will also
have the lowest test MSE. Roughly speaking, the problem is that many
statistical methods specifically estimate coefficients so as to minimize the
training set MSE. For these methods, the training set MSE can be quite
small, but the test MSE is often much larger.
Figure 2.9 illustrates this phenomenon on a simple example. In the left-

hand panel of Figure 2.9, we have generated observations from (2.1) with
the true f given by the black curve. The orange, blue and green curves illus-
trate three possible estimates for f obtained using methods with increasing
levels of flexibility. The orange line is the linear regression fit, which is rela-
tively inflexible. The blue and green curves were produced using smoothing
splines, discussed in Chapter 7, with different levels of smoothness. It is

smoothing
splineclear that as the level of flexibility increases, the curves fit the observed

data more closely. The green curve is the most flexible and matches the
data very well; however, we observe that it fits the true f (shown in black)
poorly because it is too wiggly. By adjusting the level of flexibility of the
smoothing spline fit, we can produce many different fits to this data.
We now move on to the right-hand panel of Figure 2.9. The grey curve

displays the average training MSE as a function of flexibility, or more for-
mally the degrees of freedom, for a number of smoothing splines. The de-

degrees of
freedomgrees of freedom is a quantity that summarizes the flexibility of a curve; it
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is discussed more fully in Chapter 7. The orange, blue and green squares
indicate the MSEs associated with the corresponding curves in the left-
hand panel. A more restricted and hence smoother curve has fewer degrees
of freedom than a wiggly curve—note that in Figure 2.9, linear regression
is at the most restrictive end, with two degrees of freedom. The training
MSE declines monotonically as flexibility increases. In this example the
true f is non-linear, and so the orange linear fit is not flexible enough to
estimate f well. The green curve has the lowest training MSE of all three
methods, since it corresponds to the most flexible of the three curves fit in
the left-hand panel.
In this example, we know the true function f , and so we can also com-

pute the test MSE over a very large test set, as a function of flexibility. (Of
course, in general f is unknown, so this will not be possible.) The test MSE
is displayed using the red curve in the right-hand panel of Figure 2.9. As
with the training MSE, the test MSE initially declines as the level of flex-
ibility increases. However, at some point the test MSE levels off and then
starts to increase again. Consequently, the orange and green curves both
have high test MSE. The blue curve minimizes the test MSE, which should
not be surprising given that visually it appears to estimate f the best in the
left-hand panel of Figure 2.9. The horizontal dashed line indicates Var(ϵ),
the irreducible error in (2.3), which corresponds to the lowest achievable
test MSE among all possible methods. Hence, the smoothing spline repre-
sented by the blue curve is close to optimal.
In the right-hand panel of Figure 2.9, as the flexibility of the statistical

learning method increases, we observe a monotone decrease in the training
MSE and a U-shape in the test MSE. This is a fundamental property of
statistical learning that holds regardless of the particular data set at hand
and regardless of the statistical method being used. As model flexibility
increases, training MSE will decrease, but the test MSE may not. When
a given method yields a small training MSE but a large test MSE, we are
said to be overfitting the data. This happens because our statistical learning
procedure is working too hard to find patterns in the training data, and
may be picking up some patterns that are just caused by random chance
rather than by true properties of the unknown function f . When we overfit
the training data, the test MSE will be very large because the supposed
patterns that the method found in the training data simply don’t exist
in the test data. Note that regardless of whether or not overfitting has
occurred, we almost always expect the training MSE to be smaller than
the test MSE because most statistical learning methods either directly or
indirectly seek to minimize the training MSE. Overfitting refers specifically
to the case in which a less flexible model would have yielded a smaller
test MSE.
Figure 2.10 provides another example in which the true f is approxi-

mately linear. Again we observe that the training MSE decreases mono-
tonically as the model flexibility increases, and that there is a U-shape in
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FIGURE 2.10. Details are as in Figure 2.9, using a different true f that is
much closer to linear. In this setting, linear regression provides a very good fit to
the data.

the test MSE. However, because the truth is close to linear, the test MSE
only decreases slightly before increasing again, so that the orange least
squares fit is substantially better than the highly flexible green curve. Fi-
nally, Figure 2.11 displays an example in which f is highly non-linear. The
training and test MSE curves still exhibit the same general patterns, but
now there is a rapid decrease in both curves before the test MSE starts to
increase slowly.
In practice, one can usually compute the training MSE with relative

ease, but estimating test MSE is considerably more difficult because usually
no test data are available. As the previous three examples illustrate, the
flexibility level corresponding to the model with the minimal test MSE can
vary considerably among data sets. Throughout this book, we discuss a
variety of approaches that can be used in practice to estimate this minimum
point. One important method is cross-validation (Chapter 5), which is a cross-

validationmethod for estimating test MSE using the training data.

2.2.2 The Bias-Variance Trade-Off

The U-shape observed in the test MSE curves (Figures 2.9–2.11) turns out
to be the result of two competing properties of statistical learning methods.
Though the mathematical proof is beyond the scope of this book, it is
possible to show that the expected test MSE, for a given value x0, can
always be decomposed into the sum of three fundamental quantities: the
variance of f̂(x0), the squared bias of f̂(x0) and the variance of the error

variance
bias
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FIGURE 2.11. Details are as in Figure 2.9, using a different f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.

terms ϵ. That is,

E
(
y0 − f̂(x0)

)2
= Var(f̂(x0)) + [Bias(f̂(x0))]

2 +Var(ϵ). (2.7)

Here the notation E
(
y0 − f̂(x0)

)2
defines the expected test MSE at x0, expected

test MSEand refers to the average test MSE that we would obtain if we repeatedly
estimated f using a large number of training sets, and tested each at x0. The

overall expected test MSE can be computed by averaging E
(
y0 − f̂(x0)

)2

over all possible values of x0 in the test set.
Equation 2.7 tells us that in order to minimize the expected test error,

we need to select a statistical learning method that simultaneously achieves
low variance and low bias. Note that variance is inherently a nonnegative
quantity, and squared bias is also nonnegative. Hence, we see that the
expected test MSE can never lie below Var(ϵ), the irreducible error from
(2.3).
What do we mean by the variance and bias of a statistical learning

method? Variance refers to the amount by which f̂ would change if we
estimated it using a different training data set. Since the training data
are used to fit the statistical learning method, different training data sets
will result in a different f̂ . But ideally the estimate for f should not vary
too much between training sets. However, if a method has high variance
then small changes in the training data can result in large changes in f̂ . In
general, more flexible statistical methods have higher variance. Consider the
green and orange curves in Figure 2.9. The flexible green curve is following
the observations very closely. It has high variance because changing any
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one of these data points may cause the estimate f̂ to change considerably.
In contrast, the orange least squares line is relatively inflexible and has low
variance, because moving any single observation will likely cause only a
small shift in the position of the line.
On the other hand, bias refers to the error that is introduced by approxi-

mating a real-life problem, which may be extremely complicated, by a much
simpler model. For example, linear regression assumes that there is a linear
relationship between Y and X1, X2, . . . , Xp. It is unlikely that any real-life
problem truly has such a simple linear relationship, and so performing lin-
ear regression will undoubtedly result in some bias in the estimate of f . In
Figure 2.11, the true f is substantially non-linear, so no matter how many
training observations we are given, it will not be possible to produce an
accurate estimate using linear regression. In other words, linear regression
results in high bias in this example. However, in Figure 2.10 the true f is
very close to linear, and so given enough data, it should be possible for
linear regression to produce an accurate estimate. Generally, more flexible
methods result in less bias.
As a general rule, as we use more flexible methods, the variance will

increase and the bias will decrease. The relative rate of change of these
two quantities determines whether the test MSE increases or decreases. As
we increase the flexibility of a class of methods, the bias tends to initially
decrease faster than the variance increases. Consequently, the expected
test MSE declines. However, at some point increasing flexibility has little
impact on the bias but starts to significantly increase the variance. When
this happens the test MSE increases. Note that we observed this pattern
of decreasing test MSE followed by increasing test MSE in the right-hand
panels of Figures 2.9–2.11.
The three plots in Figure 2.12 illustrate Equation 2.7 for the examples in

Figures 2.9–2.11. In each case the blue solid curve represents the squared
bias, for different levels of flexibility, while the orange curve corresponds to
the variance. The horizontal dashed line represents Var(ϵ), the irreducible
error. Finally, the red curve, corresponding to the test set MSE, is the sum
of these three quantities. In all three cases, the variance increases and the
bias decreases as the method’s flexibility increases. However, the flexibility
level corresponding to the optimal test MSE differs considerably among the
three data sets, because the squared bias and variance change at different
rates in each of the data sets. In the left-hand panel of Figure 2.12, the
bias initially decreases rapidly, resulting in an initial sharp decrease in the
expected test MSE. On the other hand, in the center panel of Figure 2.12
the true f is close to linear, so there is only a small decrease in bias as flex-
ibility increases, and the test MSE only declines slightly before increasing
rapidly as the variance increases. Finally, in the right-hand panel of Fig-
ure 2.12, as flexibility increases, there is a dramatic decline in bias because
the true f is very non-linear. There is also very little increase in variance
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FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(ϵ)
(dashed line), and test MSE (red curve) for the three data sets in Figures 2.9–2.11.
The vertical dotted line indicates the flexibility level corresponding to the smallest
test MSE.

as flexibility increases. Consequently, the test MSE declines substantially
before experiencing a small increase as model flexibility increases.
The relationship between bias, variance, and test set MSE given in Equa-

tion 2.7 and displayed in Figure 2.12 is referred to as the bias-variance
trade-off. Good test set performance of a statistical learning method re-

bias-variance
trade-offquires low variance as well as low squared bias. This is referred to as a

trade-off because it is easy to obtain a method with extremely low bias but
high variance (for instance, by drawing a curve that passes through every
single training observation) or a method with very low variance but high
bias (by fitting a horizontal line to the data). The challenge lies in finding
a method for which both the variance and the squared bias are low. This
trade-off is one of the most important recurring themes in this book.
In a real-life situation in which f is unobserved, it is generally not pos-

sible to explicitly compute the test MSE, bias, or variance for a statistical
learning method. Nevertheless, one should always keep the bias-variance
trade-off in mind. In this book we explore methods that are extremely
flexible and hence can essentially eliminate bias. However, this does not
guarantee that they will outperform a much simpler method such as linear
regression. To take an extreme example, suppose that the true f is linear.
In this situation linear regression will have no bias, making it very hard
for a more flexible method to compete. In contrast, if the true f is highly
non-linear and we have an ample number of training observations, then
we may do better using a highly flexible approach, as in Figure 2.11. In
Chapter 5 we discuss cross-validation, which is a way to estimate the test
MSE using the training data.
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2.2.3 The Classification Setting

Thus far, our discussion of model accuracy has been focused on the regres-
sion setting. But many of the concepts that we have encountered, such
as the bias-variance trade-off, transfer over to the classification setting
with only some modifications due to the fact that yi is no longer quan-
titative. Suppose that we seek to estimate f on the basis of training obser-
vations {(x1, y1), . . . , (xn, yn)}, where now y1, . . . , yn are qualitative. The
most common approach for quantifying the accuracy of our estimate f̂ is
the training error rate, the proportion of mistakes that are made if we apply

error rate
our estimate f̂ to the training observations:

1

n

n∑

i=1

I(yi ̸= ŷi). (2.8)

Here ŷi is the predicted class label for the ith observation using f̂ . And
I(yi ̸= ŷi) is an indicator variable that equals 1 if yi ̸= ŷi and zero if yi = ŷi. indicator

variableIf I(yi ̸= ŷi) = 0 then the ith observation was classified correctly by our
classification method; otherwise it was misclassified. Hence Equation 2.8
computes the fraction of incorrect classifications.
Equation 2.8 is referred to as the training error rate because it is com-

training
errorputed based on the data that was used to train our classifier. As in the

regression setting, we are most interested in the error rates that result from
applying our classifier to test observations that were not used in training.
The test error rate associated with a set of test observations of the form

test error
(x0, y0) is given by

Ave (I(y0 ̸= ŷ0)) , (2.9)

where ŷ0 is the predicted class label that results from applying the classifier
to the test observation with predictor x0. A good classifier is one for which
the test error (2.9) is smallest.

The Bayes Classifier

It is possible to show (though the proof is outside of the scope of this
book) that the test error rate given in (2.9) is minimized, on average, by a
very simple classifier that assigns each observation to the most likely class,
given its predictor values. In other words, we should simply assign a test
observation with predictor vector x0 to the class j for which

Pr(Y = j|X = x0) (2.10)

is largest. Note that (2.10) is a conditional probability: it is the probability
conditional
probabilitythat Y = j, given the observed predictor vector x0. This very simple clas-

sifier is called the Bayes classifier. In a two-class problem where there are
Bayes
classifieronly two possible response values, say class 1 or class 2, the Bayes classifier
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FIGURE 2.13. A simulated data set consisting of 100 observations in each of
two groups, indicated in blue and in orange. The purple dashed line represents
the Bayes decision boundary. The orange background grid indicates the region
in which a test observation will be assigned to the orange class, and the blue
background grid indicates the region in which a test observation will be assigned
to the blue class.

corresponds to predicting class one if Pr(Y = 1|X = x0) > 0.5, and class
two otherwise.
Figure 2.13 provides an example using a simulated data set in a two-

dimensional space consisting of predictors X1 and X2. The orange and
blue circles correspond to training observations that belong to two different
classes. For each value of X1 and X2, there is a different probability of the
response being orange or blue. Since this is simulated data, we know how
the data were generated and we can calculate the conditional probabilities
for each value of X1 and X2. The orange shaded region reflects the set of
points for which Pr(Y = orange|X) is greater than 50%, while the blue
shaded region indicates the set of points for which the probability is below
50%. The purple dashed line represents the points where the probability
is exactly 50%. This is called the Bayes decision boundary. The Bayes

Bayes
decision
boundary

classifier’s prediction is determined by the Bayes decision boundary; an
observation that falls on the orange side of the boundary will be assigned
to the orange class, and similarly an observation on the blue side of the
boundary will be assigned to the blue class.
The Bayes classifier produces the lowest possible test error rate, called

the Bayes error rate. Since the Bayes classifier will always choose the class
Bayes error
ratefor which (2.10) is largest, the error rate will be 1−maxj Pr(Y = j|X = x0)
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at X = x0. In general, the overall Bayes error rate is given by

1− E

(
max

j
Pr(Y = j|X)

)
, (2.11)

where the expectation averages the probability over all possible values of
X. For our simulated data, the Bayes error rate is 0.133. It is greater than
zero, because the classes overlap in the true population so maxj Pr(Y =
j|X = x0) < 1 for some values of x0. The Bayes error rate is analogous to
the irreducible error, discussed earlier.

K-Nearest Neighbors

In theory we would always like to predict qualitative responses using the
Bayes classifier. But for real data, we do not know the conditional distri-
bution of Y given X, and so computing the Bayes classifier is impossi-
ble. Therefore, the Bayes classifier serves as an unattainable gold standard
against which to compare other methods. Many approaches attempt to
estimate the conditional distribution of Y given X, and then classify a
given observation to the class with highest estimated probability. One such
method is the K-nearest neighbors (KNN) classifier. Given a positive in-

K-nearest
neighborsteger K and a test observation x0, the KNN classifier first identifies the

K points in the training data that are closest to x0, represented by N0.
It then estimates the conditional probability for class j as the fraction of
points in N0 whose response values equal j:

Pr(Y = j|X = x0) =
1

K

∑

i∈N0

I(yi = j). (2.12)

Finally, KNN classifies the test observation x0 to the class with the largest
probability from (2.12).
Figure 2.14 provides an illustrative example of the KNN approach. In

the left-hand panel, we have plotted a small training data set consisting of
six blue and six orange observations. Our goal is to make a prediction for
the point labeled by the black cross. Suppose that we choose K = 3. Then
KNN will first identify the three observations that are closest to the cross.
This neighborhood is shown as a circle. It consists of two blue points and
one orange point, resulting in estimated probabilities of 2/3 for the blue
class and 1/3 for the orange class. Hence KNN will predict that the black
cross belongs to the blue class. In the right-hand panel of Figure 2.14 we
have applied the KNN approach with K = 3 at all of the possible values for
X1 and X2, and have drawn in the corresponding KNN decision boundary.
Despite the fact that it is a very simple approach, KNN can often pro-

duce classifiers that are surprisingly close to the optimal Bayes classifier.
Figure 2.15 displays the KNN decision boundary, using K = 10, when ap-
plied to the larger simulated data set from Figure 2.13. Notice that even
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FIGURE 2.14. The KNN approach, using K = 3, is illustrated in a simple
situation with six blue observations and six orange observations. Left: a test ob-
servation at which a predicted class label is desired is shown as a black cross. The
three closest points to the test observation are identified, and it is predicted that
the test observation belongs to the most commonly-occurring class, in this case
blue. Right: The KNN decision boundary for this example is shown in black. The
blue grid indicates the region in which a test observation will be assigned to the
blue class, and the orange grid indicates the region in which it will be assigned to
the orange class.
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FIGURE 2.15. The black curve indicates the KNN decision boundary on the
data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as
a purple dashed line. The KNN and Bayes decision boundaries are very similar.
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FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With
K = 1, the decision boundary is overly flexible, while with K = 100 it is not
sufficiently flexible. The Bayes decision boundary is shown as a purple dashed
line.

though the true distribution is not known by the KNN classifier, the KNN
decision boundary is very close to that of the Bayes classifier. The test error
rate using KNN is 0.1363, which is close to the Bayes error rate of 0.1304.
The choice of K has a drastic effect on the KNN classifier obtained.

Figure 2.16 displays two KNN fits to the simulated data from Figure 2.13,
using K = 1 and K = 100. When K = 1, the decision boundary is overly
flexible and finds patterns in the data that don’t correspond to the Bayes
decision boundary. This corresponds to a classifier that has low bias but
very high variance. As K grows, the method becomes less flexible and
produces a decision boundary that is close to linear. This corresponds to
a low-variance but high-bias classifier. On this simulated data set, neither
K = 1 nor K = 100 give good predictions: they have test error rates of
0.1695 and 0.1925, respectively.
Just as in the regression setting, there is not a strong relationship be-

tween the training error rate and the test error rate. With K = 1, the
KNN training error rate is 0, but the test error rate may be quite high. In
general, as we use more flexible classification methods, the training error
rate will decline but the test error rate may not. In Figure 2.17, we have
plotted the KNN test and training errors as a function of 1/K. As 1/K in-
creases, the method becomes more flexible. As in the regression setting, the
training error rate consistently declines as the flexibility increases. However,
the test error exhibits a characteristic U-shape, declining at first (with a
minimum at approximately K = 10) before increasing again when the
method becomes excessively flexible and overfits.
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FIGURE 2.17. The KNN training error rate (blue, 200 observations) and test
error rate (orange, 5,000 observations) on the data from Figure 2.13, as the level
of flexibility (assessed using 1/K on the log scale) increases, or equivalently as
the number of neighbors K decreases. The black dashed line indicates the Bayes
error rate. The jumpiness of the curves is due to the small size of the training
data set.

In both the regression and classification settings, choosing the correct
level of flexibility is critical to the success of any statistical learning method.
The bias-variance tradeoff, and the resulting U-shape in the test error, can
make this a difficult task. In Chapter 5, we return to this topic and discuss
various methods for estimating test error rates and thereby choosing the
optimal level of flexibility for a given statistical learning method.

2.3 Lab: Introduction to R

In this lab, we will introduce some simple R commands. The best way to
learn a new language is to try out the commands. R can be downloaded
from

http://cran.r-project.org/

We recommend that you run R within an integrated development environ-
ment (IDE) such as RStudio, which can be freely downloaded from

http://rstudio.com

http://cran.r-project.org/
http://rstudio.com
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The RStudio website also provides a cloud-based version of R, which does
not require installing any software.

2.3.1 Basic Commands

R uses functions to perform operations. To run a function called funcname,
function

we type funcname(input1, input2), where the inputs (or arguments) input1
argument

and input2 tell R how to run the function. A function can have any number
of inputs. For example, to create a vector of numbers, we use the function
c() (for concatenate). Any numbers inside the parentheses are joined to-

c()
gether. The following command instructs R to join together the numbers
1, 3, 2, and 5, and to save them as a vector named x. When we type x, it

vector
gives us back the vector.

> x <- c(1, 3, 2, 5)

> x

[1] 1 3 2 5

Note that the > is not part of the command; rather, it is printed by R to
indicate that it is ready for another command to be entered. We can also
save things using = rather than <-:

> x = c(1, 6, 2)

> x

[1] 1 6 2

> y = c(1, 4, 3)

Hitting the up arrow multiple times will display the previous commands,
which can then be edited. This is useful since one often wishes to repeat
a similar command. In addition, typing ?funcname will always cause R to
open a new help file window with additional information about the function
funcname().
We can tell R to add two sets of numbers together. It will then add the

first number from x to the first number from y, and so on. However, x and
y should be the same length. We can check their length using the length()

length()
function.

> length(x)

[1] 3

> length(y)

[1] 3

> x + y

[1] 2 10 5

The ls() function allows us to look at a list of all of the objects, such
ls()

as data and functions, that we have saved so far. The rm() function can be
rm()

used to delete any that we don’t want.

> ls()

[1] "x" "y"

> rm(x, y)
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> ls()

character (0)

It’s also possible to remove all objects at once:

> rm(list = ls())

The matrix() function can be used to create a matrix of numbers. Before
matrix()

we use the matrix() function, we can learn more about it:

> ?matrix

The help file reveals that the matrix() function takes a number of inputs,
but for now we focus on the first three: the data (the entries in the matrix),
the number of rows, and the number of columns. First, we create a simple
matrix.

> x <- matrix(data = c(1, 2, 3, 4), nrow = 2, ncol = 2)

> x

[,1] [,2]

[1,] 1 3

[2,] 2 4

Note that we could just as well omit typing data=, nrow=, and ncol= in the
matrix() command above: that is, we could just type

> x <- matrix(c(1, 2, 3, 4), 2, 2)

and this would have the same effect. However, it can sometimes be useful to
specify the names of the arguments passed in, since otherwise R will assume
that the function arguments are passed into the function in the same order
that is given in the function’s help file. As this example illustrates, by
default R creates matrices by successively filling in columns. Alternatively,
the byrow = TRUE option can be used to populate the matrix in order of the
rows.

> matrix(c(1, 2, 3, 4), 2, 2, byrow = TRUE)

[,1] [,2]

[1,] 1 2

[2,] 3 4

Notice that in the above command we did not assign the matrix to a value
such as x. In this case the matrix is printed to the screen but is not saved
for future calculations. The sqrt() function returns the square root of each

sqrt()
element of a vector or matrix. The command x^2 raises each element of x
to the power 2; any powers are possible, including fractional or negative
powers.

> sqrt(x)

[,1] [,2]

[1,] 1.00 1.73

[2,] 1.41 2.00

> x^2

[,1] [,2]

[1,] 1 9

[2,] 4 16
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The rnorm() function generates a vector of random normal variables,
rnorm()

with first argument n the sample size. Each time we call this function, we
will get a different answer. Here we create two correlated sets of numbers,
x and y, and use the cor() function to compute the correlation between

cor()
them.

> x <- rnorm (50)

> y <- x + rnorm (50, mean = 50, sd = .1)

> cor(x, y)

[1] 0.995

By default, rnorm() creates standard normal random variables with a mean
of 0 and a standard deviation of 1. However, the mean and standard devi-
ation can be altered using the mean and sd arguments, as illustrated above.
Sometimes we want our code to reproduce the exact same set of random
numbers; we can use the set.seed() function to do this. The set.seed()

set.seed()
function takes an (arbitrary) integer argument.

> set.seed (1303)

> rnorm (50)

[1] -1.1440 1.3421 2.1854 0.5364 0.0632 0.5022 -0.0004

. . .

We use set.seed() throughout the labs whenever we perform calculations
involving random quantities. In general this should allow the user to re-
produce our results. However, as new versions of R become available, small
discrepancies may arise between this book and the output from R.
The mean() and var() functions can be used to compute the mean and

mean()

var()
variance of a vector of numbers. Applying sqrt() to the output of var()

will give the standard deviation. Or we can simply use the sd() function.
sd()

> set.seed (3)

> y <- rnorm (100)

> mean(y)

[1] 0.0110

> var(y)

[1] 0.7329

> sqrt(var(y))

[1] 0.8561

> sd(y)

[1] 0.8561

2.3.2 Graphics

The plot() function is the primary way to plot data in R. For instance,
plot()

plot(x, y) produces a scatterplot of the numbers in x versus the numbers
in y. There are many additional options that can be passed in to the plot()

function. For example, passing in the argument xlab will result in a label
on the x-axis. To find out more information about the plot() function,
type ?plot.
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> x <- rnorm (100)

> y <- rnorm (100)

> plot(x, y)

> plot(x, y, xlab = "this is the x-axis",

ylab = "this is the y-axis",

main = "Plot of X vs Y")

We will often want to save the output of an R plot. The command that we
use to do this will depend on the file type that we would like to create. For
instance, to create a pdf, we use the pdf() function, and to create a jpeg,

pdf()
we use the jpeg() function.

jpeg()
> pdf("Figure.pdf")

> plot(x, y, col = "green")

> dev.off()

null device

1

The function dev.off() indicates to R that we are done creating the plot.
dev.off()

Alternatively, we can simply copy the plot window and paste it into an
appropriate file type, such as a Word document.
The function seq() can be used to create a sequence of numbers. For

seq()
instance, seq(a, b) makes a vector of integers between a and b. There are
many other options: for instance, seq(0, 1, length = 10)makes a sequence
of 10 numbers that are equally spaced between 0 and 1. Typing 3:11 is a
shorthand for seq(3, 11) for integer arguments.

> x <- seq(1, 10)

> x

[1] 1 2 3 4 5 6 7 8 9 10

> x <- 1:10

> x

[1] 1 2 3 4 5 6 7 8 9 10

> x <- seq(-pi, pi, length = 50)

We will now create some more sophisticated plots. The contour() func-
contour()

tion produces a contour plot in order to represent three-dimensional data;
contour plot

it is like a topographical map. It takes three arguments:

1. A vector of the x values (the first dimension),

2. A vector of the y values (the second dimension), and

3. A matrix whose elements correspond to the z value (the third dimen-
sion) for each pair of (x, y) coordinates.

As with the plot() function, there are many other inputs that can be used
to fine-tune the output of the contour() function. To learn more about
these, take a look at the help file by typing ?contour.

> y <- x

> f <- outer(x, y, function(x, y) cos(y) / (1 + x^2))

> contour(x, y, f)

> contour(x, y, f, nlevels = 45, add = T)
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> fa <- (f - t(f)) / 2

> contour(x, y, fa, nlevels = 15)

The image() function works the same way as contour(), except that it
image()

produces a color-coded plot whose colors depend on the z value. This is
known as a heatmap, and is sometimes used to plot temperature in weather

heatmap
forecasts. Alternatively, persp() can be used to produce a three-dimensional

persp()
plot. The arguments theta and phi control the angles at which the plot is
viewed.

> image(x, y, fa)

> persp(x, y, fa)

> persp(x, y, fa , theta = 30)

> persp(x, y, fa , theta = 30, phi = 20)

> persp(x, y, fa , theta = 30, phi = 70)

> persp(x, y, fa , theta = 30, phi = 40)

2.3.3 Indexing Data

We often wish to examine part of a set of data. Suppose that our data is
stored in the matrix A.

> A <- matrix (1:16, 4, 4)

> A

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

Then, typing

> A[2, 3]

[1] 10

will select the element corresponding to the second row and the third col-
umn. The first number after the open-bracket symbol [ always refers to
the row, and the second number always refers to the column. We can also
select multiple rows and columns at a time, by providing vectors as the
indices.

> A[c(1, 3), c(2, 4)]

[,1] [,2]

[1,] 5 13

[2,] 7 15

> A[1:3, 2:4]

[,1] [,2] [,3]

[1,] 5 9 13

[2,] 6 10 14

[3,] 7 11 15

> A[1:2, ]

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14
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> A[, 1:2]

[,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

The last two examples include either no index for the columns or no index
for the rows. These indicate that R should include all columns or all rows,
respectively. R treats a single row or column of a matrix as a vector.

> A[1, ]

[1] 1 5 9 13

The use of a negative sign - in the index tells R to keep all rows or columns
except those indicated in the index.

> A[-c(1, 3), ]

[,1] [,2] [,3] [,4]

[1,] 2 6 10 14

[2,] 4 8 12 16

> A[-c(1, 3), -c(1, 3, 4)]

[1] 6 8

The dim() function outputs the number of rows followed by the number of
dim()

columns of a given matrix.

> dim(A)

[1] 4 4

2.3.4 Loading Data

For most analyses, the first step involves importing a data set into R. The
read.table() function is one of the primary ways to do this. The help file

read.table()
contains details about how to use this function. We can use the function
write.table() to export data.

write.table()
Before attempting to load a data set, we must make sure that R knows

to search for the data in the proper directory. For example, on a Windows
system one could select the directory using the Change dir. . . option under
the File menu. However, the details of how to do this depend on the oper-
ating system (e.g. Windows, Mac, Unix) that is being used, and so we do
not give further details here.
We begin by loading in the Auto data set. This data is part of the ISLR2

library, discussed in Chapter 3. To illustrate the read.table() function, we
load it now from a text file, Auto.data, which you can find on the textbook
website. The following command will load the Auto.data file into R and
store it as an object called Auto, in a format referred to as a data frame.

data frame
Once the data has been loaded, the View() function can be used to view
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it in a spreadsheet-like window.1 The head() function can also be used to
view the first few rows of the data.

> Auto <- read.table("Auto.data")

> View(Auto)

> head(Auto)

V1 V2 V3 V4 V5

1 mpg cylinders displacement horsepower weight

2 18.0 8 307.0 130.0 3504.

3 15.0 8 350.0 165.0 3693.

4 18.0 8 318.0 150.0 3436.

5 16.0 8 304.0 150.0 3433.

6 17.0 8 302.0 140.0 3449.

V6 V7 V8 V9

1 acceleration year origin name

2 12.0 70 1 chevrolet chevelle malibu

3 11.5 70 1 buick skylark 320

4 11.0 70 1 plymouth satellite

5 12.0 70 1 amc rebel sst

6 10.5 70 1 ford torino

Note that Auto.data is simply a text file, which you could alternatively
open on your computer using a standard text editor. It is often a good idea
to view a data set using a text editor or other software such as Excel before
loading it into R.
This particular data set has not been loaded correctly, because R has

assumed that the variable names are part of the data and so has included
them in the first row. The data set also includes a number of missing
observations, indicated by a question mark ?. Missing values are a common
occurrence in real data sets. Using the option header = T (or header = TRUE)
in the read.table() function tells R that the first line of the file contains
the variable names, and using the option na.strings tells R that any time
it sees a particular character or set of characters (such as a question mark),
it should be treated as a missing element of the data matrix.

> Auto <- read.table("Auto.data", header = T, na.strings = "?",

stringsAsFactors = T)

> View(Auto)

The stringsAsFactors = T argument tells R that any variable containing
character strings should be interpreted as a qualitative variable, and that
each distinct character string represents a distinct level for that qualitative
variable. An easy way to load data from Excel into R is to save it as a csv
(comma-separated values) file, and then use the read.csv() function.

> Auto <- read.csv("Auto.csv", na.strings = "?",

stringsAsFactors = T)

> View(Auto)

1This function can sometimes be a bit finicky. If you have trouble using it, then try
the head() function instead.



50 2. Statistical Learning

> dim(Auto)

[1] 397 9

> Auto [1:4, ]

The dim() function tells us that the data has 397 observations, or rows, and
dim()

nine variables, or columns. There are various ways to deal with the missing
data. In this case, only five of the rows contain missing observations, and
so we choose to use the na.omit() function to simply remove these rows.

na.omit()
> Auto <- na.omit(Auto)

> dim(Auto)

[1] 392 9

Once the data are loaded correctly, we can use names() to check the
names()

variable names.

> names(Auto)

[1] "mpg" "cylinders" "displacement" "horsepower"

[5] "weight" "acceleration" "year" "origin"

[9] "name"

2.3.5 Additional Graphical and Numerical Summaries

We can use the plot() function to produce scatterplots of the quantitative
scatterplot

variables. However, simply typing the variable names will produce an error
message, because R does not know to look in the Auto data set for those
variables.

> plot(cylinders , mpg)

Error in plot(cylinders , mpg) : object ‘cylinders ’ not found

To refer to a variable, we must type the data set and the variable name
joined with a $ symbol. Alternatively, we can use the attach() function in

attach()
order to tell R to make the variables in this data frame available by name.

> plot(Auto$cylinders , Auto$mpg)

> attach(Auto)

> plot(cylinders , mpg)

The cylinders variable is stored as a numeric vector, so R has treated it
as quantitative. However, since there are only a small number of possible
values for cylinders, one may prefer to treat it as a qualitative variable.
The as.factor() function converts quantitative variables into qualitative

as.factor()
variables.

> cylinders <- as.factor(cylinders)

If the variable plotted on the x-axis is qualitative, then boxplots will
boxplot

automatically be produced by the plot() function. As usual, a number
of options can be specified in order to customize the plots.

> plot(cylinders , mpg)

> plot(cylinders , mpg , col = "red")

> plot(cylinders , mpg , col = "red", varwidth = T)
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> plot(cylinders , mpg , col = "red", varwidth = T,

horizontal = T)

> plot(cylinders , mpg , col = "red", varwidth = T,

xlab = "cylinders", ylab = "MPG")

The hist() function can be used to plot a histogram. Note that col = 2
hist()

histogram
has the same effect as col = "red".

> hist(mpg)

> hist(mpg , col = 2)

> hist(mpg , col = 2, breaks = 15)

The pairs() function creates a scatterplot matrix, i.e. a scatterplot for every
pair of variables. We can also produce scatterplots for just a subset of the
variables.

> pairs(Auto)

> pairs(

∼ mpg + displacement + horsepower + weight + acceleration ,

data = Auto

)

In conjunction with the plot() function, identify() provides a useful
identify()

interactive method for identifying the value of a particular variable for
points on a plot. We pass in three arguments to identify(): the x-axis
variable, the y-axis variable, and the variable whose values we would like
to see printed for each point. Then clicking one or more points in the plot
and hitting Escape will cause R to print the values of the variable of interest.
The numbers printed under the identify() function correspond to the rows
for the selected points.

> plot(horsepower , mpg)

> identify(horsepower , mpg , name)

The summary() function produces a numerical summary of each variable in
summary()

a particular data set.

> summary(Auto)

mpg cylinders displacement

Min. : 9.00 Min. :3.000 Min. : 68.0

1st Qu .:17.00 1st Qu .:4.000 1st Qu .:105.0

Median :22.75 Median :4.000 Median :151.0

Mean :23.45 Mean :5.472 Mean :194.4

3rd Qu .:29.00 3rd Qu .:8.000 3rd Qu .:275.8

Max. :46.60 Max. :8.000 Max. :455.0

horsepower weight acceleration

Min. : 46.0 Min. :1613 Min. : 8.00

1st Qu.: 75.0 1st Qu .:2225 1st Qu .:13.78

Median : 93.5 Median :2804 Median :15.50

Mean :104.5 Mean :2978 Mean :15.54

3rd Qu .:126.0 3rd Qu .:3615 3rd Qu .:17.02

Max. :230.0 Max. :5140 Max. :24.80

year origin name
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Min. :70.00 Min. :1.000 amc matador : 5

1st Qu .:73.00 1st Qu .:1.000 ford pinto : 5

Median :76.00 Median :1.000 toyota corolla : 5

Mean :75.98 Mean :1.577 amc gremlin : 4

3rd Qu .:79.00 3rd Qu .:2.000 amc hornet : 4

Max. :82.00 Max. :3.000 chevrolet chevette: 4

(Other) :365

For qualitative variables such as name, R will list the number of observations
that fall in each category. We can also produce a summary of just a single
variable.

> summary(mpg)

Min. 1st Qu. Median Mean 3rd Qu. Max.

9.00 17.00 22.75 23.45 29.00 46.60

Once we have finished using R, we type q() in order to shut it down, or
q()

quit. When exiting R, we have the option to save the current workspace so
workspace

that all objects (such as data sets) that we have created in this R session
will be available next time. Before exiting R, we may want to save a record
of all of the commands that we typed in the most recent session; this can
be accomplished using the savehistory() function. Next time we enter R,

savehistory()
we can load that history using the loadhistory() function, if we wish.

loadhistory()

2.4 Exercises

Conceptual

1. For each of parts (a) through (d), indicate whether we would generally
expect the performance of a flexible statistical learning method to be
better or worse than an inflexible method. Justify your answer.

(a) The sample size n is extremely large, and the number of predic-
tors p is small.

(b) The number of predictors p is extremely large, and the number
of observations n is small.

(c) The relationship between the predictors and response is highly
non-linear.

(d) The variance of the error terms, i.e. σ2 = Var(ϵ), is extremely
high.

2. Explain whether each scenario is a classification or regression prob-
lem, and indicate whether we are most interested in inference or pre-
diction. Finally, provide n and p.

(a) We collect a set of data on the top 500 firms in the US. For each
firm we record profit, number of employees, industry and the
CEO salary. We are interested in understanding which factors
affect CEO salary.
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(b) We are considering launching a new product and wish to know
whether it will be a success or a failure. We collect data on 20
similar products that were previously launched. For each prod-
uct we have recorded whether it was a success or failure, price
charged for the product, marketing budget, competition price,
and ten other variables.

(c) We are interested in predicting the % change in the USD/Euro
exchange rate in relation to the weekly changes in the world
stock markets. Hence we collect weekly data for all of 2012. For
each week we record the % change in the USD/Euro, the %
change in the US market, the % change in the British market,
and the % change in the German market.

3. We now revisit the bias-variance decomposition.

(a) Provide a sketch of typical (squared) bias, variance, training er-
ror, test error, and Bayes (or irreducible) error curves, on a sin-
gle plot, as we go from less flexible statistical learning methods
towards more flexible approaches. The x-axis should represent
the amount of flexibility in the method, and the y-axis should
represent the values for each curve. There should be five curves.
Make sure to label each one.

(b) Explain why each of the five curves has the shape displayed in
part (a).

4. You will now think of some real-life applications for statistical learn-
ing.

(a) Describe three real-life applications in which classification might
be useful. Describe the response, as well as the predictors. Is the
goal of each application inference or prediction? Explain your
answer.

(b) Describe three real-life applications in which regression might
be useful. Describe the response, as well as the predictors. Is the
goal of each application inference or prediction? Explain your
answer.

(c) Describe three real-life applications in which cluster analysis
might be useful.

5. What are the advantages and disadvantages of a very flexible (versus
a less flexible) approach for regression or classification? Under what
circumstances might a more flexible approach be preferred to a less
flexible approach? When might a less flexible approach be preferred?
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6. Describe the differences between a parametric and a non-parametric
statistical learning approach. What are the advantages of a para-
metric approach to regression or classification (as opposed to a non-
parametric approach)? What are its disadvantages?

7. The table below provides a training data set containing six observa-
tions, three predictors, and one qualitative response variable.

Obs. X1 X2 X3 Y
1 0 3 0 Red
2 2 0 0 Red
3 0 1 3 Red
4 0 1 2 Green
5 −1 0 1 Green
6 1 1 1 Red

Suppose we wish to use this data set to make a prediction for Y when
X1 = X2 = X3 = 0 using K-nearest neighbors.

(a) Compute the Euclidean distance between each observation and
the test point, X1 = X2 = X3 = 0.

(b) What is our prediction with K = 1? Why?

(c) What is our prediction with K = 3? Why?

(d) If the Bayes decision boundary in this problem is highly non-
linear, then would we expect the best value for K to be large or
small? Why?

Applied

8. This exercise relates to the College data set, which can be found in
the file College.csv on the book website. It contains a number of
variables for 777 different universities and colleges in the US. The
variables are

• Private : Public/private indicator

• Apps : Number of applications received

• Accept : Number of applicants accepted

• Enroll : Number of new students enrolled

• Top10perc : New students from top 10% of high school class

• Top25perc : New students from top 25% of high school class

• F.Undergrad : Number of full-time undergraduates

• P.Undergrad : Number of part-time undergraduates
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• Outstate : Out-of-state tuition

• Room.Board : Room and board costs

• Books : Estimated book costs

• Personal : Estimated personal spending

• PhD : Percent of faculty with Ph.D.’s

• Terminal : Percent of faculty with terminal degree

• S.F.Ratio : Student/faculty ratio

• perc.alumni : Percent of alumni who donate

• Expend : Instructional expenditure per student

• Grad.Rate : Graduation rate

Before reading the data into R, it can be viewed in Excel or a text
editor.

(a) Use the read.csv() function to read the data into R. Call the
loaded data college. Make sure that you have the directory set
to the correct location for the data.

(b) Look at the data using the View() function. You should notice
that the first column is just the name of each university. We don’t
really want R to treat this as data. However, it may be handy to
have these names for later. Try the following commands:

> rownames(college) <- college[, 1]

> View(college)

You should see that there is now a row.names column with the
name of each university recorded. This means that R has given
each row a name corresponding to the appropriate university. R
will not try to perform calculations on the row names. However,
we still need to eliminate the first column in the data where the
names are stored. Try

> college <- college[, -1]

> View(college)

Now you should see that the first data column is Private. Note
that another column labeled row.names now appears before the
Private column. However, this is not a data column but rather
the name that R is giving to each row.

(c) i. Use the summary() function to produce a numerical summary
of the variables in the data set.

ii. Use the pairs() function to produce a scatterplot matrix of
the first ten columns or variables of the data. Recall that
you can reference the first ten columns of a matrix A using
A[,1:10].
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iii. Use the plot() function to produce side-by-side boxplots of
Outstate versus Private.

iv. Create a new qualitative variable, called Elite, by binning
the Top10perc variable. We are going to divide universities
into two groups based on whether or not the proportion
of students coming from the top 10% of their high school
classes exceeds 50%.

> Elite <- rep("No", nrow(college))

> Elite[college$Top10perc > 50] <- "Yes"

> Elite <- as.factor(Elite)

> college <- data.frame(college , Elite)

Use the summary() function to see how many elite univer-
sities there are. Now use the plot() function to produce
side-by-side boxplots of Outstate versus Elite.

v. Use the hist() function to produce some histograms with
differing numbers of bins for a few of the quantitative vari-
ables. You may find the command par(mfrow = c(2, 2))

useful: it will divide the print window into four regions so
that four plots can be made simultaneously. Modifying the
arguments to this function will divide the screen in other
ways.

vi. Continue exploring the data, and provide a brief summary
of what you discover.

9. This exercise involves the Auto data set studied in the lab. Make sure
that the missing values have been removed from the data.

(a) Which of the predictors are quantitative, and which are quali-
tative?

(b) What is the range of each quantitative predictor? You can an-
swer this using the range() function.

range()
(c) What is the mean and standard deviation of each quantitative

predictor?

(d) Now remove the 10th through 85th observations. What is the
range, mean, and standard deviation of each predictor in the
subset of the data that remains?

(e) Using the full data set, investigate the predictors graphically,
using scatterplots or other tools of your choice. Create some plots
highlighting the relationships among the predictors. Comment
on your findings.

(f) Suppose that we wish to predict gas mileage (mpg) on the basis
of the other variables. Do your plots suggest that any of the
other variables might be useful in predicting mpg? Justify your
answer.
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10. This exercise involves the Boston housing data set.

(a) To begin, load in the Boston data set. The Boston data set is
part of the ISLR2 library.

> library(ISLR2)

Now the data set is contained in the object Boston.

> Boston

Read about the data set:

> ?Boston

How many rows are in this data set? How many columns? What
do the rows and columns represent?

(b) Make some pairwise scatterplots of the predictors (columns) in
this data set. Describe your findings.

(c) Are any of the predictors associated with per capita crime rate?
If so, explain the relationship.

(d) Do any of the census tracts of Boston appear to have particularly
high crime rates? Tax rates? Pupil-teacher ratios? Comment on
the range of each predictor.

(e) How many of the census tracts in this data set bound the Charles
river?

(f) What is the median pupil-teacher ratio among the towns in this
data set?

(g) Which census tract of Boston has lowest median value of owner-
occupied homes? What are the values of the other predictors
for that census tract, and how do those values compare to the
overall ranges for those predictors? Comment on your findings.

(h) In this data set, how many of the census tracts average more
than seven rooms per dwelling? More than eight rooms per
dwelling? Comment on the census tracts that average more than
eight rooms per dwelling.
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Linear Regression

This chapter is about linear regression, a very simple approach for super-
vised learning. In particular, linear regression is a useful tool for predicting
a quantitative response. It has been around for a long time and is the topic
of innumerable textbooks. Though it may seem somewhat dull compared to
some of the more modern statistical learning approaches described in later
chapters of this book, linear regression is still a useful and widely used sta-
tistical learning method. Moreover, it serves as a good jumping-off point for
newer approaches: as we will see in later chapters, many fancy statistical
learning approaches can be seen as generalizations or extensions of linear
regression. Consequently, the importance of having a good understanding
of linear regression before studying more complex learning methods cannot
be overstated. In this chapter, we review some of the key ideas underlying
the linear regression model, as well as the least squares approach that is
most commonly used to fit this model.
Recall the Advertising data from Chapter 2. Figure 2.1 displays sales

(in thousands of units) for a particular product as a function of advertis-
ing budgets (in thousands of dollars) for TV, radio, and newspaper media.
Suppose that in our role as statistical consultants we are asked to suggest,
on the basis of this data, a marketing plan for next year that will result in
high product sales. What information would be useful in order to provide
such a recommendation? Here are a few important questions that we might
seek to address:

1. Is there a relationship between advertising budget and sales?
Our first goal should be to determine whether the data provide evi-
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dence of an association between advertising expenditure and sales. If
the evidence is weak, then one might argue that no money should be
spent on advertising!

2. How strong is the relationship between advertising budget and sales?
Assuming that there is a relationship between advertising and sales,
we would like to know the strength of this relationship. Does knowl-
edge of the advertising budget provide a lot of information about
product sales?

3. Which media are associated with sales?
Are all three media—TV, radio, and newspaper—associated with
sales, or are just one or two of the media associated? To answer this
question, we must find a way to separate out the individual contribu-
tion of each medium to sales when we have spent money on all three
media.

4. How large is the association between each medium and sales?
For every dollar spent on advertising in a particular medium, by
what amount will sales increase? How accurately can we predict this
amount of increase?

5. How accurately can we predict future sales?
For any given level of television, radio, or newspaper advertising, what
is our prediction for sales, and what is the accuracy of this prediction?

6. Is the relationship linear?
If there is approximately a straight-line relationship between advertis-
ing expenditure in the various media and sales, then linear regression
is an appropriate tool. If not, then it may still be possible to trans-
form the predictor or the response so that linear regression can be
used.

7. Is there synergy among the advertising media?
Perhaps spending $50,000 on television advertising and $50,000 on ra-
dio advertising is associated with higher sales than allocating $100,000
to either television or radio individually. In marketing, this is known
as a synergy effect, while in statistics it is called an interaction effect. synergy

interaction
It turns out that linear regression can be used to answer each of these
questions. We will first discuss all of these questions in a general context,
and then return to them in this specific context in Section 3.4.

3.1 Simple Linear Regression

Simple linear regression lives up to its name: it is a very straightforward
simple linear
regression
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approach for predicting a quantitative response Y on the basis of a sin-
gle predictor variable X. It assumes that there is approximately a linear
relationship between X and Y . Mathematically, we can write this linear
relationship as

Y ≈ β0 + β1X. (3.1)

You might read “≈” as “is approximately modeled as”. We will sometimes
describe (3.1) by saying that we are regressing Y on X (or Y onto X).
For example, X may represent TV advertising and Y may represent sales.
Then we can regress sales onto TV by fitting the model

sales ≈ β0 + β1 × TV.

In Equation 3.1, β0 and β1 are two unknown constants that represent
the intercept and slope terms in the linear model. Together, β0 and β1 are

intercept

slope
known as the model coefficients or parameters. Once we have used our

coefficient
parameter

training data to produce estimates β̂0 and β̂1 for the model coefficients, we
can predict future sales on the basis of a particular value of TV advertising
by computing

ŷ = β̂0 + β̂1x, (3.2)

where ŷ indicates a prediction of Y on the basis of X = x. Here we use a
hat symbol, ˆ , to denote the estimated value for an unknown parameter
or coefficient, or to denote the predicted value of the response.

3.1.1 Estimating the Coefficients

In practice, β0 and β1 are unknown. So before we can use (3.1) to make
predictions, we must use data to estimate the coefficients. Let

(x1, y1), (x2, y2), . . . , (xn, yn)

represent n observation pairs, each of which consists of a measurement
of X and a measurement of Y . In the Advertising example, this data
set consists of the TV advertising budget and product sales in n = 200
different markets. (Recall that the data are displayed in Figure 2.1.) Our
goal is to obtain coefficient estimates β̂0 and β̂1 such that the linear model
(3.1) fits the available data well—that is, so that yi ≈ β̂0 + β̂1xi for i =
1, . . . , n. In other words, we want to find an intercept β̂0 and a slope β̂1 such
that the resulting line is as close as possible to the n = 200 data points.
There are a number of ways of measuring closeness. However, by far the
most common approach involves minimizing the least squares criterion,

least squares
and we take that approach in this chapter. Alternative approaches will be
considered in Chapter 6.
Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith value of X.

Then ei = yi− ŷi represents the ith residual—this is the difference between
residual
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the residual sum of
squares. Each grey line segment represents a residual. In this case a linear fit
captures the essence of the relationship, although it overestimates the trend in the
left of the plot.

the ith observed response value and the ith response value that is predicted
by our linear model. We define the residual sum of squares (RSS) as

residual sum
of squaresRSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
2+(y2− β̂0− β̂1x2)

2+ · · ·+(yn− β̂0− β̂1xn)
2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.
Figure 3.1 displays the simple linear regression fit to the Advertising

data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to
this approximation, an additional $1,000 spent on TV advertising is asso-
ciated with selling approximately 47.5 additional units of the product. In
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FIGURE 3.2. Contour and three-dimensional plots of the RSS on the
Advertising data, using sales as the response and TV as the predictor. The
red dots correspond to the least squares estimates β̂0 and β̂1, given by (3.4).

Figure 3.2, we have computed RSS for a number of values of β0 and β1,
using the advertising data with sales as the response and TV as the predic-
tor. In each plot, the red dot represents the pair of least squares estimates
(β̂0, β̂1) given by (3.4). These values clearly minimize the RSS.

3.1.2 Assessing the Accuracy of the Coefficient Estimates

Recall from (2.1) that we assume that the true relationship between X and
Y takes the form Y = f(X) + ϵ for some unknown function f , where ϵ
is a mean-zero random error term. If f is to be approximated by a linear
function, then we can write this relationship as

Y = β0 + β1X + ϵ. (3.5)

Here β0 is the intercept term—that is, the expected value of Y when X = 0,
and β1 is the slope—the average increase in Y associated with a one-unit
increase in X. The error term is a catch-all for what we miss with this
simple model: the true relationship is probably not linear, there may be
other variables that cause variation in Y , and there may be measurement
error. We typically assume that the error term is independent of X.
The model given by (3.5) defines the population regression line, which

population
regression
line

is the best linear approximation to the true relationship between X and
Y .1 The least squares regression coefficient estimates (3.4) characterize the
least squares line (3.2). The left-hand panel of Figure 3.3 displays these

least squares
line

1The assumption of linearity is often a useful working model. However, despite what
many textbooks might tell us, we seldom believe that the true relationship is linear.
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FIGURE 3.3. A simulated data set. Left: The red line represents the true rela-
tionship, f(X) = 2 + 3X, which is known as the population regression line. The
blue line is the least squares line; it is the least squares estimate for f(X) based
on the observed data, shown in black. Right: The population regression line is
again shown in red, and the least squares line in dark blue. In light blue, ten least
squares lines are shown, each computed on the basis of a separate random set of
observations. Each least squares line is different, but on average, the least squares
lines are quite close to the population regression line.

two lines in a simple simulated example. We created 100 random Xs, and
generated 100 corresponding Y s from the model

Y = 2 + 3X + ϵ, (3.6)

where ϵ was generated from a normal distribution with mean zero. The
red line in the left-hand panel of Figure 3.3 displays the true relationship,
f(X) = 2 + 3X, while the blue line is the least squares estimate based
on the observed data. The true relationship is generally not known for
real data, but the least squares line can always be computed using the
coefficient estimates given in (3.4). In other words, in real applications,
we have access to a set of observations from which we can compute the
least squares line; however, the population regression line is unobserved.
In the right-hand panel of Figure 3.3 we have generated ten different data
sets from the model given by (3.6) and plotted the corresponding ten least
squares lines. Notice that different data sets generated from the same true
model result in slightly different least squares lines, but the unobserved
population regression line does not change.
At first glance, the difference between the population regression line and

the least squares line may seem subtle and confusing. We only have one
data set, and so what does it mean that two different lines describe the
relationship between the predictor and the response? Fundamentally, the
concept of these two lines is a natural extension of the standard statistical



3.1 Simple Linear Regression 65

approach of using information from a sample to estimate characteristics of a
large population. For example, suppose that we are interested in knowing
the population mean µ of some random variable Y . Unfortunately, µ is
unknown, but we do have access to n observations from Y , y1, . . . , yn,
which we can use to estimate µ. A reasonable estimate is µ̂ = ȳ, where
ȳ = 1

n

∑n
i=1 yi is the sample mean. The sample mean and the population

mean are different, but in general the sample mean will provide a good
estimate of the population mean. In the same way, the unknown coefficients
β0 and β1 in linear regression define the population regression line. We seek
to estimate these unknown coefficients using β̂0 and β̂1 given in (3.4). These
coefficient estimates define the least squares line.
The analogy between linear regression and estimation of the mean of a

random variable is an apt one based on the concept of bias. If we use the
bias

sample mean µ̂ to estimate µ, this estimate is unbiased, in the sense that
unbiased

on average, we expect µ̂ to equal µ. What exactly does this mean? It means
that on the basis of one particular set of observations y1, . . . , yn, µ̂ might
overestimate µ, and on the basis of another set of observations, µ̂ might
underestimate µ. But if we could average a huge number of estimates of
µ obtained from a huge number of sets of observations, then this average
would exactly equal µ. Hence, an unbiased estimator does not systematically
over- or under-estimate the true parameter. The property of unbiasedness
holds for the least squares coefficient estimates given by (3.4) as well: if
we estimate β0 and β1 on the basis of a particular data set, then our
estimates won’t be exactly equal to β0 and β1. But if we could average
the estimates obtained over a huge number of data sets, then the average
of these estimates would be spot on! In fact, we can see from the right-
hand panel of Figure 3.3 that the average of many least squares lines, each
estimated from a separate data set, is pretty close to the true population
regression line.
We continue the analogy with the estimation of the population mean

µ of a random variable Y . A natural question is as follows: how accurate
is the sample mean µ̂ as an estimate of µ? We have established that the
average of µ̂’s over many data sets will be very close to µ, but that a
single estimate µ̂ may be a substantial underestimate or overestimate of µ.
How far off will that single estimate of µ̂ be? In general, we answer this
question by computing the standard error of µ̂, written as SE(µ̂). We have

standard
errorthe well-known formula

Var(µ̂) = SE(µ̂)2 =
σ2

n
, (3.7)

where σ is the standard deviation of each of the realizations yi of Y .2

Roughly speaking, the standard error tells us the average amount that this
estimate µ̂ differs from the actual value of µ. Equation 3.7 also tells us how

2This formula holds provided that the n observations are uncorrelated.
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this deviation shrinks with n—the more observations we have, the smaller
the standard error of µ̂. In a similar vein, we can wonder how close β̂0

and β̂1 are to the true values β0 and β1. To compute the standard errors
associated with β̂0 and β̂1, we use the following formulas:

SE(β̂0)
2
= σ2

[
1

n
+

x̄2

∑n
i=1(xi − x̄)2

]
, SE(β̂1)

2
=

σ2

∑n
i=1(xi − x̄)2

, (3.8)

where σ2 = Var(ϵ). For these formulas to be strictly valid, we need to
assume that the errors ϵi for each observation have common variance σ2 and
are uncorrelated. This is clearly not true in Figure 3.1, but the formula still
turns out to be a good approximation. Notice in the formula that SE(β̂1) is
smaller when the xi are more spread out; intuitively we have more leverage
to estimate a slope when this is the case. We also see that SE(β̂0) would be
the same as SE(µ̂) if x̄ were zero (in which case β̂0 would be equal to ȳ). In
general, σ2 is not known, but can be estimated from the data. This estimate
of σ is known as the residual standard error, and is given by the formula

residual
standard
error

RSE =
√
RSS/(n− 2). Strictly speaking, when σ2 is estimated from the

data we should write ŜE(β̂1) to indicate that an estimate has been made,
but for simplicity of notation we will drop this extra “hat”.
Standard errors can be used to compute confidence intervals. A 95%

confidence
intervalconfidence interval is defined as a range of values such that with 95%

probability, the range will contain the true unknown value of the param-
eter. The range is defined in terms of lower and upper limits computed
from the sample of data. A 95% confidence interval has the following prop-
erty: if we take repeated samples and construct the confidence interval for
each sample, 95% of the intervals will contain the true unknown value of
the parameter. For linear regression, the 95% confidence interval for β1

approximately takes the form

β̂1 ± 2 · SE(β̂1). (3.9)

That is, there is approximately a 95% chance that the interval
[
β̂1 − 2 · SE(β̂1), β̂1 + 2 · SE(β̂1)

]
(3.10)

will contain the true value of β1.3 Similarly, a confidence interval for β0

approximately takes the form

β̂0 ± 2 · SE(β̂0). (3.11)

3Approximately for several reasons. Equation 3.10 relies on the assumption that the
errors are Gaussian. Also, the factor of 2 in front of the SE(β̂1) term will vary slightly
depending on the number of observations n in the linear regression. To be precise, rather
than the number 2, (3.10) should contain the 97.5% quantile of a t-distribution with
n−2 degrees of freedom. Details of how to compute the 95% confidence interval precisely
in R will be provided later in this chapter.
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In the case of the advertising data, the 95% confidence interval for β0

is [6.130, 7.935] and the 95% confidence interval for β1 is [0.042, 0.053].
Therefore, we can conclude that in the absence of any advertising, sales will,
on average, fall somewhere between 6,130 and 7,935 units. Furthermore,
for each $1,000 increase in television advertising, there will be an average
increase in sales of between 42 and 53 units.
Standard errors can also be used to perform hypothesis tests on the

hypothesis
testcoefficients. The most common hypothesis test involves testing the null

hypothesis of
null
hypothesis

H0 : There is no relationship between X and Y (3.12)

versus the alternative hypothesis
alternative
hypothesis

Ha : There is some relationship between X and Y . (3.13)

Mathematically, this corresponds to testing

H0 : β1 = 0

versus
Ha : β1 ̸= 0,

since if β1 = 0 then the model (3.5) reduces to Y = β0 + ϵ, and X is
not associated with Y . To test the null hypothesis, we need to determine
whether β̂1, our estimate for β1, is sufficiently far from zero that we can
be confident that β1 is non-zero. How far is far enough? This of course
depends on the accuracy of β̂1—that is, it depends on SE(β̂1). If SE(β̂1) is
small, then even relatively small values of β̂1 may provide strong evidence
that β1 ̸= 0, and hence that there is a relationship between X and Y . In
contrast, if SE(β̂1) is large, then β̂1 must be large in absolute value in order
for us to reject the null hypothesis. In practice, we compute a t-statistic,

t-statistic
given by

t =
β̂1 − 0

SE(β̂1)
, (3.14)

which measures the number of standard deviations that β̂1 is away from 0. If
there really is no relationship between X and Y , then we expect that (3.14)
will have a t-distribution with n− 2 degrees of freedom. The t-distribution
has a bell shape and for values of n greater than approximately 30 it is
quite similar to the standard normal distribution. Consequently, it is a
simple matter to compute the probability of observing any number equal
to |t| or larger in absolute value, assuming β1 = 0. We call this probability
the p-value. Roughly speaking, we interpret the p-value as follows: a small

p-value
p-value indicates that it is unlikely to observe such a substantial association
between the predictor and the response due to chance, in the absence of
any real association between the predictor and the response. Hence, if we
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Coefficient Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model
for the regression of number of units sold on TV advertising budget. An increase
of $1,000 in the TV advertising budget is associated with an increase in sales by
around 50 units. (Recall that the sales variable is in thousands of units, and the
TV variable is in thousands of dollars.)

see a small p-value, then we can infer that there is an association between
the predictor and the response. We reject the null hypothesis—that is, we
declare a relationship to exist between X and Y—if the p-value is small
enough. Typical p-value cutoffs for rejecting the null hypothesis are 5% or
1%, although this topic will be explored in much greater detail in Chap-
ter 13. When n = 30, these correspond to t-statistics (3.14) of around 2
and 2.75, respectively.
Table 3.1 provides details of the least squares model for the regression of

number of units sold on TV advertising budget for the Advertising data.
Notice that the coefficients for β̂0 and β̂1 are very large relative to their
standard errors, so the t-statistics are also large; the probabilities of seeing
such values if H0 is true are virtually zero. Hence we can conclude that
β0 ̸= 0 and β1 ̸= 0.4

3.1.3 Assessing the Accuracy of the Model

Once we have rejected the null hypothesis (3.12) in favor of the alternative
hypothesis (3.13), it is natural to want to quantify the extent to which the
model fits the data. The quality of a linear regression fit is typically assessed
using two related quantities: the residual standard error (RSE) and the R2

R2

statistic.
Table 3.2 displays the RSE, the R2 statistic, and the F -statistic (to be

described in Section 3.2.2) for the linear regression of number of units sold
on TV advertising budget.

Residual Standard Error

Recall from the model (3.5) that associated with each observation is an
error term ϵ. Due to the presence of these error terms, even if we knew the
true regression line (i.e. even if β0 and β1 were known), we would not be

4In Table 3.1, a small p-value for the intercept indicates that we can reject the null
hypothesis that β0 = 0, and a small p-value for TV indicates that we can reject the null
hypothesis that β1 = 0. Rejecting the latter null hypothesis allows us to conclude that
there is a relationship between TV and sales. Rejecting the former allows us to conclude
that in the absence of TV expenditure, sales are non-zero.
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Quantity Value
Residual standard error 3.26
R2 0.612
F -statistic 312.1

TABLE 3.2. For the Advertising data, more information about the least squares
model for the regression of number of units sold on TV advertising budget.

able to perfectly predict Y from X. The RSE is an estimate of the standard
deviation of ϵ. Roughly speaking, it is the average amount that the response
will deviate from the true regression line. It is computed using the formula

RSE =

√
1

n− 2
RSS =

√√√√ 1

n− 2

n∑

i=1

(yi − ŷi)2. (3.15)

Note that RSS was defined in Section 3.1.1, and is given by the formula

RSS =
n∑

i=1

(yi − ŷi)
2. (3.16)

In the case of the advertising data, we see from the linear regression
output in Table 3.2 that the RSE is 3.26. In other words, actual sales in
each market deviate from the true regression line by approximately 3,260
units, on average. Another way to think about this is that even if the
model were correct and the true values of the unknown coefficients β0

and β1 were known exactly, any prediction of sales on the basis of TV
advertising would still be off by about 3,260 units on average. Of course,
whether or not 3,260 units is an acceptable prediction error depends on the
problem context. In the advertising data set, the mean value of sales over
all markets is approximately 14,000 units, and so the percentage error is
3,260/14,000 = 23%.
The RSE is considered a measure of the lack of fit of the model (3.5) to

the data. If the predictions obtained using the model are very close to the
true outcome values—that is, if ŷi ≈ yi for i = 1, . . . , n—then (3.15) will
be small, and we can conclude that the model fits the data very well. On
the other hand, if ŷi is very far from yi for one or more observations, then
the RSE may be quite large, indicating that the model doesn’t fit the data
well.

R2 Statistic

The RSE provides an absolute measure of lack of fit of the model (3.5)
to the data. But since it is measured in the units of Y , it is not always
clear what constitutes a good RSE. The R2 statistic provides an alternative
measure of fit. It takes the form of a proportion—the proportion of variance
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explained—and so it always takes on a value between 0 and 1, and is
independent of the scale of Y .
To calculate R2, we use the formula

R2 =
TSS− RSS

TSS
= 1− RSS

TSS
(3.17)

where TSS =
∑

(yi − ȳ)2 is the total sum of squares, and RSS is defined
total sum of
squaresin (3.16). TSS measures the total variance in the response Y , and can be

thought of as the amount of variability inherent in the response before the
regression is performed. In contrast, RSS measures the amount of variability
that is left unexplained after performing the regression. Hence, TSS−RSS
measures the amount of variability in the response that is explained (or
removed) by performing the regression, and R2 measures the proportion of
variability in Y that can be explained using X. An R2 statistic that is close
to 1 indicates that a large proportion of the variability in the response is
explained by the regression. A number near 0 indicates that the regression
does not explain much of the variability in the response; this might occur
because the linear model is wrong, or the error variance σ2 is high, or both.
In Table 3.2, the R2 was 0.61, and so just under two-thirds of the variability
in sales is explained by a linear regression on TV.
The R2 statistic (3.17) has an interpretational advantage over the RSE

(3.15), since unlike the RSE, it always lies between 0 and 1. However, it can
still be challenging to determine what is a good R2 value, and in general,
this will depend on the application. For instance, in certain problems in
physics, we may know that the data truly comes from a linear model with
a small residual error. In this case, we would expect to see an R2 value that
is extremely close to 1, and a substantially smaller R2 value might indicate a
serious problem with the experiment in which the data were generated. On
the other hand, in typical applications in biology, psychology, marketing,
and other domains, the linear model (3.5) is at best an extremely rough
approximation to the data, and residual errors due to other unmeasured
factors are often very large. In this setting, we would expect only a very
small proportion of the variance in the response to be explained by the
predictor, and an R2 value well below 0.1 might be more realistic!
The R2 statistic is a measure of the linear relationship between X and

Y . Recall that correlation, defined as
correlation

Cor(X,Y ) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (3.18)

is also a measure of the linear relationship between X and Y .5 This sug-
gests that we might be able to use r = Cor(X,Y ) instead of R2 in order to

5We note that in fact, the right-hand side of (3.18) is the sample correlation; thus,

it would be more correct to write ̂Cor(X,Y ); however, we omit the “hat” for ease of
notation.
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assess the fit of the linear model. In fact, it can be shown that in the simple
linear regression setting, R2 = r2. In other words, the squared correlation
and the R2 statistic are identical. However, in the next section we will
discuss the multiple linear regression problem, in which we use several pre-
dictors simultaneously to predict the response. The concept of correlation
between the predictors and the response does not extend automatically to
this setting, since correlation quantifies the association between a single
pair of variables rather than between a larger number of variables. We will
see that R2 fills this role.

3.2 Multiple Linear Regression

Simple linear regression is a useful approach for predicting a response on the
basis of a single predictor variable. However, in practice we often have more
than one predictor. For example, in the Advertising data, we have examined
the relationship between sales and TV advertising. We also have data for
the amount of money spent advertising on the radio and in newspapers,
and we may want to know whether either of these two media is associated
with sales. How can we extend our analysis of the advertising data in order
to accommodate these two additional predictors?
One option is to run three separate simple linear regressions, each of

which uses a different advertising medium as a predictor. For instance,
we can fit a simple linear regression to predict sales on the basis of the
amount spent on radio advertisements. Results are shown in Table 3.3 (top
table). We find that a $1,000 increase in spending on radio advertising is
associated with an increase in sales of around 203 units. Table 3.3 (bottom
table) contains the least squares coefficients for a simple linear regression of
sales onto newspaper advertising budget. A $1,000 increase in newspaper
advertising budget is associated with an increase in sales of approximately
55 units.
However, the approach of fitting a separate simple linear regression model

for each predictor is not entirely satisfactory. First of all, it is unclear how to
make a single prediction of sales given the three advertising media budgets,
since each of the budgets is associated with a separate regression equation.
Second, each of the three regression equations ignores the other two media
in forming estimates for the regression coefficients. We will see shortly that
if the media budgets are correlated with each other in the 200 markets
in our data set, then this can lead to very misleading estimates of the
association between each media budget and sales.
Instead of fitting a separate simple linear regression model for each pre-

dictor, a better approach is to extend the simple linear regression model
(3.5) so that it can directly accommodate multiple predictors. We can do
this by giving each predictor a separate slope coefficient in a single model.
In general, suppose that we have p distinct predictors. Then the multiple
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Simple regression of sales on radio

Coefficient Std. error t-statistic p-value

Intercept 9.312 0.563 16.54 < 0.0001
radio 0.203 0.020 9.92 < 0.0001

Simple regression of sales on newspaper

Coefficient Std. error t-statistic p-value

Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.055 0.017 3.30 0.00115

TABLE 3.3.More simple linear regression models for the Advertising data. Co-
efficients of the simple linear regression model for number of units sold on Top:
radio advertising budget and Bottom: newspaper advertising budget. A $1,000 in-
crease in spending on radio advertising is associated with an average increase in
sales by around 203 units, while the same increase in spending on newspaper ad-
vertising is associated with an average increase in sales by around 55 units. (Note
that the sales variable is in thousands of units, and the radio and newspaper
variables are in thousands of dollars.)

linear regression model takes the form

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ϵ, (3.19)

where Xj represents the jth predictor and βj quantifies the association
between that variable and the response. We interpret βj as the average
effect on Y of a one unit increase in Xj , holding all other predictors fixed.
In the advertising example, (3.19) becomes

sales = β0 + β1 × TV+ β2 × radio+ β3 × newspaper+ ϵ. (3.20)

3.2.1 Estimating the Regression Coefficients

As was the case in the simple linear regression setting, the regression coef-
ficients β0,β1, . . . ,βp in (3.19) are unknown, and must be estimated. Given

estimates β̂0, β̂1, . . . , β̂p, we can make predictions using the formula

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂pxp. (3.21)

The parameters are estimated using the same least squares approach that
we saw in the context of simple linear regression. We choose β0,β1, . . . ,βp

to minimize the sum of squared residuals

RSS =
n∑

i=1

(yi − ŷi)
2

=
n∑

i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · ·− β̂pxip)
2. (3.22)
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X1

X2

Y

FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen
to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.

The values β̂0, β̂1, . . . , β̂p that minimize (3.22) are the multiple least squares
regression coefficient estimates. Unlike the simple linear regression esti-
mates given in (3.4), the multiple regression coefficient estimates have
somewhat complicated forms that are most easily represented using ma-
trix algebra. For this reason, we do not provide them here. Any statistical
software package can be used to compute these coefficient estimates, and
later in this chapter we will show how this can be done in R. Figure 3.4
illustrates an example of the least squares fit to a toy data set with p = 2
predictors.
Table 3.4 displays the multiple regression coefficient estimates when TV,

radio, and newspaper advertising budgets are used to predict product sales
using the Advertising data. We interpret these results as follows: for a given
amount of TV and newspaper advertising, spending an additional $1,000 on
radio advertising is associated with approximately 189 units of additional
sales. Comparing these coefficient estimates to those displayed in Tables 3.1
and 3.3, we notice that the multiple regression coefficient estimates for
TV and radio are pretty similar to the simple linear regression coefficient
estimates. However, while the newspaper regression coefficient estimate in
Table 3.3 was significantly non-zero, the coefficient estimate for newspaper
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in the multiple regression model is close to zero, and the corresponding p-
value is no longer significant, with a value around 0.86. This illustrates that
the simple and multiple regression coefficients can be quite different. This
difference stems from the fact that in the simple regression case, the slope
term represents the average increase in product sales associated with a
$1,000 increase in newspaper advertising, ignoring other predictors such as
TV and radio. By contrast, in the multiple regression setting, the coefficient
for newspaper represents the average increase in product sales associated
with increasing newspaper spending by $1,000 while holding TV and radio

fixed.

Coefficient Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper −0.001 0.0059 −0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the
multiple linear regression of number of units sold on TV, radio, and newspaper
advertising budgets.

Does it make sense for the multiple regression to suggest no relationship
between sales and newspaper while the simple linear regression implies the
opposite? In fact it does. Consider the correlation matrix for the three
predictor variables and response variable, displayed in Table 3.5. Notice
that the correlation between radio and newspaper is 0.35. This indicates
that markets with high newspaper advertising tend to also have high ra-
dio advertising. Now suppose that the multiple regression is correct and
newspaper advertising is not associated with sales, but radio advertising
is associated with sales. Then in markets where we spend more on radio
our sales will tend to be higher, and as our correlation matrix shows, we
also tend to spend more on newspaper advertising in those same mar-
kets. Hence, in a simple linear regression which only examines sales versus
newspaper, we will observe that higher values of newspaper tend to be as-
sociated with higher values of sales, even though newspaper advertising is
not directly associated with sales. So newspaper advertising is a surrogate
for radio advertising; newspaper gets “credit” for the association between
radio on sales.
This slightly counterintuitive result is very common in many real life

situations. Consider an absurd example to illustrate the point. Running
a regression of shark attacks versus ice cream sales for data collected at
a given beach community over a period of time would show a positive
relationship, similar to that seen between sales and newspaper. Of course
no one has (yet) suggested that ice creams should be banned at beaches
to reduce shark attacks. In reality, higher temperatures cause more people
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TV radio newspaper sales

TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

TABLE 3.5. Correlation matrix for TV, radio, newspaper, and sales for the
Advertising data.

to visit the beach, which in turn results in more ice cream sales and more
shark attacks. A multiple regression of shark attacks onto ice cream sales
and temperature reveals that, as intuition implies, ice cream sales is no
longer a significant predictor after adjusting for temperature.

3.2.2 Some Important Questions

When we perform multiple linear regression, we usually are interested in
answering a few important questions.

1. Is at least one of the predictors X1, X2, . . . , Xp useful in predicting
the response?

2. Do all the predictors help to explain Y , or is only a subset of the
predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?

We now address each of these questions in turn.

One: Is There a Relationship Between the Response and Predictors?

Recall that in the simple linear regression setting, in order to determine
whether there is a relationship between the response and the predictor we
can simply check whether β1 = 0. In the multiple regression setting with p
predictors, we need to ask whether all of the regression coefficients are zero,
i.e. whether β1 = β2 = · · · = βp = 0. As in the simple linear regression
setting, we use a hypothesis test to answer this question. We test the null
hypothesis,

H0 : β1 = β2 = · · · = βp = 0

versus the alternative

Ha : at least one βj is non-zero.

This hypothesis test is performed by computing the F -statistic,
F -statistic
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Quantity Value
Residual standard error 1.69
R2 0.897
F -statistic 570

TABLE 3.6. More information about the least squares model for the regression
of number of units sold on TV, newspaper, and radio advertising budgets in the
Advertising data. Other information about this model was displayed in Table 3.4.

F =
(TSS− RSS)/p

RSS/(n− p− 1)
, (3.23)

where, as with simple linear regression, TSS =
∑

(yi − ȳ)2 and RSS =∑
(yi− ŷi)2. If the linear model assumptions are correct, one can show that

E{RSS/(n− p− 1)} = σ2

and that, provided H0 is true,

E{(TSS− RSS)/p} = σ2.

Hence, when there is no relationship between the response and predictors,
one would expect the F -statistic to take on a value close to 1. On the other
hand, if Ha is true, then E{(TSS − RSS)/p} > σ2, so we expect F to be
greater than 1.
The F -statistic for the multiple linear regression model obtained by re-

gressing sales onto radio, TV, and newspaper is shown in Table 3.6. In this
example the F -statistic is 570. Since this is far larger than 1, it provides
compelling evidence against the null hypothesis H0. In other words, the
large F -statistic suggests that at least one of the advertising media must
be related to sales. However, what if the F -statistic had been closer to
1? How large does the F -statistic need to be before we can reject H0 and
conclude that there is a relationship? It turns out that the answer depends
on the values of n and p. When n is large, an F -statistic that is just a
little larger than 1 might still provide evidence against H0. In contrast,
a larger F -statistic is needed to reject H0 if n is small. When H0 is true
and the errors ϵi have a normal distribution, the F -statistic follows an
F -distribution.6 For any given value of n and p, any statistical software
package can be used to compute the p-value associated with the F -statistic
using this distribution. Based on this p-value, we can determine whether
or not to reject H0. For the advertising data, the p-value associated with
the F -statistic in Table 3.6 is essentially zero, so we have extremely strong
evidence that at least one of the media is associated with increased sales.

6Even if the errors are not normally-distributed, the F -statistic approximately follows
an F -distribution provided that the sample size n is large.
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In (3.23) we are testing H0 that all the coefficients are zero. Sometimes
we want to test that a particular subset of q of the coefficients are zero.
This corresponds to a null hypothesis

H0 : βp−q+1 = βp−q+2 = · · · = βp = 0,

where for convenience we have put the variables chosen for omission at the
end of the list. In this case we fit a second model that uses all the variables
except those last q. Suppose that the residual sum of squares for that model
is RSS0. Then the appropriate F -statistic is

F =
(RSS0 − RSS)/q

RSS/(n− p− 1)
. (3.24)

Notice that in Table 3.4, for each individual predictor a t-statistic and
a p-value were reported. These provide information about whether each
individual predictor is related to the response, after adjusting for the other
predictors. It turns out that each of these is exactly equivalent7 to the F -
test that omits that single variable from the model, leaving all the others
in—i.e. q=1 in (3.24). So it reports the partial effect of adding that variable
to the model. For instance, as we discussed earlier, these p-values indicate
that TV and radio are related to sales, but that there is no evidence that
newspaper is associated with sales, when TV and radio are held fixed.
Given these individual p-values for each variable, why do we need to look

at the overall F -statistic? After all, it seems likely that if any one of the
p-values for the individual variables is very small, then at least one of the
predictors is related to the response. However, this logic is flawed, especially
when the number of predictors p is large.
For instance, consider an example in which p = 100 and H0 : β1 = β2 =

· · · = βp = 0 is true, so no variable is truly associated with the response. In
this situation, about 5% of the p-values associated with each variable (of
the type shown in Table 3.4) will be below 0.05 by chance. In other words,
we expect to see approximately five small p-values even in the absence of
any true association between the predictors and the response.8 In fact, it
is likely that we will observe at least one p-value below 0.05 by chance!
Hence, if we use the individual t-statistics and associated p-values in order
to decide whether or not there is any association between the variables and
the response, there is a very high chance that we will incorrectly conclude
that there is a relationship. However, the F -statistic does not suffer from
this problem because it adjusts for the number of predictors. Hence, if H0

is true, there is only a 5% chance that the F -statistic will result in a p-
value below 0.05, regardless of the number of predictors or the number of
observations.

7The square of each t-statistic is the corresponding F -statistic.
8This is related to the important concept of multiple testing, which is the focus of

Chapter 13.
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The approach of using an F -statistic to test for any association between
the predictors and the response works when p is relatively small, and cer-
tainly small compared to n. However, sometimes we have a very large num-
ber of variables. If p > n then there are more coefficients βj to estimate
than observations from which to estimate them. In this case we cannot
even fit the multiple linear regression model using least squares, so the F -
statistic cannot be used, and neither can most of the other concepts that
we have seen so far in this chapter. When p is large, some of the approaches
discussed in the next section, such as forward selection, can be used. This
high-dimensional setting is discussed in greater detail in Chapter 6.

high-
dimensional

Two: Deciding on Important Variables

As discussed in the previous section, the first step in a multiple regression
analysis is to compute the F -statistic and to examine the associated p-
value. If we conclude on the basis of that p-value that at least one of the
predictors is related to the response, then it is natural to wonder which are
the guilty ones! We could look at the individual p-values as in Table 3.4,
but as discussed (and as further explored in Chapter 13), if p is large we
are likely to make some false discoveries.
It is possible that all of the predictors are associated with the response,

but it is more often the case that the response is only associated with
a subset of the predictors. The task of determining which predictors are
associated with the response, in order to fit a single model involving only
those predictors, is referred to as variable selection. The variable selection

variable
selectionproblem is studied extensively in Chapter 6, and so here we will provide

only a brief outline of some classical approaches.
Ideally, we would like to perform variable selection by trying out a lot of

different models, each containing a different subset of the predictors. For
instance, if p = 2, then we can consider four models: (1) a model contain-
ing no variables, (2) a model containing X1 only, (3) a model containing
X2 only, and (4) a model containing both X1 and X2. We can then se-
lect the best model out of all of the models that we have considered. How
do we determine which model is best? Various statistics can be used to
judge the quality of a model. These include Mallow’s Cp, Akaike informa-

Mallow’s Cp
tion criterion (AIC), Bayesian information criterion (BIC), and adjusted

Akaike
information
criterion
Bayesian
information
criterion

R2. These are discussed in more detail in Chapter 6. We can also deter-

adjusted R2

mine which model is best by plotting various model outputs, such as the
residuals, in order to search for patterns.
Unfortunately, there are a total of 2p models that contain subsets of p

variables. This means that even for moderate p, trying out every possible
subset of the predictors is infeasible. For instance, we saw that if p = 2, then
there are 22 = 4 models to consider. But if p = 30, then we must consider
230 = 1,073,741,824 models! This is not practical. Therefore, unless p is very
small, we cannot consider all 2p models, and instead we need an automated
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and efficient approach to choose a smaller set of models to consider. There
are three classical approaches for this task:

• Forward selection. We begin with the null model—a model that con-
forward
selection
null model

tains an intercept but no predictors. We then fit p simple linear re-
gressions and add to the null model the variable that results in the
lowest RSS. We then add to that model the variable that results
in the lowest RSS for the new two-variable model. This approach is
continued until some stopping rule is satisfied.

• Backward selection. We start with all variables in the model, and
backward
selectionremove the variable with the largest p-value—that is, the variable

that is the least statistically significant. The new (p − 1)-variable
model is fit, and the variable with the largest p-value is removed. This
procedure continues until a stopping rule is reached. For instance, we
may stop when all remaining variables have a p-value below some
threshold.

• Mixed selection. This is a combination of forward and backward se-
mixed
selectionlection. We start with no variables in the model, and as with forward

selection, we add the variable that provides the best fit. We con-
tinue to add variables one-by-one. Of course, as we noted with the
Advertising example, the p-values for variables can become larger as
new predictors are added to the model. Hence, if at any point the
p-value for one of the variables in the model rises above a certain
threshold, then we remove that variable from the model. We con-
tinue to perform these forward and backward steps until all variables
in the model have a sufficiently low p-value, and all variables outside
the model would have a large p-value if added to the model.

Backward selection cannot be used if p > n, while forward selection can
always be used. Forward selection is a greedy approach, and might include
variables early that later become redundant. Mixed selection can remedy
this.

Three: Model Fit

Two of the most common numerical measures of model fit are the RSE and
R2, the fraction of variance explained. These quantities are computed and
interpreted in the same fashion as for simple linear regression.
Recall that in simple regression, R2 is the square of the correlation of the

response and the variable. In multiple linear regression, it turns out that it
equals Cor(Y, Ŷ )2, the square of the correlation between the response and
the fitted linear model; in fact one property of the fitted linear model is
that it maximizes this correlation among all possible linear models.
An R2 value close to 1 indicates that the model explains a large portion

of the variance in the response variable. As an example, we saw in Table 3.6
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that for the Advertising data, the model that uses all three advertising me-
dia to predict sales has an R2 of 0.8972. On the other hand, the model
that uses only TV and radio to predict sales has an R2 value of 0.89719.
In other words, there is a small increase in R2 if we include newspaper
advertising in the model that already contains TV and radio advertising,
even though we saw earlier that the p-value for newspaper advertising in
Table 3.4 is not significant. It turns out that R2 will always increase when
more variables are added to the model, even if those variables are only
weakly associated with the response. This is due to the fact that adding
another variable always results in a decrease in the residual sum of squares
on the training data (though not necessarily the testing data). Thus, the
R2 statistic, which is also computed on the training data, must increase.
The fact that adding newspaper advertising to the model containing only
TV and radio advertising leads to just a tiny increase in R2 provides addi-
tional evidence that newspaper can be dropped from the model. Essentially,
newspaper provides no real improvement in the model fit to the training
samples, and its inclusion will likely lead to poor results on independent
test samples due to overfitting.
By contrast, the model containing only TV as a predictor had an R2 of

0.61 (Table 3.2). Adding radio to the model leads to a substantial improve-
ment in R2. This implies that a model that uses TV and radio expenditures
to predict sales is substantially better than one that uses only TV advertis-
ing. We could further quantify this improvement by looking at the p-value
for the radio coefficient in a model that contains only TV and radio as
predictors.
The model that contains only TV and radio as predictors has an RSE

of 1.681, and the model that also contains newspaper as a predictor has
an RSE of 1.686 (Table 3.6). In contrast, the model that contains only TV

has an RSE of 3.26 (Table 3.2). This corroborates our previous conclusion
that a model that uses TV and radio expenditures to predict sales is much
more accurate (on the training data) than one that only uses TV spending.
Furthermore, given that TV and radio expenditures are used as predictors,
there is no point in also using newspaper spending as a predictor in the
model. The observant reader may wonder how RSE can increase when
newspaper is added to the model given that RSS must decrease. In general
RSE is defined as

RSE =

√
1

n− p− 1
RSS, (3.25)

which simplifies to (3.15) for a simple linear regression. Thus, models with
more variables can have higher RSE if the decrease in RSS is small relative
to the increase in p.
In addition to looking at the RSE and R2 statistics just discussed, it

can be useful to plot the data. Graphical summaries can reveal problems
with a model that are not visible from numerical statistics. For example,
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Sales

Radio

TV

FIGURE 3.5. For the Advertising data, a linear regression fit to sales using
TV and radio as predictors. From the pattern of the residuals, we can see that
there is a pronounced non-linear relationship in the data. The positive residuals
(those visible above the surface), tend to lie along the 45-degree line, where TV
and Radio budgets are split evenly. The negative residuals (most not visible), tend
to lie away from this line, where budgets are more lopsided.

Figure 3.5 displays a three-dimensional plot of TV and radio versus sales.
We see that some observations lie above and some observations lie below
the least squares regression plane. In particular, the linear model seems to
overestimate sales for instances in which most of the advertising money
was spent exclusively on either TV or radio. It underestimates sales for
instances where the budget was split between the two media. This pro-
nounced non-linear pattern suggests a synergy or interaction effect between

interaction
the advertising media, whereby combining the media together results in a
bigger boost to sales than using any single medium. In Section 3.3.2, we
will discuss extending the linear model to accommodate such synergistic
effects through the use of interaction terms.

Four: Predictions

Once we have fit the multiple regression model, it is straightforward to
apply (3.21) in order to predict the response Y on the basis of a set of
values for the predictors X1, X2, . . . , Xp. However, there are three sorts of
uncertainty associated with this prediction.

1. The coefficient estimates β̂0, β̂1, . . . , β̂p are estimates for β0,β1, . . . ,βp.
That is, the least squares plane

Ŷ = β̂0 + β̂1X1 + · · ·+ β̂pXp
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is only an estimate for the true population regression plane

f(X) = β0 + β1X1 + · · ·+ βpXp.

The inaccuracy in the coefficient estimates is related to the reducible
error from Chapter 2. We can compute a confidence interval in order
to determine how close Ŷ will be to f(X).

2. Of course, in practice assuming a linear model for f(X) is almost
always an approximation of reality, so there is an additional source of
potentially reducible error which we call model bias . So when we use a
linear model, we are in fact estimating the best linear approximation
to the true surface. However, here we will ignore this discrepancy,
and operate as if the linear model were correct.

3. Even if we knew f(X)—that is, even if we knew the true values
for β0,β1, . . . ,βp—the response value cannot be predicted perfectly
because of the random error ϵ in the model (3.20). In Chapter 2, we
referred to this as the irreducible error. How much will Y vary from
Ŷ ? We use prediction intervals to answer this question. Prediction
intervals are always wider than confidence intervals, because they
incorporate both the error in the estimate for f(X) (the reducible
error) and the uncertainty as to how much an individual point will
differ from the population regression plane (the irreducible error).

We use a confidence interval to quantify the uncertainty surrounding
confidence
intervalthe average sales over a large number of cities. For example, given that

$100,000 is spent on TV advertising and $20,000 is spent on radio advertising
in each city, the 95% confidence interval is [10,985, 11,528]. We interpret
this to mean that 95% of intervals of this form will contain the true value of
f(X).9 On the other hand, a prediction interval can be used to quantify the

prediction
intervaluncertainty surrounding sales for a particular city. Given that $100,000 is

spent on TV advertising and $20,000 is spent on radio advertising in that city
the 95% prediction interval is [7,930, 14,580]. We interpret this to mean
that 95% of intervals of this form will contain the true value of Y for this
city. Note that both intervals are centered at 11,256, but that the prediction
interval is substantially wider than the confidence interval, reflecting the
increased uncertainty about sales for a given city in comparison to the
average sales over many locations.

9In other words, if we collect a large number of data sets like the Advertising data
set, and we construct a confidence interval for the average sales on the basis of each
data set (given $100,000 in TV and $20,000 in radio advertising), then 95% of these
confidence intervals will contain the true value of average sales.
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3.3 Other Considerations in the Regression Model

3.3.1 Qualitative Predictors

In our discussion so far, we have assumed that all variables in our linear
regression model are quantitative. But in practice, this is not necessarily
the case; often some predictors are qualitative.
For example, the Credit data set displayed in Figure 3.6 records variables

for a number of credit card holders. The response is balance (average credit
card debt for each individual) and there are several quantitative predictors:
age, cards (number of credit cards), education (years of education), income
(in thousands of dollars), limit (credit limit), and rating (credit rating).
Each panel of Figure 3.6 is a scatterplot for a pair of variables whose iden-
tities are given by the corresponding row and column labels. For example,
the scatterplot directly to the right of the word “Balance” depicts balance

versus age, while the plot directly to the right of “Age” corresponds to
age versus cards. In addition to these quantitative variables, we also have
four qualitative variables: own (house ownership), student (student status),
status (marital status), and region (East, West or South).

Predictors with Only Two Levels

Suppose that we wish to investigate differences in credit card balance be-
tween those who own a house and those who don’t, ignoring the other vari-
ables for the moment. If a qualitative predictor (also known as a factor)

factor
only has two levels, or possible values, then incorporating it into a regres-

level
sion model is very simple. We simply create an indicator or dummy variable

dummy
variablethat takes on two possible numerical values.10 For example, based on the

own variable, we can create a new variable that takes the form

xi =

{
1 if ith person owns a house

0 if ith person does not own a house,
(3.26)

and use this variable as a predictor in the regression equation. This results
in the model

yi = β0 +β1xi + ϵi =

{
β0 + β1 + ϵi if ith person owns a house

β0 + ϵi if ith person does not.
(3.27)

Now β0 can be interpreted as the average credit card balance among those
who do not own, β0 + β1 as the average credit card balance among those
who do own their house, and β1 as the average difference in credit card
balance between owners and non-owners.

10In the machine learning community, the creation of dummy variables to handle
qualitative predictors is known as “one-hot encoding”.
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FIGURE 3.6. The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential cus-
tomers.

Table 3.7 displays the coefficient estimates and other information asso-
ciated with the model (3.27). The average credit card debt for non-owners
is estimated to be $509.80, whereas owners are estimated to carry $19.73
in additional debt for a total of $509.80 + $19.73 = $529.53. However, we
notice that the p-value for the dummy variable is very high. This indicates
that there is no statistical evidence of a difference in average credit card
balance based on house ownership.
The decision to code owners as 1 and non-owners as 0 in (3.27) is ar-

bitrary, and has no effect on the regression fit, but does alter the inter-
pretation of the coefficients. If we had coded non-owners as 1 and own-
ers as 0, then the estimates for β0 and β1 would have been 529.53 and
−19.73, respectively, leading once again to a prediction of credit card debt
of $529.53 − $19.73 = $509.80 for non-owners and a prediction of $529.53



3.3 Other Considerations in the Regression Model 85

Coefficient Std. error t-statistic p-value
Intercept 509.80 33.13 15.389 < 0.0001
own[Yes] 19.73 46.05 0.429 0.6690

TABLE 3.7. Least squares coefficient estimates associated with the regression of
balance onto own in the Credit data set. The linear model is given in (3.27).
That is, ownership is encoded as a dummy variable, as in (3.26).

for owners. Alternatively, instead of a 0/1 coding scheme, we could create
a dummy variable

xi =

{
1 if ith person owns a house

−1 if ith person does not own a house

and use this variable in the regression equation. This results in the model

yi = β0+β1xi+ϵi =

{
β0 + β1 + ϵi if ith person owns a house

β0 − β1 + ϵi if ith person does not own a house.

Now β0 can be interpreted as the overall average credit card balance (ig-
noring the house ownership effect), and β1 is the amount by which house
owners and non-owners have credit card balances that are above and below
the average, respectively. In this example, the estimate for β0 is $519.665,
halfway between the non-owner and owner averages of $509.80 and $529.53.
The estimate for β1 is $9.865, which is half of $19.73, the average difference
between owners and non-owners. It is important to note that the final pre-
dictions for the credit balances of owners and non-owners will be identical
regardless of the coding scheme used. The only difference is in the way that
the coefficients are interpreted.

Qualitative Predictors with More than Two Levels

When a qualitative predictor has more than two levels, a single dummy
variable cannot represent all possible values. In this situation, we can create
additional dummy variables. For example, for the region variable we create
two dummy variables. The first could be

xi1 =

{
1 if ith person is from the South

0 if ith person is not from the South,
(3.28)

and the second could be

xi2 =

{
1 if ith person is from the West

0 if ith person is not from the West.
(3.29)
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Coefficient Std. error t-statistic p-value
Intercept 531.00 46.32 11.464 < 0.0001
region[South] −18.69 65.02 −0.287 0.7740
region[West] −12.50 56.68 −0.221 0.8260

TABLE 3.8. Least squares coefficient estimates associated with the regression of
balance onto region in the Credit data set. The linear model is given in (3.30).
That is, region is encoded via two dummy variables (3.28) and (3.29).

Then both of these variables can be used in the regression equation, in
order to obtain the model

yi = β0+β1xi1+β2xi2+ϵi =

⎧
⎪⎨

⎪⎩

β0+β1+ϵi if ith person is from the South

β0+β2+ϵi if ith person is from the West

β0+ϵi if ith person is from the East.

(3.30)
Now β0 can be interpreted as the average credit card balance for individuals
from the East, β1 can be interpreted as the difference in the average balance
between people from the South versus the East, and β2 can be interpreted
as the difference in the average balance between those from the West versus
the East. There will always be one fewer dummy variable than the number
of levels. The level with no dummy variable—East in this example—is
known as the baseline.

baseline
From Table 3.8, we see that the estimated balance for the baseline, East,

is $531.00. It is estimated that those in the South will have $18.69 less
debt than those in the East, and that those in the West will have $12.50
less debt than those in the East. However, the p-values associated with the
coefficient estimates for the two dummy variables are very large, suggesting
no statistical evidence of a real difference in average credit card balance
between South and East or between West and East.11 Once again, the
level selected as the baseline category is arbitrary, and the final predictions
for each group will be the same regardless of this choice. However, the
coefficients and their p-values do depend on the choice of dummy variable
coding. Rather than rely on the individual coefficients, we can use an F -test
to test H0 : β1 = β2 = 0; this does not depend on the coding. This F -test
has a p-value of 0.96, indicating that we cannot reject the null hypothesis
that there is no relationship between balance and region.
Using this dummy variable approach presents no difficulties when in-

corporating both quantitative and qualitative predictors. For example, to
regress balance on both a quantitative variable such as income and a qual-
itative variable such as student, we must simply create a dummy variable
for student and then fit a multiple regression model using income and the
dummy variable as predictors for credit card balance.

11There could still in theory be a difference between South and West, although the
data here does not suggest any difference.
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There are many different ways of coding qualitative variables besides
the dummy variable approach taken here. All of these approaches lead to
equivalent model fits, but the coefficients are different and have different
interpretations, and are designed to measure particular contrasts. This topic

contrast
is beyond the scope of the book.

3.3.2 Extensions of the Linear Model

The standard linear regression model (3.19) provides interpretable results
and works quite well on many real-world problems. However, it makes sev-
eral highly restrictive assumptions that are often violated in practice. Two
of the most important assumptions state that the relationship between the
predictors and response are additive and linear. The additivity assumption

additive
linearmeans that the association between a predictor Xj and the response Y does

not depend on the values of the other predictors. The linearity assumption
states that the change in the response Y associated with a one-unit change
in Xj is constant, regardless of the value of Xj . In later chapters of this
book, we examine a number of sophisticated methods that relax these two
assumptions. Here, we briefly examine some common classical approaches
for extending the linear model.

Removing the Additive Assumption

In our previous analysis of the Advertising data, we concluded that both TV

and radio seem to be associated with sales. The linear models that formed
the basis for this conclusion assumed that the effect on sales of increasing
one advertising medium is independent of the amount spent on the other
media. For example, the linear model (3.20) states that the average increase
in sales associated with a one-unit increase in TV is always β1, regardless
of the amount spent on radio.
However, this simple model may be incorrect. Suppose that spending

money on radio advertising actually increases the effectiveness of TV ad-
vertising, so that the slope term for TV should increase as radio increases.
In this situation, given a fixed budget of $100,000, spending half on radio

and half on TV may increase sales more than allocating the entire amount
to either TV or to radio. In marketing, this is known as a synergy effect,
and in statistics it is referred to as an interaction effect. Figure 3.5 sug-
gests that such an effect may be present in the advertising data. Notice
that when levels of either TV or radio are low, then the true sales are lower
than predicted by the linear model. But when advertising is split between
the two media, then the model tends to underestimate sales.
Consider the standard linear regression model with two variables,

Y = β0 + β1X1 + β2X2 + ϵ.
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According to this model, a one-unit increase in X1 is associated with an
average increase in Y of β1 units. Notice that the presence of X2 does
not alter this statement—that is, regardless of the value of X2, a one-
unit increase in X1 is associated with a β1-unit increase in Y . One way of
extending this model is to include a third predictor, called an interaction
term, which is constructed by computing the product of X1 and X2. This
results in the model

Y = β0 + β1X1 + β2X2 + β3X1X2 + ϵ. (3.31)

How does inclusion of this interaction term relax the additive assumption?
Notice that (3.31) can be rewritten as

Y = β0 + (β1 + β3X2)X1 + β2X2 + ϵ (3.32)

= β0 + β̃1X1 + β2X2 + ϵ

where β̃1 = β1 + β3X2. Since β̃1 is now a function of X2, the association
between X1 and Y is no longer constant: a change in the value of X2 will
change the association between X1 and Y . A similar argument shows that
a change in the value of X1 changes the association between X2 and Y .
For example, suppose that we are interested in studying the productiv-

ity of a factory. We wish to predict the number of units produced on the
basis of the number of production lines and the total number of workers.
It seems likely that the effect of increasing the number of production lines
will depend on the number of workers, since if no workers are available
to operate the lines, then increasing the number of lines will not increase
production. This suggests that it would be appropriate to include an inter-
action term between lines and workers in a linear model to predict units.
Suppose that when we fit the model, we obtain

units ≈ 1.2 + 3.4× lines+ 0.22× workers+ 1.4× (lines× workers)

= 1.2 + (3.4 + 1.4× workers)× lines+ 0.22× workers.

In other words, adding an additional line will increase the number of units
produced by 3.4 + 1.4 × workers. Hence the more workers we have, the
stronger will be the effect of lines.
We now return to the Advertising example. A linear model that uses

radio, TV, and an interaction between the two to predict sales takes the
form

sales = β0 + β1 × TV+ β2 × radio+ β3 × (radio× TV) + ϵ

= β0 + (β1 + β3 × radio)× TV+ β2 × radio+ ϵ. (3.33)

We can interpret β3 as the increase in the effectiveness of TV advertising
associated with a one-unit increase in radio advertising (or vice-versa). The
coefficients that result from fitting the model (3.33) are given in Table 3.9.
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Coefficient Std. error t-statistic p-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TV×radio 0.0011 0.000 20.73 < 0.0001

TABLE 3.9. For the Advertising data, least squares coefficient estimates asso-
ciated with the regression of sales onto TV and radio, with an interaction term,
as in (3.33).

The results in Table 3.9 strongly suggest that the model that includes the
interaction term is superior to the model that contains only main effects.

main effect
The p-value for the interaction term, TV×radio, is extremely low, indicating
that there is strong evidence for Ha : β3 ̸= 0. In other words, it is clear that
the true relationship is not additive. The R2 for the model (3.33) is 96.8%,
compared to only 89.7% for the model that predicts sales using TV and
radio without an interaction term. This means that (96.8 − 89.7)/(100 −
89.7) = 69% of the variability in sales that remains after fitting the ad-
ditive model has been explained by the interaction term. The coefficient
estimates in Table 3.9 suggest that an increase in TV advertising of $1,000 is
associated with increased sales of (β̂1+β̂3×radio)×1,000 = 19+1.1×radio

units. And an increase in radio advertising of $1,000 will be associated with
an increase in sales of (β̂2 + β̂3 × TV)× 1,000 = 29 + 1.1× TV units.
In this example, the p-values associated with TV, radio, and the interac-

tion term all are statistically significant (Table 3.9), and so it is obvious
that all three variables should be included in the model. However, it is
sometimes the case that an interaction term has a very small p-value, but
the associated main effects (in this case, TV and radio) do not. The hier-
archical principle states that if we include an interaction in a model, we

hierarchical
principleshould also include the main effects, even if the p-values associated with

their coefficients are not significant. In other words, if the interaction be-
tween X1 and X2 seems important, then we should include both X1 and
X2 in the model even if their coefficient estimates have large p-values. The
rationale for this principle is that if X1 × X2 is related to the response,
then whether or not the coefficients of X1 or X2 are exactly zero is of lit-
tle interest. Also X1 ×X2 is typically correlated with X1 and X2, and so
leaving them out tends to alter the meaning of the interaction.
In the previous example, we considered an interaction between TV and

radio, both of which are quantitative variables. However, the concept of
interactions applies just as well to qualitative variables, or to a combination
of quantitative and qualitative variables. In fact, an interaction between
a qualitative variable and a quantitative variable has a particularly nice
interpretation. Consider the Credit data set from Section 3.3.1, and suppose
that we wish to predict balance using the income (quantitative) and student

(qualitative) variables. In the absence of an interaction term, the model
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FIGURE 3.7. For the Credit data, the least squares lines are shown for pre-
diction of balance from income for students and non-students. Left: The model
(3.34) was fit. There is no interaction between income and student. Right: The
model (3.35) was fit. There is an interaction term between income and student.

takes the form

balancei ≈ β0 + β1 × incomei +

{
β2 if ith person is a student

0 if ith person is not a student

= β1 × incomei +

{
β0 + β2 if ith person is a student

β0 if ith person is not a student.

(3.34)

Notice that this amounts to fitting two parallel lines to the data, one for
students and one for non-students. The lines for students and non-students
have different intercepts, β0 + β2 versus β0, but the same slope, β1. This
is illustrated in the left-hand panel of Figure 3.7. The fact that the lines
are parallel means that the average effect on balance of a one-unit increase
in income does not depend on whether or not the individual is a student.
This represents a potentially serious limitation of the model, since in fact a
change in income may have a very different effect on the credit card balance
of a student versus a non-student.
This limitation can be addressed by adding an interaction variable, cre-

ated by multiplying income with the dummy variable for student. Our
model now becomes

balancei ≈ β0 + β1 × incomei +

{
β2 + β3 × incomei if student

0 if not student

=

{
(β0 + β2) + (β1 + β3)× incomei if student

β0 + β1 × incomei if not student.

(3.35)
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FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown in orange. The linear regression fit for a
model that includes horsepower2 is shown as a blue curve. The linear regression
fit for a model that includes all polynomials of horsepower up to fifth-degree is
shown in green.

Once again, we have two different regression lines for the students and
the non-students. But now those regression lines have different intercepts,
β0+β2 versus β0, as well as different slopes, β1+β3 versus β1. This allows for
the possibility that changes in income may affect the credit card balances
of students and non-students differently. The right-hand panel of Figure 3.7
shows the estimated relationships between income and balance for students
and non-students in the model (3.35). We note that the slope for students
is lower than the slope for non-students. This suggests that increases in
income are associated with smaller increases in credit card balance among
students as compared to non-students.

Non-linear Relationships

As discussed previously, the linear regression model (3.19) assumes a linear
relationship between the response and predictors. But in some cases, the
true relationship between the response and the predictors may be non-
linear. Here we present a very simple way to directly extend the linear model
to accommodate non-linear relationships, using polynomial regression. In

polynomial
regressionlater chapters, we will present more complex approaches for performing

non-linear fits in more general settings.
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Coefficient Std. error t-statistic p-value
Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower −0.4662 0.0311 −15.0 < 0.0001
horsepower2 0.0012 0.0001 10.1 < 0.0001

TABLE 3.10. For the Auto data set, least squares coefficient estimates associated
with the regression of mpg onto horsepower and horsepower2.

Consider Figure 3.8, in which the mpg (gas mileage in miles per gallon)
versus horsepower is shown for a number of cars in the Auto data set. The
orange line represents the linear regression fit. There is a pronounced rela-
tionship between mpg and horsepower, but it seems clear that this relation-
ship is in fact non-linear: the data suggest a curved relationship. A simple
approach for incorporating non-linear associations in a linear model is to
include transformed versions of the predictors. For example, the points in
Figure 3.8 seem to have a quadratic shape, suggesting that a model of the

quadratic
form

mpg = β0 + β1 × horsepower+ β2 × horsepower2 + ϵ (3.36)

may provide a better fit. Equation 3.36 involves predicting mpg using a
non-linear function of horsepower. But it is still a linear model! That is,
(3.36) is simply a multiple linear regression model with X1 = horsepower

and X2 = horsepower2. So we can use standard linear regression software to
estimate β0,β1, and β2 in order to produce a non-linear fit. The blue curve
in Figure 3.8 shows the resulting quadratic fit to the data. The quadratic
fit appears to be substantially better than the fit obtained when just the
linear term is included. The R2 of the quadratic fit is 0.688, compared to
0.606 for the linear fit, and the p-value in Table 3.10 for the quadratic term
is highly significant.
If including horsepower2 led to such a big improvement in the model, why

not include horsepower3, horsepower4, or even horsepower5? The green curve
in Figure 3.8 displays the fit that results from including all polynomials up
to fifth degree in the model (3.36). The resulting fit seems unnecessarily
wiggly—that is, it is unclear that including the additional terms really has
led to a better fit to the data.
The approach that we have just described for extending the linear model

to accommodate non-linear relationships is known as polynomial regres-
sion, since we have included polynomial functions of the predictors in the
regression model. We further explore this approach and other non-linear
extensions of the linear model in Chapter 7.

3.3.3 Potential Problems

When we fit a linear regression model to a particular data set, many prob-
lems may occur. Most common among these are the following:

1. Non-linearity of the response-predictor relationships.
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2. Correlation of error terms.

3. Non-constant variance of error terms.

4. Outliers.

5. High-leverage points.

6. Collinearity.

In practice, identifying and overcoming these problems is as much an
art as a science. Many pages in countless books have been written on this
topic. Since the linear regression model is not our primary focus here, we
will provide only a brief summary of some key points.

1. Non-linearity of the Data
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FIGURE 3.9. Plots of residuals versus predicted (or fitted) values for the Auto
data set. In each plot, the red line is a smooth fit to the residuals, intended to make
it easier to identify a trend. Left: A linear regression of mpg on horsepower. A
strong pattern in the residuals indicates non-linearity in the data. Right: A linear
regression of mpg on horsepower and horsepower2. There is little pattern in the
residuals.

The linear regression model assumes that there is a straight-line rela-
tionship between the predictors and the response. If the true relationship
is far from linear, then virtually all of the conclusions that we draw from
the fit are suspect. In addition, the prediction accuracy of the model can
be significantly reduced.
Residual plots are a useful graphical tool for identifying non-linearity.

residual plot
Given a simple linear regression model, we can plot the residuals, ei =
yi − ŷi, versus the predictor xi. In the case of a multiple regression model,
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since there are multiple predictors, we instead plot the residuals versus
the predicted (or fitted) values ŷi. Ideally, the residual plot will show no

fitted
discernible pattern. The presence of a pattern may indicate a problem with
some aspect of the linear model.
The left panel of Figure 3.9 displays a residual plot from the linear re-

gression of mpg onto horsepower on the Auto data set that was illustrated in
Figure 3.8. The red line is a smooth fit to the residuals, which is displayed in
order to make it easier to identify any trends. The residuals exhibit a clear
U-shape, which provides a strong indication of non-linearity in the data.
In contrast, the right-hand panel of Figure 3.9 displays the residual plot
that results from the model (3.36), which contains a quadratic term. There
appears to be little pattern in the residuals, suggesting that the quadratic
term improves the fit to the data.
If the residual plot indicates that there are non-linear associations in the

data, then a simple approach is to use non-linear transformations of the
predictors, such as logX,

√
X, and X2, in the regression model. In the

later chapters of this book, we will discuss other more advanced non-linear
approaches for addressing this issue.

2. Correlation of Error Terms

An important assumption of the linear regression model is that the error
terms, ϵ1, ϵ2, . . . , ϵn, are uncorrelated. What does this mean? For instance,
if the errors are uncorrelated, then the fact that ϵi is positive provides
little or no information about the sign of ϵi+1. The standard errors that
are computed for the estimated regression coefficients or the fitted values
are based on the assumption of uncorrelated error terms. If in fact there is
correlation among the error terms, then the estimated standard errors will
tend to underestimate the true standard errors. As a result, confidence and
prediction intervals will be narrower than they should be. For example,
a 95% confidence interval may in reality have a much lower probability
than 0.95 of containing the true value of the parameter. In addition, p-
values associated with the model will be lower than they should be; this
could cause us to erroneously conclude that a parameter is statistically
significant. In short, if the error terms are correlated, we may have an
unwarranted sense of confidence in our model.
As an extreme example, suppose we accidentally doubled our data, lead-

ing to observations and error terms identical in pairs. If we ignored this, our
standard error calculations would be as if we had a sample of size 2n, when
in fact we have only n samples. Our estimated parameters would be the
same for the 2n samples as for the n samples, but the confidence intervals
would be narrower by a factor of

√
2!

Why might correlations among the error terms occur? Such correlations
frequently occur in the context of time series data, which consists of ob-

time series
servations for which measurements are obtained at discrete points in time.
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FIGURE 3.10. Plots of residuals from simulated time series data sets generated
with differing levels of correlation ρ between error terms for adjacent time points.

In many cases, observations that are obtained at adjacent time points will
have positively correlated errors. In order to determine if this is the case for
a given data set, we can plot the residuals from our model as a function of
time. If the errors are uncorrelated, then there should be no discernible pat-
tern. On the other hand, if the error terms are positively correlated, then
we may see tracking in the residuals—that is, adjacent residuals may have

tracking
similar values. Figure 3.10 provides an illustration. In the top panel, we see
the residuals from a linear regression fit to data generated with uncorre-
lated errors. There is no evidence of a time-related trend in the residuals.
In contrast, the residuals in the bottom panel are from a data set in which
adjacent errors had a correlation of 0.9. Now there is a clear pattern in the
residuals—adjacent residuals tend to take on similar values. Finally, the
center panel illustrates a more moderate case in which the residuals had a
correlation of 0.5. There is still evidence of tracking, but the pattern is less
clear.
Many methods have been developed to properly take account of corre-

lations in the error terms in time series data. Correlation among the error
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FIGURE 3.11. Residual plots. In each plot, the red line is a smooth fit to the
residuals, intended to make it easier to identify a trend. The blue lines track the
outer quantiles of the residuals, and emphasize patterns. Left: The funnel shape
indicates heteroscedasticity. Right: The response has been log transformed, and
there is now no evidence of heteroscedasticity.

terms can also occur outside of time series data. For instance, consider a
study in which individuals’ heights are predicted from their weights. The
assumption of uncorrelated errors could be violated if some of the indi-
viduals in the study are members of the same family, eat the same diet,
or have been exposed to the same environmental factors. In general, the
assumption of uncorrelated errors is extremely important for linear regres-
sion as well as for other statistical methods, and good experimental design
is crucial in order to mitigate the risk of such correlations.

3. Non-constant Variance of Error Terms

Another important assumption of the linear regression model is that the
error terms have a constant variance, Var(ϵi) = σ2. The standard errors,
confidence intervals, and hypothesis tests associated with the linear model
rely upon this assumption.
Unfortunately, it is often the case that the variances of the error terms are

non-constant. For instance, the variances of the error terms may increase
with the value of the response. One can identify non-constant variances in
the errors, or heteroscedasticity, from the presence of a funnel shape in

hetero-
scedasticitythe residual plot. An example is shown in the left-hand panel of Figure 3.11,

in which the magnitude of the residuals tends to increase with the fitted
values. When faced with this problem, one possible solution is to trans-
form the response Y using a concave function such as log Y or

√
Y . Such

a transformation results in a greater amount of shrinkage of the larger re-
sponses, leading to a reduction in heteroscedasticity. The right-hand panel
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FIGURE 3.12. Left: The least squares regression line is shown in red, and the
regression line after removing the outlier is shown in blue. Center: The residual
plot clearly identifies the outlier. Right: The outlier has a studentized residual of
6; typically we expect values between −3 and 3.

of Figure 3.11 displays the residual plot after transforming the response
using log Y . The residuals now appear to have constant variance, though
there is some evidence of a slight non-linear relationship in the data.
Sometimes we have a good idea of the variance of each response. For

example, the ith response could be an average of ni raw observations. If
each of these raw observations is uncorrelated with variance σ2, then their
average has variance σ2

i = σ2/ni. In this case a simple remedy is to fit our
model by weighted least squares, with weights proportional to the inverse

weighted
least squaresvariances—i.e. wi = ni in this case. Most linear regression software allows

for observation weights.

4. Outliers

An outlier is a point for which yi is far from the value predicted by the
outlier

model. Outliers can arise for a variety of reasons, such as incorrect recording
of an observation during data collection.
The red point (observation 20) in the left-hand panel of Figure 3.12

illustrates a typical outlier. The red solid line is the least squares regression
fit, while the blue dashed line is the least squares fit after removal of the
outlier. In this case, removing the outlier has little effect on the least squares
line: it leads to almost no change in the slope, and a miniscule reduction
in the intercept. It is typical for an outlier that does not have an unusual
predictor value to have little effect on the least squares fit. However, even
if an outlier does not have much effect on the least squares fit, it can cause
other problems. For instance, in this example, the RSE is 1.09 when the
outlier is included in the regression, but it is only 0.77 when the outlier
is removed. Since the RSE is used to compute all confidence intervals and
p-values, such a dramatic increase caused by a single data point can have
implications for the interpretation of the fit. Similarly, inclusion of the
outlier causes the R2 to decline from 0.892 to 0.805.
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FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not.
The red line is the fit to all the data, and the blue line is the fit with observation
41 removed. Center: The red observation is not unusual in terms of its X1 value
or its X2 value, but still falls outside the bulk of the data, and hence has high
leverage. Right: Observation 41 has a high leverage and a high residual.

Residual plots can be used to identify outliers. In this example, the out-
lier is clearly visible in the residual plot illustrated in the center panel of
Figure 3.12. But in practice, it can be difficult to decide how large a resid-
ual needs to be before we consider the point to be an outlier. To address
this problem, instead of plotting the residuals, we can plot the studentized
residuals, computed by dividing each residual ei by its estimated standard

studentized
residualerror. Observations whose studentized residuals are greater than 3 in abso-

lute value are possible outliers. In the right-hand panel of Figure 3.12, the
outlier’s studentized residual exceeds 6, while all other observations have
studentized residuals between −2 and 2.
If we believe that an outlier has occurred due to an error in data collec-

tion or recording, then one solution is to simply remove the observation.
However, care should be taken, since an outlier may instead indicate a
deficiency with the model, such as a missing predictor.

5. High Leverage Points

We just saw that outliers are observations for which the response yi is
unusual given the predictor xi. In contrast, observations with high leverage

high
leveragehave an unusual value for xi. For example, observation 41 in the left-hand

panel of Figure 3.13 has high leverage, in that the predictor value for this
observation is large relative to the other observations. (Note that the data
displayed in Figure 3.13 are the same as the data displayed in Figure 3.12,
but with the addition of a single high leverage observation.) The red solid
line is the least squares fit to the data, while the blue dashed line is the
fit produced when observation 41 is removed. Comparing the left-hand
panels of Figures 3.12 and 3.13, we observe that removing the high leverage
observation has a much more substantial impact on the least squares line
than removing the outlier. In fact, high leverage observations tend to have
a sizable impact on the estimated regression line. It is cause for concern if
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the least squares line is heavily affected by just a couple of observations,
because any problems with these points may invalidate the entire fit. For
this reason, it is important to identify high leverage observations.
In a simple linear regression, high leverage observations are fairly easy to

identify, since we can simply look for observations for which the predictor
value is outside of the normal range of the observations. But in a multiple
linear regression with many predictors, it is possible to have an observation
that is well within the range of each individual predictor’s values, but that
is unusual in terms of the full set of predictors. An example is shown in
the center panel of Figure 3.13, for a data set with two predictors, X1 and
X2. Most of the observations’ predictor values fall within the blue dashed
ellipse, but the red observation is well outside of this range. But neither its
value for X1 nor its value for X2 is unusual. So if we examine just X1 or
just X2, we will fail to notice this high leverage point. This problem is more
pronounced in multiple regression settings with more than two predictors,
because then there is no simple way to plot all dimensions of the data
simultaneously.
In order to quantify an observation’s leverage, we compute the leverage

statistic. A large value of this statistic indicates an observation with high
leverage
statisticleverage. For a simple linear regression,

hi =
1

n
+

(xi − x̄)2∑n
i′=1(xi′ − x̄)2

. (3.37)

It is clear from this equation that hi increases with the distance of xi from x̄.
There is a simple extension of hi to the case of multiple predictors, though
we do not provide the formula here. The leverage statistic hi is always
between 1/n and 1, and the average leverage for all the observations is
always equal to (p+1)/n. So if a given observation has a leverage statistic
that greatly exceeds (p+1)/n, then we may suspect that the corresponding
point has high leverage.
The right-hand panel of Figure 3.13 provides a plot of the studentized

residuals versus hi for the data in the left-hand panel of Figure 3.13. Ob-
servation 41 stands out as having a very high leverage statistic as well as a
high studentized residual. In other words, it is an outlier as well as a high
leverage observation. This is a particularly dangerous combination! This
plot also reveals the reason that observation 20 had relatively little effect
on the least squares fit in Figure 3.12: it has low leverage.

6. Collinearity

Collinearity refers to the situation in which two or more predictor variables
collinearity

are closely related to one another. The concept of collinearity is illustrated
in Figure 3.14 using the Credit data set. In the left-hand panel of Fig-
ure 3.14, the two predictors limit and age appear to have no obvious rela-
tionship. In contrast, in the right-hand panel of Figure 3.14, the predictors
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FIGURE 3.14. Scatterplots of the observations from the Credit data set. Left:
A plot of age versus limit. These two variables are not collinear. Right: A plot
of rating versus limit. There is high collinearity.
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FIGURE 3.15. Contour plots for the RSS values as a function of the parameters
β for various regressions involving the Credit data set. In each plot, the black
dots represent the coefficient values corresponding to the minimum RSS. Left:
A contour plot of RSS for the regression of balance onto age and limit. The
minimum value is well defined. Right: A contour plot of RSS for the regression
of balance onto rating and limit. Because of the collinearity, there are many
pairs (βLimit,βRating) with a similar value for RSS.

limit and rating are very highly correlated with each other, and we say
that they are collinear. The presence of collinearity can pose problems in
the regression context, since it can be difficult to separate out the indi-
vidual effects of collinear variables on the response. In other words, since
limit and rating tend to increase or decrease together, it can be difficult to
determine how each one separately is associated with the response, balance.
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Figure 3.15 illustrates some of the difficulties that can result from collinear-
ity. The left-hand panel of Figure 3.15 is a contour plot of the RSS (3.22)
associated with different possible coefficient estimates for the regression
of balance on limit and age. Each ellipse represents a set of coefficients
that correspond to the same RSS, with ellipses nearest to the center tak-
ing on the lowest values of RSS. The black dots and associated dashed
lines represent the coefficient estimates that result in the smallest possible
RSS—in other words, these are the least squares estimates. The axes for
limit and age have been scaled so that the plot includes possible coeffi-
cient estimates that are up to four standard errors on either side of the
least squares estimates. Thus the plot includes all plausible values for the
coefficients. For example, we see that the true limit coefficient is almost
certainly somewhere between 0.15 and 0.20.
In contrast, the right-hand panel of Figure 3.15 displays contour plots

of the RSS associated with possible coefficient estimates for the regression
of balance onto limit and rating, which we know to be highly collinear.
Now the contours run along a narrow valley; there is a broad range of
values for the coefficient estimates that result in equal values for RSS.
Hence a small change in the data could cause the pair of coefficient values
that yield the smallest RSS—that is, the least squares estimates—to move
anywhere along this valley. This results in a great deal of uncertainty in the
coefficient estimates. Notice that the scale for the limit coefficient now runs
from roughly −0.2 to 0.2; this is an eight-fold increase over the plausible
range of the limit coefficient in the regression with age. Interestingly, even
though the limit and rating coefficients now have much more individual
uncertainty, they will almost certainly lie somewhere in this contour valley.
For example, we would not expect the true value of the limit and rating

coefficients to be −0.1 and 1 respectively, even though such a value is
plausible for each coefficient individually.
Since collinearity reduces the accuracy of the estimates of the regression

coefficients, it causes the standard error for β̂j to grow. Recall that the

t-statistic for each predictor is calculated by dividing β̂j by its standard
error. Consequently, collinearity results in a decline in the t-statistic. As a
result, in the presence of collinearity, we may fail to reject H0 : βj = 0. This
means that the power of the hypothesis test—the probability of correctly power
detecting a non-zero coefficient—is reduced by collinearity.
Table 3.11 compares the coefficient estimates obtained from two separate

multiple regression models. The first is a regression of balance on age and
limit, and the second is a regression of balance on rating and limit. In the
first regression, both age and limit are highly significant with very small p-
values. In the second, the collinearity between limit and rating has caused
the standard error for the limit coefficient estimate to increase by a factor
of 12 and the p-value to increase to 0.701. In other words, the importance
of the limit variable has been masked due to the presence of collinearity.
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Coefficient Std. error t-statistic p-value
Intercept −173.411 43.828 −3.957 < 0.0001

Model 1 age −2.292 0.672 −3.407 0.0007
limit 0.173 0.005 34.496 < 0.0001
Intercept −377.537 45.254 −8.343 < 0.0001

Model 2 rating 2.202 0.952 2.312 0.0213
limit 0.025 0.064 0.384 0.7012

TABLE 3.11. The results for two multiple regression models involving the
Credit data set are shown. Model 1 is a regression of balance on age and limit,
and Model 2 a regression of balance on rating and limit. The standard error
of β̂limit increases 12-fold in the second regression, due to collinearity.

To avoid such a situation, it is desirable to identify and address potential
collinearity problems while fitting the model.
A simple way to detect collinearity is to look at the correlation matrix

of the predictors. An element of this matrix that is large in absolute value
indicates a pair of highly correlated variables, and therefore a collinearity
problem in the data. Unfortunately, not all collinearity problems can be
detected by inspection of the correlation matrix: it is possible for collinear-
ity to exist between three or more variables even if no pair of variables
has a particularly high correlation. We call this situation multicollinearity.

multi-
collinearityInstead of inspecting the correlation matrix, a better way to assess multi-

collinearity is to compute the variance inflation factor (VIF). The VIF is
variance
inflation
factor

the ratio of the variance of β̂j when fitting the full model divided by the

variance of β̂j if fit on its own. The smallest possible value for VIF is 1,
which indicates the complete absence of collinearity. Typically in practice
there is a small amount of collinearity among the predictors. As a rule of
thumb, a VIF value that exceeds 5 or 10 indicates a problematic amount of
collinearity. The VIF for each variable can be computed using the formula

VIF(β̂j) =
1

1−R2
Xj |X−j

,

where R2
Xj |X−j

is the R2 from a regression of Xj onto all of the other

predictors. If R2
Xj |X−j

is close to one, then collinearity is present, and so
the VIF will be large.
In the Credit data, a regression of balance on age, rating, and limit

indicates that the predictors have VIF values of 1.01, 160.67, and 160.59.
As we suspected, there is considerable collinearity in the data!
When faced with the problem of collinearity, there are two simple solu-

tions. The first is to drop one of the problematic variables from the regres-
sion. This can usually be done without much compromise to the regression
fit, since the presence of collinearity implies that the information that this
variable provides about the response is redundant in the presence of the
other variables. For instance, if we regress balance onto age and limit,
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without the rating predictor, then the resulting VIF values are close to
the minimum possible value of 1, and the R2 drops from 0.754 to 0.75.
So dropping rating from the set of predictors has effectively solved the
collinearity problem without compromising the fit. The second solution is
to combine the collinear variables together into a single predictor. For in-
stance, we might take the average of standardized versions of limit and
rating in order to create a new variable that measures credit worthiness.

3.4 The Marketing Plan

We now briefly return to the seven questions about the Advertising data
that we set out to answer at the beginning of this chapter.

1. Is there a relationship between sales and advertising budget?
This question can be answered by fitting a multiple regression model
of sales onto TV, radio, and newspaper, as in (3.20), and testing the
hypothesis H0 : βTV = βradio = βnewspaper = 0. In Section 3.2.2,
we showed that the F -statistic can be used to determine whether
or not we should reject this null hypothesis. In this case the p-value
corresponding to the F -statistic in Table 3.6 is very low, indicating
clear evidence of a relationship between advertising and sales.

2. How strong is the relationship?
We discussed two measures of model accuracy in Section 3.1.3. First,
the RSE estimates the standard deviation of the response from the
population regression line. For the Advertising data, the RSE is 1.69
units while the mean value for the response is 14.022, indicating a
percentage error of roughly 12%. Second, the R2 statistic records
the percentage of variability in the response that is explained by
the predictors. The predictors explain almost 90% of the variance in
sales. The RSE and R2 statistics are displayed in Table 3.6.

3. Which media are associated with sales?
To answer this question, we can examine the p-values associated with
each predictor’s t-statistic (Section 3.1.2). In the multiple linear re-
gression displayed in Table 3.4, the p-values for TV and radio are low,
but the p-value for newspaper is not. This suggests that only TV and
radio are related to sales. In Chapter 6 we explore this question in
greater detail.

4. How large is the association between each medium and sales?
We saw in Section 3.1.2 that the standard error of β̂j can be used to
construct confidence intervals for βj . For the Advertising data, we
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can use the results in Table 3.4 to compute the 95% confidence inter-
vals for the coefficients in a multiple regression model using all three
media budgets as predictors. The confidence intervals are as follows:
(0.043, 0.049) for TV, (0.172, 0.206) for radio, and (−0.013, 0.011) for
newspaper. The confidence intervals for TV and radio are narrow and
far from zero, providing evidence that these media are related to
sales. But the interval for newspaper includes zero, indicating that
the variable is not statistically significant given the values of TV and
radio.

We saw in Section 3.3.3 that collinearity can result in very wide stan-
dard errors. Could collinearity be the reason that the confidence in-
terval associated with newspaper is so wide? The VIF scores are 1.005,
1.145, and 1.145 for TV, radio, and newspaper, suggesting no evidence
of collinearity.

In order to assess the association of each medium individually on
sales, we can perform three separate simple linear regressions. Re-
sults are shown in Tables 3.1 and 3.3. There is evidence of an ex-
tremely strong association between TV and sales and between radio

and sales. There is evidence of a mild association between newspaper

and sales, when the values of TV and radio are ignored.

5. How accurately can we predict future sales?
The response can be predicted using (3.21). The accuracy associ-
ated with this estimate depends on whether we wish to predict an
individual response, Y = f(X) + ϵ, or the average response, f(X)
(Section 3.2.2). If the former, we use a prediction interval, and if the
latter, we use a confidence interval. Prediction intervals will always
be wider than confidence intervals because they account for the un-
certainty associated with ϵ, the irreducible error.

6. Is the relationship linear?
In Section 3.3.3, we saw that residual plots can be used in order to
identify non-linearity. If the relationships are linear, then the residual
plots should display no pattern. In the case of the Advertising data,
we observe a non-linear effect in Figure 3.5, though this effect could
also be observed in a residual plot. In Section 3.3.2, we discussed the
inclusion of transformations of the predictors in the linear regression
model in order to accommodate non-linear relationships.

7. Is there synergy among the advertising media?
The standard linear regression model assumes an additive relation-
ship between the predictors and the response. An additive model
is easy to interpret because the association between each predictor
and the response is unrelated to the values of the other predictors.
However, the additive assumption may be unrealistic for certain data
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sets. In Section 3.3.2, we showed how to include an interaction term
in the regression model in order to accommodate non-additive rela-
tionships. A small p-value associated with the interaction term indi-
cates the presence of such relationships. Figure 3.5 suggested that the
Advertising data may not be additive. Including an interaction term
in the model results in a substantial increase in R2, from around 90%
to almost 97%.

3.5 Comparison of Linear Regression
with K-Nearest Neighbors

As discussed in Chapter 2, linear regression is an example of a parametric
approach because it assumes a linear functional form for f(X). Parametric
methods have several advantages. They are often easy to fit, because one
need estimate only a small number of coefficients. In the case of linear re-
gression, the coefficients have simple interpretations, and tests of statistical
significance can be easily performed. But parametric methods do have a
disadvantage: by construction, they make strong assumptions about the
form of f(X). If the specified functional form is far from the truth, and
prediction accuracy is our goal, then the parametric method will perform
poorly. For instance, if we assume a linear relationship between X and Y
but the true relationship is far from linear, then the resulting model will
provide a poor fit to the data, and any conclusions drawn from it will be
suspect.
In contrast, non-parametric methods do not explicitly assume a para-

metric form for f(X), and thereby provide an alternative and more flexi-
ble approach for performing regression. We discuss various non-parametric
methods in this book. Here we consider one of the simplest and best-known
non-parametric methods,K-nearest neighbors regression (KNN regression).

K-nearest
neighbors
regression

The KNN regression method is closely related to the KNN classifier dis-
cussed in Chapter 2. Given a value for K and a prediction point x0, KNN
regression first identifies the K training observations that are closest to
x0, represented by N0. It then estimates f(x0) using the average of all the
training responses in N0. In other words,

f̂(x0) =
1

K

∑

xi∈N0

yi.

Figure 3.16 illustrates two KNN fits on a data set with p = 2 predictors.
The fit with K = 1 is shown in the left-hand panel, while the right-hand
panel corresponds toK = 9. We see that whenK = 1, the KNN fit perfectly
interpolates the training observations, and consequently takes the form of
a step function. When K = 9, the KNN fit still is a step function, but
averaging over nine observations results in much smaller regions of constant

3.5 Comparison of Linear Regression with K-Nearest Neighbors
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FIGURE 3.16. Plots of f̂(X) using KNN regression on a two-dimensional data
set with 64 observations (orange dots). Left: K = 1 results in a rough step func-
tion fit. Right: K = 9 produces a much smoother fit.

prediction, and consequently a smoother fit. In general, the optimal value
for K will depend on the bias-variance tradeoff, which we introduced in
Chapter 2. A small value for K provides the most flexible fit, which will
have low bias but high variance. This variance is due to the fact that the
prediction in a given region is entirely dependent on just one observation.
In contrast, larger values of K provide a smoother and less variable fit; the
prediction in a region is an average of several points, and so changing one
observation has a smaller effect. However, the smoothing may cause bias by
masking some of the structure in f(X). In Chapter 5, we introduce several
approaches for estimating test error rates. These methods can be used to
identify the optimal value of K in KNN regression.
In what setting will a parametric approach such as least squares linear re-

gression outperform a non-parametric approach such as KNN regression?
The answer is simple: the parametric approach will outperform the non-
parametric approach if the parametric form that has been selected is close
to the true form of f . Figure 3.17 provides an example with data generated
from a one-dimensional linear regression model. The black solid lines rep-
resent f(X), while the blue curves correspond to the KNN fits using K = 1
and K = 9. In this case, the K = 1 predictions are far too variable, while
the smoother K = 9 fit is much closer to f(X). However, since the true
relationship is linear, it is hard for a non-parametric approach to compete
with linear regression: a non-parametric approach incurs a cost in variance
that is not offset by a reduction in bias. The blue dashed line in the left-
hand panel of Figure 3.18 represents the linear regression fit to the same
data. It is almost perfect. The right-hand panel of Figure 3.18 reveals that
linear regression outperforms KNN for this data. The green solid line, plot-
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ted as a function of 1/K, represents the test set mean squared error (MSE)
for KNN. The KNN errors are well above the black dashed line, which is
the test MSE for linear regression. When the value of K is large, then KNN
performs only a little worse than least squares regression in terms of MSE.
It performs far worse when K is small.
In practice, the true relationship between X and Y is rarely exactly lin-

ear. Figure 3.19 examines the relative performances of least squares regres-
sion and KNN under increasing levels of non-linearity in the relationship
between X and Y . In the top row, the true relationship is nearly linear.
In this case we see that the test MSE for linear regression is still superior
to that of KNN for low values of K. However, for K ≥ 4, KNN out-
performs linear regression. The second row illustrates a more substantial
deviation from linearity. In this situation, KNN substantially outperforms
linear regression for all values of K. Note that as the extent of non-linearity
increases, there is little change in the test set MSE for the non-parametric
KNN method, but there is a large increase in the test set MSE of linear
regression.
Figures 3.18 and 3.19 display situations in which KNN performs slightly

worse than linear regression when the relationship is linear, but much bet-
ter than linear regression for non-linear situations. In a real life situation
in which the true relationship is unknown, one might suspect that KNN
should be favored over linear regression because it will at worst be slightly
inferior to linear regression if the true relationship is linear, and may give
substantially better results if the true relationship is non-linear. But in re-
ality, even when the true relationship is highly non-linear, KNN may still
provide inferior results to linear regression. In particular, both Figures 3.18
and 3.19 illustrate settings with p = 1 predictor. But in higher dimensions,
KNN often performs worse than linear regression.
Figure 3.20 considers the same strongly non-linear situation as in the

second row of Figure 3.19, except that we have added additional noise
predictors that are not associated with the response. When p = 1 or p = 2,
KNN outperforms linear regression. But for p = 3 the results are mixed,
and for p ≥ 4 linear regression is superior to KNN. In fact, the increase in
dimension has only caused a small deterioration in the linear regression test
set MSE, but it has caused more than a ten-fold increase in the MSE for
KNN. This decrease in performance as the dimension increases is a common
problem for KNN, and results from the fact that in higher dimensions
there is effectively a reduction in sample size. In this data set there are
50 training observations; when p = 1, this provides enough information to
accurately estimate f(X). However, spreading 50 observations over p = 20
dimensions results in a phenomenon in which a given observation has no
nearby neighbors—this is the so-called curse of dimensionality. That is,

curse of di-
mensionalitythe K observations that are nearest to a given test observation x0 may be

very far away from x0 in p-dimensional space when p is large, leading to a
very poor prediction of f(x0) and hence a poor KNN fit. As a general rule,
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FIGURE 3.17. Plots of f̂(X) using KNN regression on a one-dimensional data
set with 50 observations. The true relationship is given by the black solid line.
Left: The blue curve corresponds to K = 1 and interpolates (i.e. passes directly
through) the training data. Right: The blue curve corresponds to K = 9, and
represents a smoother fit.
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FIGURE 3.18. The same data set shown in Figure 3.17 is investigated further.
Left: The blue dashed line is the least squares fit to the data. Since f(X) is in
fact linear (displayed as the black line), the least squares regression line provides
a very good estimate of f(X). Right: The dashed horizontal line represents the
least squares test set MSE, while the green solid line corresponds to the MSE
for KNN as a function of 1/K (on the log scale). Linear regression achieves a
lower test MSE than does KNN regression, since f(X) is in fact linear. For KNN
regression, the best results occur with a very large value of K, corresponding to a
small value of 1/K.
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FIGURE 3.19. Top Left: In a setting with a slightly non-linear relationship
between X and Y (solid black line), the KNN fits with K = 1 (blue) and K = 9
(red) are displayed. Top Right: For the slightly non-linear data, the test set MSE
for least squares regression (horizontal black) and KNN with various values of
1/K (green) are displayed. Bottom Left and Bottom Right: As in the top panel,
but with a strongly non-linear relationship between X and Y .
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FIGURE 3.20. Test MSE for linear regression (black dashed lines) and KNN
(green curves) as the number of variables p increases. The true function is non–
linear in the first variable, as in the lower panel in Figure 3.19, and does not
depend on the additional variables. The performance of linear regression deteri-
orates slowly in the presence of these additional noise variables, whereas KNN’s
performance degrades much more quickly as p increases.

parametric methods will tend to outperform non-parametric approaches
when there is a small number of observations per predictor.
Even when the dimension is small, we might prefer linear regression to

KNN from an interpretability standpoint. If the test MSE of KNN is only
slightly lower than that of linear regression, we might be willing to forego
a little bit of prediction accuracy for the sake of a simple model that can
be described in terms of just a few coefficients, and for which p-values are
available.

3.6 Lab: Linear Regression

3.6.1 Libraries

The library() function is used to load libraries, or groups of functions
library()

and data sets that are not included in the base R distribution. Basic func-
tions that perform least squares linear regression and other simple analyses
come standard with the base distribution, but more exotic functions require
additional libraries. Here we load the MASS package, which is a very large
collection of data sets and functions. We also load the ISLR2 package, which
includes the data sets associated with this book.

> library(MASS)

> library(ISLR2)

If you receive an error message when loading any of these libraries, it
likely indicates that the corresponding library has not yet been installed
on your system. Some libraries, such as MASS, come with R and do not need to
be separately installed on your computer. However, other packages, such as
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ISLR2, must be downloaded the first time they are used. This can be done di-
rectly from within R. For example, on a Windows system, select the Install

package option under the Packages tab. After you select any mirror site, a
list of available packages will appear. Simply select the package you wish
to install and R will automatically download the package. Alternatively,
this can be done at the R command line via install.packages("ISLR2").
This installation only needs to be done the first time you use a package.
However, the library() function must be called within each R session.

3.6.2 Simple Linear Regression

The ISLR2 library contains the Boston data set, which records medv (me-
dian house value) for 506 census tracts in Boston. We will seek to predict
medv using 12 predictors such as rm (average number of rooms per house),
age (average age of houses), and lstat (percent of households with low
socioeconomic status).

> head(Boston)

crim zn indus chas nox rm age dis rad tax

1 0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296

2 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242

3 0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242

4 0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222

5 0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222

6 0.02985 0 2.18 0 0.458 6.430 58.7 6.0622 3 222

ptratio lstat medv

1 15.3 4.98 24.0

2 17.8 9.14 21.6

3 17.8 4.03 34.7

4 18.7 2.94 33.4

5 18.7 5.33 36.2

6 18.7 5.21 28.7

To find out more about the data set, we can type ?Boston.
We will start by using the lm() function to fit a simple linear regression

lm()
model, with medv as the response and lstat as the predictor. The basic
syntax is lm(y ∼ x, data), where y is the response, x is the predictor, and
data is the data set in which these two variables are kept.

> lm.fit <- lm(medv ∼ lstat)

Error in eval(expr , envir , enclos) : Object "medv" not found

The command causes an error because R does not know where to find
the variables medv and lstat. The next line tells R that the variables are
in Boston. If we attach Boston, the first line works fine because R now
recognizes the variables.

> lm.fit <- lm(medv ∼ lstat , data = Boston)

> attach(Boston)

> lm.fit <- lm(medv ∼ lstat)
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If we type lm.fit, some basic information about the model is output.
For more detailed information, we use summary(lm.fit). This gives us p-
values and standard errors for the coefficients, as well as the R2 statistic
and F -statistic for the model.

> lm.fit

Call:

lm(formula = medv ∼ lstat)

Coefficients:

(Intercept) lstat

34.55 -0.95

> summary(lm.fit)

Call:

lm(formula = medv ∼ lstat)

Residuals:

Min 1Q Median 3Q Max

-15.17 -3.99 -1.32 2.03 24.50

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.5538 0.5626 61.4 <2e-16 ***

lstat -0.9500 0.0387 -24.5 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 6.22 on 504 degrees of freedom

Multiple R-squared: 0.544, Adjusted R-squared: 0.543

F-statistic: 602 on 1 and 504 DF , p-value: < 2e-16

We can use the names() function in order to find out what other pieces
names()

of information are stored in lm.fit. Although we can extract these quan-
tities by name—e.g. lm.fit$coefficients—it is safer to use the extractor
functions like coef() to access them.

coef()

> names(lm.fit)

[1] "coefficients" "residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qr" "df.residual" "xlevels"

[10] "call" "terms" "model"

> coef(lm.fit)

(Intercept) lstat

34.55 -0.95

In order to obtain a confidence interval for the coefficient estimates, we can
use the confint() command.

confint()

> confint(lm.fit)

2.5 % 97.5 %

(Intercept) 33.45 35.659
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lstat -1.03 -0.874

The predict() function can be used to produce confidence intervals and
predict()

prediction intervals for the prediction of medv for a given value of lstat.

> predict(lm.fit , data.frame(lstat = (c(5, 10, 15))),

interval = "confidence")

fit lwr upr

1 29.80 29.01 30.60

2 25.05 24.47 25.63

3 20.30 19.73 20.87

> predict(lm.fit , data.frame(lstat = (c(5, 10, 15))),

interval = "prediction")

fit lwr upr

1 29.80 17.566 42.04

2 25.05 12.828 37.28

3 20.30 8.078 32.53

For instance, the 95% confidence interval associated with a lstat value of
10 is (24.47, 25.63), and the 95% prediction interval is (12.828, 37.28). As
expected, the confidence and prediction intervals are centered around the
same point (a predicted value of 25.05 for medv when lstat equals 10), but
the latter are substantially wider.
We will now plot medv and lstat along with the least squares regression

line using the plot() and abline() functions.
abline()

> plot(lstat , medv)

> abline(lm.fit)

There is some evidence for non-linearity in the relationship between lstat

and medv. We will explore this issue later in this lab.
The abline() function can be used to draw any line, not just the least

squares regression line. To draw a line with intercept a and slope b, we
type abline(a, b). Below we experiment with some additional settings for
plotting lines and points. The lwd = 3 command causes the width of the
regression line to be increased by a factor of 3; this works for the plot() and
lines() functions also. We can also use the pch option to create different
plotting symbols.

> abline(lm.fit , lwd = 3)

> abline(lm.fit , lwd = 3, col = "red")

> plot(lstat , medv , col = "red")

> plot(lstat , medv , pch = 20)

> plot(lstat , medv , pch = "+")

> plot (1:20, 1:20, pch = 1:20)

Next we examine some diagnostic plots, several of which were discussed
in Section 3.3.3. Four diagnostic plots are automatically produced by ap-
plying the plot() function directly to the output from lm(). In general, this
command will produce one plot at a time, and hitting Enter will generate
the next plot. However, it is often convenient to view all four plots together.
We can achieve this by using the par() and mfrow() functions, which tell R

par()

mfrow()
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to split the display screen into separate panels so that multiple plots can
be viewed simultaneously. For example, par(mfrow = c(2, 2)) divides the
plotting region into a 2× 2 grid of panels.

> par(mfrow = c(2, 2))

> plot(lm.fit)

Alternatively, we can compute the residuals from a linear regression fit
using the residuals() function. The function rstudent() will return the

residuals()

rstudent()
studentized residuals, and we can use this function to plot the residuals
against the fitted values.

> plot(predict(lm.fit), residuals(lm.fit))

> plot(predict(lm.fit), rstudent(lm.fit))

On the basis of the residual plots, there is some evidence of non-linearity.
Leverage statistics can be computed for any number of predictors using the
hatvalues() function.

hatvalues()

> plot(hatvalues(lm.fit))

> which.max(hatvalues(lm.fit))

375

The which.max() function identifies the index of the largest element of a
which.max()

vector. In this case, it tells us which observation has the largest leverage
statistic.

3.6.3 Multiple Linear Regression

In order to fit a multiple linear regression model using least squares, we
again use the lm() function. The syntax lm(y ∼ x1 + x2 + x3) is used to
fit a model with three predictors, x1, x2, and x3. The summary() function
now outputs the regression coefficients for all the predictors.

> lm.fit <- lm(medv ∼ lstat + age , data = Boston)

> summary(lm.fit)

Call:

lm(formula = medv ∼ lstat + age , data = Boston)

Residuals:

Min 1Q Median 3Q Max

-15.98 -3.98 -1.28 1.97 23.16

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.2228 0.7308 45.46 <2e-16 ***

lstat -1.0321 0.0482 -21.42 <2e-16 ***

age 0.0345 0.0122 2.83 0.0049 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 6.17 on 503 degrees of freedom
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Multiple R-squared: 0.551, Adjusted R-squared: 0.549

F-statistic: 309 on 2 and 503 DF , p-value: < 2e-16

The Boston data set contains 12 variables, and so it would be cumbersome
to have to type all of these in order to perform a regression using all of the
predictors. Instead, we can use the following short-hand:

> lm.fit <- lm(medv ∼ ., data = Boston)

> summary(lm.fit)

Call:

lm(formula = medv ∼ ., data = Boston)

Residuals:

Min 1Q Median 3Q Max

-15.130 -2.767 -0.581 1.941 26.253

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.61727 4.93604 8.43 3.8e-16 ***

crim -0.12139 0.03300 -3.68 0.00026 ***

zn 0.04696 0.01388 3.38 0.00077 ***

indus 0.01347 0.06214 0.22 0.82852

chas 2.83999 0.87001 3.26 0.00117 **

nox -18.75802 3.85135 -4.87 1.5e-06 ***

rm 3.65812 0.42025 8.70 < 2e-16 ***

age 0.00361 0.01333 0.27 0.78659

dis -1.49075 0.20162 -7.39 6.2e-13 ***

rad 0.28940 0.06691 4.33 1.8e-05 ***

tax -0.01268 0.00380 -3.34 0.00091 ***

ptratio -0.93753 0.13221 -7.09 4.6e-12 ***

lstat -0.55202 0.05066 -10.90 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.8 on 493 degrees of freedom

Multiple R-squared: 0.734 , Adjusted R-squared: 0.728

F-statistic: 114 on 12 and 493 DF, p-value: < 2e-16

We can access the individual components of a summary object by name
(type ?summary.lm to see what is available). Hence summary(lm.fit)$r.sq

gives us the R2, and summary(lm.fit)$sigma gives us the RSE. The vif()
vif()

function, part of the car package, can be used to compute variance inflation
factors. Most VIF’s are low to moderate for this data. The car package is
not part of the base R installation so it must be downloaded the first time
you use it via the install.packages() function in R.

> library(car)

> vif(lm.fit)

crim zn indus chas nox rm age dis

1.77 2.30 3.99 1.07 4.37 1.91 3.09 3.95

rad tax ptratio lstat

7.45 9.00 1.80 2.87
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What if we would like to perform a regression using all of the variables but
one? For example, in the above regression output, age has a high p-value.
So we may wish to run a regression excluding this predictor. The following
syntax results in a regression using all predictors except age.

> lm.fit1 <- lm(medv ∼ . - age , data = Boston)

> summary(lm.fit1)

...

Alternatively, the update() function can be used.
update()

> lm.fit1 <- update(lm.fit , ∼ . - age)

3.6.4 Interaction Terms

It is easy to include interaction terms in a linear model using the lm()

function. The syntax lstat:black tells R to include an interaction term be-
tween lstat and black. The syntax lstat * age simultaneously includes
lstat, age, and the interaction term lstat×age as predictors; it is a short-
hand for lstat + age + lstat:age.

> summary(lm(medv ∼ lstat * age , data = Boston))

Call:

lm(formula = medv ∼ lstat * age , data = Boston)

Residuals:

Min 1Q Median 3Q Max

-15.81 -4.04 -1.33 2.08 27.55

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.088536 1.469835 24.55 < 2e-16 ***

lstat -1.392117 0.167456 -8.31 8.8e-16 ***

age -0.000721 0.019879 -0.04 0.971

lstat:age 0.004156 0.001852 2.24 0.025 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 6.15 on 502 degrees of freedom

Multiple R-squared: 0.556, Adjusted R-squared: 0.553

F-statistic: 209 on 3 and 502 DF , p-value: < 2e-16

3.6.5 Non-linear Transformations of the Predictors

The lm() function can also accommodate non-linear transformations of the
predictors. For instance, given a predictor X, we can create a predictor X2

using I(X^2). The function I() is needed since the ^ has a special meaning
I()

in a formula object; wrapping as we do allows the standard usage in R,
which is to raise X to the power 2. We now perform a regression of medv

onto lstat and lstat2.
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> lm.fit2 <- lm(medv ∼ lstat + I(lstat ^2))

> summary(lm.fit2)

Call:

lm(formula = medv ∼ lstat + I(lstat ^2))

Residuals:

Min 1Q Median 3Q Max

-15.28 -3.83 -0.53 2.31 25.41

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.86201 0.87208 49.1 <2e-16 ***

lstat -2.33282 0.12380 -18.8 <2e-16 ***

I(lstat ^2) 0.04355 0.00375 11.6 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.52 on 503 degrees of freedom

Multiple R-squared: 0.641, Adjusted R-squared: 0.639

F-statistic: 449 on 2 and 503 DF , p-value: < 2e-16

The near-zero p-value associated with the quadratic term suggests that
it leads to an improved model. We use the anova() function to further

anova()
quantify the extent to which the quadratic fit is superior to the linear fit.

> lm.fit <- lm(medv ∼ lstat)

> anova(lm.fit , lm.fit2)

Analysis of Variance Table

Model 1: medv ∼ lstat

Model 2: medv ∼ lstat + I(lstat ^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 504 19472

2 503 15347 1 4125 135 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Here Model 1 represents the linear submodel containing only one predictor,
lstat, while Model 2 corresponds to the larger quadratic model that has two
predictors, lstat and lstat2. The anova() function performs a hypothesis
test comparing the two models. The null hypothesis is that the two models
fit the data equally well, and the alternative hypothesis is that the full
model is superior. Here the F -statistic is 135 and the associated p-value is
virtually zero. This provides very clear evidence that the model containing
the predictors lstat and lstat2 is far superior to the model that only
contains the predictor lstat. This is not surprising, since earlier we saw
evidence for non-linearity in the relationship between medv and lstat. If we
type

> par(mfrow = c(2, 2))

> plot(lm.fit2)
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then we see that when the lstat2 term is included in the model, there is
little discernible pattern in the residuals.
In order to create a cubic fit, we can include a predictor of the form

I(X^3). However, this approach can start to get cumbersome for higher-
order polynomials. A better approach involves using the poly() function

poly()
to create the polynomial within lm(). For example, the following command
produces a fifth-order polynomial fit:

> lm.fit5 <- lm(medv ∼ poly(lstat , 5))

> summary(lm.fit5)

Call:

lm(formula = medv ∼ poly(lstat , 5))

Residuals:

Min 1Q Median 3Q Max

-13.543 -3.104 -0.705 2.084 27.115

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 22.533 0.232 97.20 < 2e-16 ***

poly(lstat , 5)1 -152.460 5.215 -29.24 < 2e-16 ***

poly(lstat , 5)2 64.227 5.215 12.32 < 2e-16 ***

poly(lstat , 5)3 -27.051 5.215 -5.19 3.1e-07 ***

poly(lstat , 5)4 25.452 5.215 4.88 1.4e-06 ***

poly(lstat , 5)5 -19.252 5.215 -3.69 0.00025 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.21 on 500 degrees of freedom

Multiple R-squared: 0.682, Adjusted R-squared: 0.679

F-statistic: 214 on 5 and 500 DF , p-value: < 2e-16

This suggests that including additional polynomial terms, up to fifth order,
leads to an improvement in the model fit! However, further investigation of
the data reveals that no polynomial terms beyond fifth order have signifi-
cant p-values in a regression fit.
By default, the poly() function orthogonalizes the predictors: this means

that the features output by this function are not simply a sequence of
powers of the argument. However, a linear model applied to the output
of the poly() function will have the same fitted values as a linear model
applied to the raw polynomials (although the coefficient estimates, standard
errors, and p-values will differ). In order to obtain the raw polynomials from
the poly() function, the argument raw = TRUE must be used.
Of course, we are in no way restricted to using polynomial transforma-

tions of the predictors. Here we try a log transformation.

> summary(lm(medv ∼ log(rm), data = Boston))

...
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3.6.6 Qualitative Predictors

We will now examine the Carseats data, which is part of the ISLR2 library.
We will attempt to predict Sales (child car seat sales) in 400 locations
based on a number of predictors.

> head(Carseats)

Sales CompPrice Income Advertising Population Price

1 9.50 138 73 11 276 120

2 11.22 111 48 16 260 83

3 10.06 113 35 10 269 80

4 7.40 117 100 4 466 97

5 4.15 141 64 3 340 128

6 10.81 124 113 13 501 72

ShelveLoc Age Education Urban US

1 Bad 42 17 Yes Yes

2 Good 65 10 Yes Yes

3 Medium 59 12 Yes Yes

4 Medium 55 14 Yes Yes

5 Bad 38 13 Yes No

6 Bad 78 16 No Yes

The Carseats data includes qualitative predictors such as Shelveloc, an in-
dicator of the quality of the shelving location—that is, the space within
a store in which the car seat is displayed—at each location. The pre-
dictor Shelveloc takes on three possible values: Bad, Medium, and Good.
Given a qualitative variable such as Shelveloc, R generates dummy variables
automatically. Below we fit a multiple regression model that includes some
interaction terms.

> lm.fit <- lm(Sales ∼ . + Income:Advertising + Price:Age ,

data = Carseats)

> summary(lm.fit)

Call:

lm(formula = Sales ∼ . + Income:Advertising + Price:Age , data =

Carseats)

Residuals:

Min 1Q Median 3Q Max

-2.921 -0.750 0.018 0.675 3.341

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.575565 1.008747 6.52 2.2e-10 ***

CompPrice 0.092937 0.004118 22.57 < 2e-16 ***

Income 0.010894 0.002604 4.18 3.6e-05 ***

Advertising 0.070246 0.022609 3.11 0.00203 **

Population 0.000159 0.000368 0.43 0.66533

Price -0.100806 0.007440 -13.55 < 2e-16 ***

ShelveLocGood 4.848676 0.152838 31.72 < 2e-16 ***

ShelveLocMedium 1.953262 0.125768 15.53 < 2e-16 ***

Age -0.057947 0.015951 -3.63 0.00032 ***
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Education -0.020852 0.019613 -1.06 0.28836

UrbanYes 0.140160 0.112402 1.25 0.21317

USYes -0.157557 0.148923 -1.06 0.29073

Income:Advertising 0.000751 0.000278 2.70 0.00729 **

Price:Age 0.000107 0.000133 0.80 0.42381

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.01 on 386 degrees of freedom

Multiple R-squared: 0.876, Adjusted R-squared: 0.872

F-statistic: 210 on 13 and 386 DF, p-value: < 2e-16

The contrasts() function returns the coding that R uses for the dummy
contrasts()

variables.

> attach(Carseats)

> contrasts(ShelveLoc)

Good Medium

Bad 0 0

Good 1 0

Medium 0 1

Use ?contrasts to learn about other contrasts, and how to set them.
R has created a ShelveLocGood dummy variable that takes on a value of

1 if the shelving location is good, and 0 otherwise. It has also created a
ShelveLocMedium dummy variable that equals 1 if the shelving location is
medium, and 0 otherwise. A bad shelving location corresponds to a zero
for each of the two dummy variables. The fact that the coefficient for
ShelveLocGood in the regression output is positive indicates that a good
shelving location is associated with high sales (relative to a bad location).
And ShelveLocMedium has a smaller positive coefficient, indicating that a
medium shelving location is associated with higher sales than a bad shelv-
ing location but lower sales than a good shelving location.

3.6.7 Writing Functions

As we have seen, R comes with many useful functions, and still more func-
tions are available by way of R libraries. However, we will often be inter-
ested in performing an operation for which no function is available. In this
setting, we may want to write our own function. For instance, below we
provide a simple function that reads in the ISLR2 and MASS libraries, called
LoadLibraries(). Before we have created the function, R returns an error if
we try to call it.

> LoadLibraries

Error: object ‘LoadLibraries ’ not found

> LoadLibraries ()

Error: could not find function "LoadLibraries"

We now create the function. Note that the + symbols are printed by R and
should not be typed in. The { symbol informs R that multiple commands
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are about to be input. Hitting Enter after typing { will cause R to print the
+ symbol. We can then input as many commands as we wish, hitting Enter
after each one. Finally the } symbol informs R that no further commands
will be entered.

> LoadLibraries <- function () {

+ library(ISLR2)

+ library(MASS)

+ print("The libraries have been loaded.")

+ }

Now if we type in LoadLibraries, R will tell us what is in the function.

> LoadLibraries

function () {

library(ISLR2)

library(MASS)

print("The libraries have been loaded .")

}

If we call the function, the libraries are loaded in and the print statement
is output.

> LoadLibraries ()

[1] "The libraries have been loaded ."

3.7 Exercises

Conceptual

1. Describe the null hypotheses to which the p-values given in Table 3.4
correspond. Explain what conclusions you can draw based on these
p-values. Your explanation should be phrased in terms of sales, TV,
radio, and newspaper, rather than in terms of the coefficients of the
linear model.

2. Carefully explain the differences between the KNN classifier and KNN
regression methods.

3. Suppose we have a data set with five predictors, X1 = GPA, X2 =
IQ, X3 = Level (1 for College and 0 for High School), X4 = Interac-
tion between GPA and IQ, and X5 = Interaction between GPA and
Level. The response is starting salary after graduation (in thousands
of dollars). Suppose we use least squares to fit the model, and get
β̂0 = 50, β̂1 = 20, β̂2 = 0.07, β̂3 = 35, β̂4 = 0.01, β̂5 = −10.

(a) Which answer is correct, and why?

i. For a fixed value of IQ and GPA, high school graduates earn
more, on average, than college graduates.
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ii. For a fixed value of IQ and GPA, college graduates earn
more, on average, than high school graduates.

iii. For a fixed value of IQ and GPA, high school graduates earn
more, on average, than college graduates provided that the
GPA is high enough.

iv. For a fixed value of IQ and GPA, college graduates earn
more, on average, than high school graduates provided that
the GPA is high enough.

(b) Predict the salary of a college graduate with IQ of 110 and a
GPA of 4.0.

(c) True or false: Since the coefficient for the GPA/IQ interaction
term is very small, there is very little evidence of an interaction
effect. Justify your answer.

4. I collect a set of data (n = 100 observations) containing a single
predictor and a quantitative response. I then fit a linear regression
model to the data, as well as a separate cubic regression, i.e. Y =
β0 + β1X + β2X2 + β3X3 + ϵ.

(a) Suppose that the true relationship between X and Y is linear,
i.e. Y = β0 + β1X + ϵ. Consider the training residual sum of
squares (RSS) for the linear regression, and also the training
RSS for the cubic regression. Would we expect one to be lower
than the other, would we expect them to be the same, or is there
not enough information to tell? Justify your answer.

(b) Answer (a) using test rather than training RSS.

(c) Suppose that the true relationship between X and Y is not linear,
but we don’t know how far it is from linear. Consider the training
RSS for the linear regression, and also the training RSS for the
cubic regression. Would we expect one to be lower than the
other, would we expect them to be the same, or is there not
enough information to tell? Justify your answer.

(d) Answer (c) using test rather than training RSS.

5. Consider the fitted values that result from performing linear regres-
sion without an intercept. In this setting, the ith fitted value takes
the form

ŷi = xiβ̂,

where

β̂ =

(
n∑

i=1

xiyi

)
/

(
n∑

i′=1

x2
i′

)
. (3.38)
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Show that we can write

ŷi =
n∑

i′=1

ai′yi′ .

What is ai′?

Note: We interpret this result by saying that the fitted values from
linear regression are linear combinations of the response values.

6. Using (3.4), argue that in the case of simple linear regression, the
least squares line always passes through the point (x̄, ȳ).

7. It is claimed in the text that in the case of simple linear regression
of Y onto X, the R2 statistic (3.17) is equal to the square of the
correlation between X and Y (3.18). Prove that this is the case. For
simplicity, you may assume that x̄ = ȳ = 0.

Applied

8. This question involves the use of simple linear regression on the Auto

data set.

(a) Use the lm() function to perform a simple linear regression with
mpg as the response and horsepower as the predictor. Use the
summary() function to print the results. Comment on the output.
For example:

i. Is there a relationship between the predictor and the re-
sponse?

ii. How strong is the relationship between the predictor and
the response?

iii. Is the relationship between the predictor and the response
positive or negative?

iv. What is the predicted mpg associated with a horsepower of
98? What are the associated 95% confidence and prediction
intervals?

(b) Plot the response and the predictor. Use the abline() function
to display the least squares regression line.

(c) Use the plot() function to produce diagnostic plots of the least
squares regression fit. Comment on any problems you see with
the fit.

9. This question involves the use of multiple linear regression on the
Auto data set.
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(a) Produce a scatterplot matrix which includes all of the variables
in the data set.

(b) Compute the matrix of correlations between the variables using
the function cor(). You will need to exclude the name variable,

cor()
which is qualitative.

(c) Use the lm() function to perform a multiple linear regression
with mpg as the response and all other variables except name as
the predictors. Use the summary() function to print the results.
Comment on the output. For instance:

i. Is there a relationship between the predictors and the re-
sponse?

ii. Which predictors appear to have a statistically significant
relationship to the response?

iii. What does the coefficient for the year variable suggest?

(d) Use the plot() function to produce diagnostic plots of the linear
regression fit. Comment on any problems you see with the fit.
Do the residual plots suggest any unusually large outliers? Does
the leverage plot identify any observations with unusually high
leverage?

(e) Use the * and : symbols to fit linear regression models with
interaction effects. Do any interactions appear to be statistically
significant?

(f) Try a few different transformations of the variables, such as
log(X),

√
X, X2. Comment on your findings.

10. This question should be answered using the Carseats data set.

(a) Fit a multiple regression model to predict Sales using Price,
Urban, and US.

(b) Provide an interpretation of each coefficient in the model. Be
careful—some of the variables in the model are qualitative!

(c) Write out the model in equation form, being careful to handle
the qualitative variables properly.

(d) For which of the predictors can you reject the null hypothesis
H0 : βj = 0?

(e) On the basis of your response to the previous question, fit a
smaller model that only uses the predictors for which there is
evidence of association with the outcome.

(f) How well do the models in (a) and (e) fit the data?

(g) Using the model from (e), obtain 95% confidence intervals for
the coefficient(s).
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(h) Is there evidence of outliers or high leverage observations in the
model from (e)?

11. In this problem we will investigate the t-statistic for the null hypoth-
esis H0 : β = 0 in simple linear regression without an intercept. To
begin, we generate a predictor x and a response y as follows.

> set.seed (1)

> x <- rnorm (100)

> y <- 2 * x + rnorm (100)

(a) Perform a simple linear regression of y onto x, without an in-
tercept. Report the coefficient estimate β̂, the standard error of
this coefficient estimate, and the t-statistic and p-value associ-
ated with the null hypothesis H0 : β = 0. Comment on these
results. (You can perform regression without an intercept using
the command lm(y∼x+0).)

(b) Now perform a simple linear regression of x onto y without an
intercept, and report the coefficient estimate, its standard error,
and the corresponding t-statistic and p-values associated with
the null hypothesis H0 : β = 0. Comment on these results.

(c) What is the relationship between the results obtained in (a) and
(b)?

(d) For the regression of Y onto X without an intercept, the t-
statistic for H0 : β = 0 takes the form β̂/SE(β̂), where β̂ is
given by (3.38), and where

SE(β̂) =

√∑n
i=1(yi − xiβ̂)2

(n− 1)
∑n

i′=1 x
2
i′
.

(These formulas are slightly different from those given in Sec-
tions 3.1.1 and 3.1.2, since here we are performing regression
without an intercept.) Show algebraically, and confirm numeri-
cally in R, that the t-statistic can be written as

(
√
n− 1)

∑n
i=1 xiyi√

(
∑n

i=1 x
2
i )(
∑n

i′=1 y
2
i′)− (

∑n
i′=1 xi′yi′)2

.

(e) Using the results from (d), argue that the t-statistic for the re-
gression of y onto x is the same as the t-statistic for the regression
of x onto y.

(f) In R, show that when regression is performed with an intercept,
the t-statistic for H0 : β1 = 0 is the same for the regression of y
onto x as it is for the regression of x onto y.
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12. This problem involves simple linear regression without an intercept.

(a) Recall that the coefficient estimate β̂ for the linear regression of
Y onto X without an intercept is given by (3.38). Under what
circumstance is the coefficient estimate for the regression of X
onto Y the same as the coefficient estimate for the regression of
Y onto X?

(b) Generate an example in R with n = 100 observations in which
the coefficient estimate for the regression of X onto Y is different
from the coefficient estimate for the regression of Y onto X.

(c) Generate an example in R with n = 100 observations in which
the coefficient estimate for the regression of X onto Y is the
same as the coefficient estimate for the regression of Y onto X.

13. In this exercise you will create some simulated data and will fit simple
linear regression models to it. Make sure to use set.seed(1) prior to
starting part (a) to ensure consistent results.

(a) Using the rnorm() function, create a vector, x, containing 100
observations drawn from a N(0, 1) distribution. This represents
a feature, X.

(b) Using the rnorm() function, create a vector, eps, containing 100
observations drawn from a N(0, 0.25) distribution—a normal
distribution with mean zero and variance 0.25.

(c) Using x and eps, generate a vector y according to the model

Y = −1 + 0.5X + ϵ. (3.39)

What is the length of the vector y? What are the values of β0

and β1 in this linear model?

(d) Create a scatterplot displaying the relationship between x and
y. Comment on what you observe.

(e) Fit a least squares linear model to predict y using x. Comment
on the model obtained. How do β̂0 and β̂1 compare to β0 and
β1?

(f) Display the least squares line on the scatterplot obtained in (d).
Draw the population regression line on the plot, in a different
color. Use the legend() command to create an appropriate leg-
end.

(g) Now fit a polynomial regression model that predicts y using x

and x2. Is there evidence that the quadratic term improves the
model fit? Explain your answer.
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(h) Repeat (a)–(f) after modifying the data generation process in
such a way that there is less noise in the data. The model (3.39)
should remain the same. You can do this by decreasing the vari-
ance of the normal distribution used to generate the error term
ϵ in (b). Describe your results.

(i) Repeat (a)–(f) after modifying the data generation process in
such a way that there is more noise in the data. The model
(3.39) should remain the same. You can do this by increasing
the variance of the normal distribution used to generate the
error term ϵ in (b). Describe your results.

(j) What are the confidence intervals for β0 and β1 based on the
original data set, the noisier data set, and the less noisy data
set? Comment on your results.

14. This problem focuses on the collinearity problem.

(a) Perform the following commands in R:

> set.seed (1)

> x1 <- runif (100)

> x2 <- 0.5 * x1 + rnorm (100) / 10

> y <- 2 + 2 * x1 + 0.3 * x2 + rnorm (100)

The last line corresponds to creating a linear model in which y is
a function of x1 and x2. Write out the form of the linear model.
What are the regression coefficients?

(b) What is the correlation between x1 and x2? Create a scatterplot
displaying the relationship between the variables.

(c) Using this data, fit a least squares regression to predict y using
x1 and x2. Describe the results obtained. What are β̂0, β̂1, and
β̂2? How do these relate to the true β0, β1, and β2? Can you
reject the null hypothesis H0 : β1 = 0? How about the null
hypothesis H0 : β2 = 0?

(d) Now fit a least squares regression to predict y using only x1.
Comment on your results. Can you reject the null hypothesis
H0 : β1 = 0?

(e) Now fit a least squares regression to predict y using only x2.
Comment on your results. Can you reject the null hypothesis
H0 : β1 = 0?

(f) Do the results obtained in (c)–(e) contradict each other? Explain
your answer.

(g) Now suppose we obtain one additional observation, which was
unfortunately mismeasured.
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> x1 <- c(x1 , 0.1)

> x2 <- c(x2 , 0.8)

> y <- c(y, 6)

Re-fit the linear models from (c) to (e) using this new data. What
effect does this new observation have on the each of the models?
In each model, is this observation an outlier? A high-leverage
point? Both? Explain your answers.

15. This problem involves the Boston data set, which we saw in the lab
for this chapter. We will now try to predict per capita crime rate
using the other variables in this data set. In other words, per capita
crime rate is the response, and the other variables are the predictors.

(a) For each predictor, fit a simple linear regression model to predict
the response. Describe your results. In which of the models is
there a statistically significant association between the predictor
and the response? Create some plots to back up your assertions.

(b) Fit a multiple regression model to predict the response using
all of the predictors. Describe your results. For which predictors
can we reject the null hypothesis H0 : βj = 0?

(c) How do your results from (a) compare to your results from (b)?
Create a plot displaying the univariate regression coefficients
from (a) on the x-axis, and the multiple regression coefficients
from (b) on the y-axis. That is, each predictor is displayed as a
single point in the plot. Its coefficient in a simple linear regres-
sion model is shown on the x-axis, and its coefficient estimate
in the multiple linear regression model is shown on the y-axis.

(d) Is there evidence of non-linear association between any of the
predictors and the response? To answer this question, for each
predictor X, fit a model of the form

Y = β0 + β1X + β2X
2 + β3X

3 + ϵ.
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Classification

The linear regression model discussed in Chapter 3 assumes that the re-
sponse variable Y is quantitative. But in many situations, the response
variable is instead qualitative. For example, eye color is qualitative. Of-

qualitative
ten qualitative variables are referred to as categorical ; we will use these
terms interchangeably. In this chapter, we study approaches for predicting
qualitative responses, a process that is known as classification. Predicting

classification
a qualitative response for an observation can be referred to as classifying
that observation, since it involves assigning the observation to a category,
or class. On the other hand, often the methods used for classification first
predict the probability that the observation belongs to each of the cate-
gories of a qualitative variable, as the basis for making the classification.
In this sense they also behave like regression methods.
There are many possible classification techniques, or classifiers, that one

classifier
might use to predict a qualitative response. We touched on some of these
in Sections 2.1.5 and 2.2.3. In this chapter we discuss some widely-used
classifiers: logistic regression, linear discriminant analysis, quadratic dis-

logistic
regression

linear
discriminant
analysis

criminant analysis, naive Bayes, and K-nearest neighbors. The discussion

quadratic
discriminant
analysis

naive Bayes

K-nearest
neighbors

of logistic regression is used as a jumping-off point for a discussion of gen-
eralized linear models, and in particular, Poisson regression. We discuss

generalized
linear
models
Poisson
regression

more computer-intensive classification methods in later chapters: these in-
clude generalized additive models (Chapter 7); trees, random forests, and
boosting (Chapter 8); and support vector machines (Chapter 9).
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4.1 An Overview of Classification

Classification problems occur often, perhaps even more so than regression
problems. Some examples include:

1. A person arrives at the emergency room with a set of symptoms
that could possibly be attributed to one of three medical conditions.
Which of the three conditions does the individual have?

2. An online banking service must be able to determine whether or not
a transaction being performed on the site is fraudulent, on the basis
of the user’s IP address, past transaction history, and so forth.

3. On the basis of DNA sequence data for a number of patients with
and without a given disease, a biologist would like to figure out which
DNA mutations are deleterious (disease-causing) and which are not.

Just as in the regression setting, in the classification setting we have a
set of training observations (x1, y1), . . . , (xn, yn) that we can use to build
a classifier. We want our classifier to perform well not only on the training
data, but also on test observations that were not used to train the classifier.
In this chapter, we will illustrate the concept of classification using the

simulated Default data set. We are interested in predicting whether an
individual will default on his or her credit card payment, on the basis of
annual income and monthly credit card balance. The data set is displayed
in Figure 4.1. In the left-hand panel of Figure 4.1, we have plotted annual
income and monthly credit card balance for a subset of 10, 000 individuals.
The individuals who defaulted in a given month are shown in orange, and
those who did not in blue. (The overall default rate is about 3%, so we
have plotted only a fraction of the individuals who did not default.) It
appears that individuals who defaulted tended to have higher credit card
balances than those who did not. In the center and right-hand panels of
Figure 4.1, two pairs of boxplots are shown. The first shows the distribution
of balance split by the binary default variable; the second is a similar plot
for income. In this chapter, we learn how to build a model to predict default
(Y ) for any given value of balance (X1) and income (X2). Since Y is not
quantitative, the simple linear regression model of Chapter 3 is not a good
choice: we will elaborate on this further in Section 4.2.
It is worth noting that Figure 4.1 displays a very pronounced relation-

ship between the predictor balance and the response default. In most real
applications, the relationship between the predictor and the response will
not be nearly so strong. However, for the sake of illustrating the classifica-
tion procedures discussed in this chapter, we use an example in which the
relationship between the predictor and the response is somewhat exagger-
ated.
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Boxplots of balance as a function of default status. Right:
Boxplots of income as a function of default status.

4.2 Why Not Linear Regression?

We have stated that linear regression is not appropriate in the case of a
qualitative response. Why not?
Suppose that we are trying to predict the medical condition of a patient

in the emergency room on the basis of her symptoms. In this simplified
example, there are three possible diagnoses: stroke, drug overdose, and
epileptic seizure. We could consider encoding these values as a quantita-
tive response variable, Y , as follows:

Y =

⎧
⎪⎨

⎪⎩

1 if stroke;

2 if drug overdose;

3 if epileptic seizure.

Using this coding, least squares could be used to fit a linear regression model
to predict Y on the basis of a set of predictors X1, . . . , Xp. Unfortunately,
this coding implies an ordering on the outcomes, putting drug overdose in
between stroke and epileptic seizure, and insisting that the difference
between stroke and drug overdose is the same as the difference between
drug overdose and epileptic seizure. In practice there is no particular
reason that this needs to be the case. For instance, one could choose an
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equally reasonable coding,

Y =

⎧
⎪⎨

⎪⎩

1 if epileptic seizure;

2 if stroke;

3 if drug overdose.

which would imply a totally different relationship among the three condi-
tions. Each of these codings would produce fundamentally different linear
models that would ultimately lead to different sets of predictions on test
observations.
If the response variable’s values did take on a natural ordering, such as

mild, moderate, and severe, and we felt the gap between mild and moderate
was similar to the gap between moderate and severe, then a 1, 2, 3 coding
would be reasonable. Unfortunately, in general there is no natural way to
convert a qualitative response variable with more than two levels into a
quantitative response that is ready for linear regression.
For a binary (two level) qualitative response, the situation is better. For

binary
instance, perhaps there are only two possibilities for the patient’s med-
ical condition: stroke and drug overdose. We could then potentially use
the dummy variable approach from Section 3.3.1 to code the response as
follows:

Y =

{
0 if stroke;

1 if drug overdose.

We could then fit a linear regression to this binary response, and predict
drug overdose if Ŷ > 0.5 and stroke otherwise. In the binary case it is not
hard to show that even if we flip the above coding, linear regression will
produce the same final predictions.
For a binary response with a 0/1 coding as above, regression by least

squares is not completely unreasonable: it can be shown that the Xβ̂ ob-
tained using linear regression is in fact an estimate of Pr(drug overdose|X)
in this special case. However, if we use linear regression, some of our es-
timates might be outside the [0, 1] interval (see Figure 4.2), making them
hard to interpret as probabilities! Nevertheless, the predictions provide an
ordering and can be interpreted as crude probability estimates. Curiously,
it turns out that the classifications that we get if we use linear regression
to predict a binary response will be the same as for the linear discriminant
analysis (LDA) procedure we discuss in Section 4.4.
To summarize, there are at least two reasons not to perform classifica-

tion using a regression method: (a) a regression method cannot accommo-
date a qualitative response with more than two classes; (b) a regression
method will not provide meaningful estimates of Pr(Y |X), even with just
two classes. Thus, it is preferable to use a classification method that is
truly suited for qualitative response values. In the next section, we present
logistic regression, which is well-suited for the case of a binary qualita-
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FIGURE 4.2. Classification using the Default data. Left: Estimated probabil-
ity of default using linear regression. Some estimated probabilities are negative!
The orange ticks indicate the 0/1 values coded for default(No or Yes). Right:
Predicted probabilities of default using logistic regression. All probabilities lie
between 0 and 1.

tive response; in later sections we will cover classification methods that are
appropriate when the qualitative response has two or more classes.

4.3 Logistic Regression

Consider again the Default data set, where the response default falls into
one of two categories, Yes or No. Rather than modeling this response Y
directly, logistic regression models the probability that Y belongs to a par-
ticular category.
For the Default data, logistic regression models the probability of default.

For example, the probability of default given balance can be written as

Pr(default = Yes|balance).

The values of Pr(default = Yes|balance), which we abbreviate p(balance),
will range between 0 and 1. Then for any given value of balance, a prediction
can be made for default. For example, one might predict default = Yes
for any individual for whom p(balance) > 0.5. Alternatively, if a company
wishes to be conservative in predicting individuals who are at risk for de-
fault, then they may choose to use a lower threshold, such as p(balance) >
0.1.

4.3.1 The Logistic Model

How should we model the relationship between p(X) = Pr(Y = 1|X) and
X? (For convenience we are using the generic 0/1 coding for the response.)
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In Section 4.2 we considered using a linear regression model to represent
these probabilities:

p(X) = β0 + β1X. (4.1)

If we use this approach to predict default=Yes using balance, then we
obtain the model shown in the left-hand panel of Figure 4.2. Here we see
the problem with this approach: for balances close to zero we predict a
negative probability of default; if we were to predict for very large balances,
we would get values bigger than 1. These predictions are not sensible, since
of course the true probability of default, regardless of credit card balance,
must fall between 0 and 1. This problem is not unique to the credit default
data. Any time a straight line is fit to a binary response that is coded as
0 or 1, in principle we can always predict p(X) < 0 for some values of X
and p(X) > 1 for others (unless the range of X is limited).
To avoid this problem, we must model p(X) using a function that gives

outputs between 0 and 1 for all values of X. Many functions meet this
description. In logistic regression, we use the logistic function,

logistic
function

p(X) =
eβ0+β1X

1 + eβ0+β1X
. (4.2)

To fit the model (4.2), we use a method called maximum likelihood, which
maximum
likelihoodwe discuss in the next section. The right-hand panel of Figure 4.2 illustrates

the fit of the logistic regression model to the Default data. Notice that for
low balances we now predict the probability of default as close to, but never
below, zero. Likewise, for high balances we predict a default probability
close to, but never above, one. The logistic function will always produce
an S-shaped curve of this form, and so regardless of the value of X, we
will obtain a sensible prediction. We also see that the logistic model is
better able to capture the range of probabilities than is the linear regression
model in the left-hand plot. The average fitted probability in both cases is
0.0333 (averaged over the training data), which is the same as the overall
proportion of defaulters in the data set.
After a bit of manipulation of (4.2), we find that

p(X)

1− p(X)
= eβ0+β1X . (4.3)

The quantity p(X)/[1−p(X)] is called the odds, and can take on any value
odds

between 0 and ∞. Values of the odds close to 0 and ∞ indicate very low
and very high probabilities of default, respectively. For example, on average
1 in 5 people with an odds of 1/4 will default, since p(X) = 0.2 implies an
odds of 0.2

1−0.2 = 1/4. Likewise, on average nine out of every ten people with

an odds of 9 will default, since p(X) = 0.9 implies an odds of 0.9
1−0.9 = 9.

Odds are traditionally used instead of probabilities in horse-racing, since
they relate more naturally to the correct betting strategy.
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By taking the logarithm of both sides of (4.3), we arrive at

log

(
p(X)

1− p(X)

)
= β0 + β1X. (4.4)

The left-hand side is called the log odds or logit. We see that the logistic
log odds

logit
regression model (4.2) has a logit that is linear in X.
Recall from Chapter 3 that in a linear regression model, β1 gives the

average change in Y associated with a one-unit increase in X. By contrast,
in a logistic regression model, increasing X by one unit changes the log
odds by β1 (4.4). Equivalently, it multiplies the odds by eβ1 (4.3). However,
because the relationship between p(X) and X in (4.2) is not a straight line,
β1 does not correspond to the change in p(X) associated with a one-unit
increase in X. The amount that p(X) changes due to a one-unit change in
X depends on the current value of X. But regardless of the value of X, if
β1 is positive then increasing X will be associated with increasing p(X),
and if β1 is negative then increasing X will be associated with decreasing
p(X). The fact that there is not a straight-line relationship between p(X)
and X, and the fact that the rate of change in p(X) per unit change in X
depends on the current value of X, can also be seen by inspection of the
right-hand panel of Figure 4.2.

4.3.2 Estimating the Regression Coefficients

The coefficients β0 and β1 in (4.2) are unknown, and must be estimated
based on the available training data. In Chapter 3, we used the least squares
approach to estimate the unknown linear regression coefficients. Although
we could use (non-linear) least squares to fit the model (4.4), the more
general method of maximum likelihood is preferred, since it has better sta-
tistical properties. The basic intuition behind using maximum likelihood
to fit a logistic regression model is as follows: we seek estimates for β0 and
β1 such that the predicted probability p̂(xi) of default for each individual,
using (4.2), corresponds as closely as possible to the individual’s observed
default status. In other words, we try to find β̂0 and β̂1 such that plugging
these estimates into the model for p(X), given in (4.2), yields a number
close to one for all individuals who defaulted, and a number close to zero
for all individuals who did not. This intuition can be formalized using a
mathematical equation called a likelihood function:

likelihood
function

ℓ(β0,β1) =
∏

i:yi=1

p(xi)
∏

i′:yi′=0

(1− p(xi′)). (4.5)

The estimates β̂0 and β̂1 are chosen to maximize this likelihood function.
Maximum likelihood is a very general approach that is used to fit many

of the non-linear models that we examine throughout this book. In the
linear regression setting, the least squares approach is in fact a special case
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Coefficient Std. error z-statistic p-value
Intercept −10.6513 0.3612 −29.5 <0.0001
balance 0.0055 0.0002 24.9 <0.0001

TABLE 4.1. For the Default data, estimated coefficients of the logistic regres-
sion model that predicts the probability of default using balance. A one-unit
increase in balance is associated with an increase in the log odds of default by
0.0055 units.

of maximum likelihood. The mathematical details of maximum likelihood
are beyond the scope of this book. However, in general, logistic regression
and other models can be easily fit using statistical software such as R, and
so we do not need to concern ourselves with the details of the maximum
likelihood fitting procedure.
Table 4.1 shows the coefficient estimates and related information that

result from fitting a logistic regression model on the Default data in order
to predict the probability of default=Yes using balance. We see that β̂1 =
0.0055; this indicates that an increase in balance is associated with an
increase in the probability of default. To be precise, a one-unit increase in
balance is associated with an increase in the log odds of default by 0.0055
units.
Many aspects of the logistic regression output shown in Table 4.1 are

similar to the linear regression output of Chapter 3. For example, we can
measure the accuracy of the coefficient estimates by computing their stan-
dard errors. The z-statistic in Table 4.1 plays the same role as the t-statistic
in the linear regression output, for example in Table 3.1 on page 68. For
instance, the z-statistic associated with β1 is equal to β̂1/SE(β̂1), and so a
large (absolute) value of the z-statistic indicates evidence against the null

hypothesis H0 : β1 = 0. This null hypothesis implies that p(X) = eβ0

1+eβ0
: in

other words, that the probability of default does not depend on balance.
Since the p-value associated with balance in Table 4.1 is tiny, we can reject
H0. In other words, we conclude that there is indeed an association between
balance and probability of default. The estimated intercept in Table 4.1
is typically not of interest; its main purpose is to adjust the average fitted
probabilities to the proportion of ones in the data (in this case, the overall
default rate).

4.3.3 Making Predictions

Once the coefficients have been estimated, we can compute the probability
of default for any given credit card balance. For example, using the coeffi-
cient estimates given in Table 4.1, we predict that the default probability
for an individual with a balance of $1, 000 is

p̂(X) =
eβ̂0+β̂1X

1 + eβ̂0+β̂1X
=

e−10.6513+0.0055×1,000

1 + e−10.6513+0.0055×1,000
= 0.00576,
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Coefficient Std. error z-statistic p-value
Intercept −3.5041 0.0707 −49.55 <0.0001
student[Yes] 0.4049 0.1150 3.52 0.0004

TABLE 4.2. For the Default data, estimated coefficients of the logistic regres-
sion model that predicts the probability of default using student status. Student
status is encoded as a dummy variable, with a value of 1 for a student and a value
of 0 for a non-student, and represented by the variable student[Yes] in the table.

which is below 1%. In contrast, the predicted probability of default for an
individual with a balance of $2, 000 is much higher, and equals 0.586 or
58.6%.
One can use qualitative predictors with the logistic regression model us-

ing the dummy variable approach from Section 3.3.1. As an example, the
Default data set contains the qualitative variable student. To fit a model
that uses student status as a predictor variable, we simply create a dummy
variable that takes on a value of 1 for students and 0 for non-students. The
logistic regression model that results from predicting probability of default
from student status can be seen in Table 4.2. The coefficient associated
with the dummy variable is positive, and the associated p-value is statis-
tically significant. This indicates that students tend to have higher default
probabilities than non-students:

P̂r(default=Yes|student=Yes) =
e−3.5041+0.4049×1

1 + e−3.5041+0.4049×1
= 0.0431,

P̂r(default=Yes|student=No) =
e−3.5041+0.4049×0

1 + e−3.5041+0.4049×0
= 0.0292.

4.3.4 Multiple Logistic Regression

We now consider the problem of predicting a binary response using multiple
predictors. By analogy with the extension from simple to multiple linear
regression in Chapter 3, we can generalize (4.4) as follows:

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + · · ·+ βpXp, (4.6)

where X = (X1, . . . , Xp) are p predictors. Equation 4.6 can be rewritten as

p(X) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
. (4.7)

Just as in Section 4.3.2, we use the maximum likelihood method to estimate
β0,β1, . . . ,βp.
Table 4.3 shows the coefficient estimates for a logistic regression model

that uses balance, income (in thousands of dollars), and student status to
predict probability of default. There is a surprising result here. The p-
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Coefficient Std. error z-statistic p-value
Intercept −10.8690 0.4923 −22.08 <0.0001
balance 0.0057 0.0002 24.74 <0.0001
income 0.0030 0.0082 0.37 0.7115
student[Yes] −0.6468 0.2362 −2.74 0.0062

TABLE 4.3. For the Default data, estimated coefficients of the logistic regres-
sion model that predicts the probability of default using balance, income, and
student status. Student status is encoded as a dummy variable student[Yes],
with a value of 1 for a student and a value of 0 for a non-student. In fitting this
model, income was measured in thousands of dollars.

values associated with balance and the dummy variable for student status
are very small, indicating that each of these variables is associated with
the probability of default. However, the coefficient for the dummy variable
is negative, indicating that students are less likely to default than non-
students. In contrast, the coefficient for the dummy variable is positive in
Table 4.2. How is it possible for student status to be associated with an
increase in probability of default in Table 4.2 and a decrease in probability
of default in Table 4.3? The left-hand panel of Figure 4.3 provides a graph-
ical illustration of this apparent paradox. The orange and blue solid lines
show the average default rates for students and non-students, respectively,
as a function of credit card balance. The negative coefficient for student in
the multiple logistic regression indicates that for a fixed value of balance

and income, a student is less likely to default than a non-student. Indeed,
we observe from the left-hand panel of Figure 4.3 that the student default
rate is at or below that of the non-student default rate for every value of
balance. But the horizontal broken lines near the base of the plot, which
show the default rates for students and non-students averaged over all val-
ues of balance and income, suggest the opposite effect: the overall student
default rate is higher than the non-student default rate. Consequently, there
is a positive coefficient for student in the single variable logistic regression
output shown in Table 4.2.
The right-hand panel of Figure 4.3 provides an explanation for this dis-

crepancy. The variables student and balance are correlated. Students tend
to hold higher levels of debt, which is in turn associated with higher prob-
ability of default. In other words, students are more likely to have large
credit card balances, which, as we know from the left-hand panel of Fig-
ure 4.3, tend to be associated with high default rates. Thus, even though
an individual student with a given credit card balance will tend to have a
lower probability of default than a non-student with the same credit card
balance, the fact that students on the whole tend to have higher credit card
balances means that overall, students tend to default at a higher rate than
non-students. This is an important distinction for a credit card company
that is trying to determine to whom they should offer credit. A student is
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FIGURE 4.3. Confounding in the Default data. Left: Default rates are shown
for students (orange) and non-students (blue). The solid lines display default rate
as a function of balance, while the horizontal broken lines display the overall
default rates. Right: Boxplots of balance for students (orange) and non-students
(blue) are shown.

riskier than a non-student if no information about the student’s credit card
balance is available. However, that student is less risky than a non-student
with the same credit card balance!
This simple example illustrates the dangers and subtleties associated

with performing regressions involving only a single predictor when other
predictors may also be relevant. As in the linear regression setting, the
results obtained using one predictor may be quite different from those ob-
tained using multiple predictors, especially when there is correlation among
the predictors. In general, the phenomenon seen in Figure 4.3 is known as
confounding.

confounding
By substituting estimates for the regression coefficients from Table 4.3

into (4.7), we can make predictions. For example, a student with a credit
card balance of $1, 500 and an income of $40, 000 has an estimated proba-
bility of default of

p̂(X) =
e−10.869+0.00574×1,500+0.003×40−0.6468×1

1 + e−10.869+0.00574×1,500+0.003×40−0.6468×1
= 0.058. (4.8)

A non-student with the same balance and income has an estimated prob-
ability of default of

p̂(X) =
e−10.869+0.00574×1,500+0.003×40−0.6468×0

1 + e−10.869+0.00574×1,500+0.003×40−0.6468×0
= 0.105. (4.9)

(Here we multiply the income coefficient estimate from Table 4.3 by 40,
rather than by 40,000, because in that table the model was fit with income

measured in units of $1, 000.)
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4.3.5 Multinomial Logistic Regression

We sometimes wish to classify a response variable that has more than two
classes. For example, in Section 4.2 we had three categories of medical con-
dition in the emergency room: stroke, drug overdose, epileptic seizure.
However, the logistic regression approach that we have seen in this section
only allows for K = 2 classes for the response variable.
It turns out that it is possible to extend the two-class logistic regression

approach to the setting of K > 2 classes. This extension is sometimes
known as multinomial logistic regression. To do this, we first select a single

multinomial
logistic
regression

class to serve as the baseline; without loss of generality, we select the Kth
class for this role. Then we replace the model (4.7) with the model

Pr(Y = k|X = x) =
eβk0+βk1x1+···+βkpxp

1 +
∑K−1

l=1 eβl0+βl1x1+···+βlpxp
(4.10)

for k = 1, . . . ,K−1, and

Pr(Y = K|X = x) =
1

1 +
∑K−1

l=1 eβl0+βl1x1+···+βlpxp
. (4.11)

It is not hard to show that for k = 1, . . . ,K−1,

log

(
Pr(Y = k|X = x)

Pr(Y = K|X = x)

)
= βk0 + βk1x1 + · · ·+ βkpxp. (4.12)

Notice that (4.12) is quite similar to (4.6). Equation 4.12 indicates that once
again, the log odds between any pair of classes is linear in the features.
It turns out that in (4.10)–(4.12), the decision to treat the Kth class as

the baseline is unimportant. For example, when classifying emergency room
visits into stroke, drug overdose, and epileptic seizure, suppose that we
fit two multinomial logistic regression models: one treating stroke as the
baseline, another treating drug overdose as the baseline. The coefficient
estimates will differ between the two fitted models due to the differing
choice of baseline, but the fitted values (predictions), the log odds between
any pair of classes, and the other key model outputs will remain the same.
Nonetheless, interpretation of the coefficients in a multinomial logistic

regression model must be done with care, since it is tied to the choice
of baseline. For example, if we set epileptic seizure to be the baseline,
then we can interpret βstroke0 as the log odds of stroke versus epileptic

seizure, given that x1 = . . . = xp = 0. Furthermore, a one-unit increase
in Xj is associated with a βstrokej increase in the log odds of stroke over
epileptic seizure. Stated another way, if Xj increases by one unit, then

Pr(Y = stroke|X = x)

Pr(Y = epileptic seizure|X = x)

increases by eβstrokej .
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We now briefly present an alternative coding for multinomial logistic
regression, known as the softmax coding. The softmax coding is equivalent

softmax
to the coding just described in the sense that the fitted values, log odds
between any pair of classes, and other key model outputs will remain the
same, regardless of coding. But the softmax coding is used extensively in
some areas of the machine learning literature (and will appear again in
Chapter 10), so it is worth being aware of it. In the softmax coding, rather
than selecting a baseline class, we treat all K classes symmetrically, and
assume that for k = 1, . . . ,K,

Pr(Y = k|X = x) =
eβk0+βk1x1+···+βkpxp

∑K
l=1 e

βl0+βl1x1+···+βlpxp
. (4.13)

Thus, rather than estimating coefficients for K − 1 classes, we actually
estimate coefficients for all K classes. It is not hard to see that as a result
of (4.13), the log odds ratio between the kth and k′th classes equals

log

(
Pr(Y = k|X = x)
Pr(Y = k′|X = x)

)
= (βk0 − βk′0) + (βk1 − βk′1)x1 + · · ·+ (βkp − βk′p)xp.

(4.14)

4.4 Generative Models for Classification

Logistic regression involves directly modeling Pr(Y = k|X = x) using the
logistic function, given by (4.7) for the case of two response classes. In
statistical jargon, we model the conditional distribution of the response Y ,
given the predictor(s) X. We now consider an alternative and less direct
approach to estimating these probabilities. In this new approach, we model
the distribution of the predictors X separately in each of the response
classes (i.e. for each value of Y ). We then use Bayes’ theorem to flip these
around into estimates for Pr(Y = k|X = x). When the distribution of X
within each class is assumed to be normal, it turns out that the model is
very similar in form to logistic regression.
Why do we need another method, when we have logistic regression?

There are several reasons:

• When there is substantial separation between the two classes, the
parameter estimates for the logistic regression model are surprisingly
unstable. The methods that we consider in this section do not suffer
from this problem.

• If the distribution of the predictors X is approximately normal in
each of the classes and the sample size is small, then the approaches
in this section may be more accurate than logistic regression.

• The methods in this section can be naturally extended to the case
of more than two response classes. (In the case of more than two
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response classes, we can also use multinomial logistic regression from
Section 4.3.5.)

Suppose that we wish to classify an observation into one of K classes,
where K ≥ 2. In other words, the qualitative response variable Y can take
on K possible distinct and unordered values. Let πk represent the overall
or prior probability that a randomly chosen observation comes from the

prior
kth class. Let fk(X) ≡ Pr(X|Y = k)1 denote the density function of X

density
functionfor an observation that comes from the kth class. In other words, fk(x) is

relatively large if there is a high probability that an observation in the kth
class has X ≈ x, and fk(x) is small if it is very unlikely that an observation
in the kth class has X ≈ x. Then Bayes’ theorem states that

Bayes’
theorem

Pr(Y = k|X = x) =
πkfk(x)∑K
l=1 πlfl(x)

. (4.15)

In accordance with our earlier notation, we will use the abbreviation pk(x) =
Pr(Y = k|X = x); this is the posterior probability that an observation

posterior
X = x belongs to the kth class. That is, it is the probability that the
observation belongs to the kth class, given the predictor value for that
observation.
Equation 4.15 suggests that instead of directly computing the posterior

probability pk(x) as in Section 4.3.1, we can simply plug in estimates of πk

and fk(x) into (4.15). In general, estimating πk is easy if we have a random
sample from the population: we simply compute the fraction of the training
observations that belong to the kth class. However, estimating the density
function fk(x) is much more challenging. As we will see, to estimate fk(x),
we will typically have to make some simplifying assumptions.
We know from Chapter 2 that the Bayes classifier, which classifies an

observation x to the class for which pk(x) is largest, has the lowest possible
error rate out of all classifiers. (Of course, this is only true if all of the
terms in (4.15) are correctly specified.) Therefore, if we can find a way to
estimate fk(x), then we can plug it into (4.15) in order to approximate the
Bayes classifier.
In the following sections, we discuss three classifiers that use different

estimates of fk(x) in (4.15) to approximate the Bayes classifier: linear dis-
criminant analysis, quadratic discriminant analysis, and naive Bayes.

4.4.1 Linear Discriminant Analysis for p = 1

For now, assume that p = 1—that is, we have only one predictor. We would
like to obtain an estimate for fk(x) that we can plug into (4.15) in order to
estimate pk(x). We will then classify an observation to the class for which

1Technically, this definition is only correct if X is a qualitative random variable. If
X is quantitative, then fk(x)dx corresponds to the probability of X falling in a small
region dx around x.
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pk(x) is greatest. To estimate fk(x), we will first make some assumptions
about its form.
In particular, we assume that fk(x) is normal or Gaussian. In the one-

normal
Gaussiandimensional setting, the normal density takes the form

fk(x) =
1√
2πσk

exp

(
− 1

2σ2
k

(x− µk)
2

)
, (4.16)

where µk and σ2
k are the mean and variance parameters for the kth class.

For now, let us further assume that σ2
1 = · · · = σ2

K : that is, there is a shared
variance term across all K classes, which for simplicity we can denote by
σ2. Plugging (4.16) into (4.15), we find that

pk(x) =
πk

1√
2πσ

exp
(
− 1

2σ2 (x− µk)2
)

∑K
l=1 πl

1√
2πσ

exp
(
− 1

2σ2 (x− µl)2
) . (4.17)

(Note that in (4.17), πk denotes the prior probability that an observation
belongs to the kth class, not to be confused with π ≈ 3.14159, the math-
ematical constant.) The Bayes classifier2 involves assigning an observation
X = x to the class for which (4.17) is largest. Taking the log of (4.17) and
rearranging the terms, it is not hard to show3 that this is equivalent to
assigning the observation to the class for which

δk(x) = x · µk

σ2
− µ2

k

2σ2
+ log(πk) (4.18)

is largest. For instance, if K = 2 and π1 = π2, then the Bayes classifier
assigns an observation to class 1 if 2x (µ1 − µ2) > µ2

1 − µ2
2, and to class

2 otherwise. The Bayes decision boundary is the point for which δ1(x) =
δ2(x); one can show that this amounts to

x =
µ2
1 − µ2

2

2(µ1 − µ2)
=

µ1 + µ2

2
. (4.19)

An example is shown in the left-hand panel of Figure 4.4. The two normal
density functions that are displayed, f1(x) and f2(x), represent two distinct
classes. The mean and variance parameters for the two density functions
are µ1 = −1.25, µ2 = 1.25, and σ2

1 = σ2
2 = 1. The two densities overlap,

and so given that X = x, there is some uncertainty about the class to which
the observation belongs. If we assume that an observation is equally likely
to come from either class—that is, π1 = π2 = 0.5—then by inspection of
(4.19), we see that the Bayes classifier assigns the observation to class 1
if x < 0 and class 2 otherwise. Note that in this case, we can compute
the Bayes classifier because we know that X is drawn from a Gaussian
distribution within each class, and we know all of the parameters involved.
In a real-life situation, we are not able to calculate the Bayes classifier.

2Recall that the Bayes classifier assigns an observation to the class for which pk(x)
is largest. This is different from Bayes’ theorem in (4.13), which allows us to manipulate
conditional distributions.

3See Exercise 2 at the end of this chapter.
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FIGURE 4.4. Left: Two one-dimensional normal density functions are shown.
The dashed vertical line represents the Bayes decision boundary. Right: 20 obser-
vations were drawn from each of the two classes, and are shown as histograms.
The Bayes decision boundary is again shown as a dashed vertical line. The solid
vertical line represents the LDA decision boundary estimated from the training
data.

In practice, even if we are quite certain of our assumption that X is
drawn from a Gaussian distribution within each class, to apply the Bayes
classifier we still have to estimate the parameters µ1, . . . , µK , π1, . . . ,πK ,
and σ2. The linear discriminant analysis (LDA) method approximates the

linear
discriminant
analysis

Bayes classifier by plugging estimates for πk, µk, and σ2 into (4.18). In
particular, the following estimates are used:

µ̂k =
1

nk

∑

i:yi=k

xi

σ̂2 =
1

n−K

K∑

k=1

∑

i:yi=k

(xi − µ̂k)
2 (4.20)

where n is the total number of training observations, and nk is the number
of training observations in the kth class. The estimate for µk is simply the
average of all the training observations from the kth class, while σ̂2 can
be seen as a weighted average of the sample variances for each of the K
classes. Sometimes we have knowledge of the class membership probabili-
ties π1, . . . ,πK , which can be used directly. In the absence of any additional
information, LDA estimates πk using the proportion of the training obser-
vations that belong to the kth class. In other words,

π̂k = nk/n. (4.21)

The LDA classifier plugs the estimates given in (4.20) and (4.21) into (4.18),
and assigns an observation X = x to the class for which

δ̂k(x) = x · µ̂k

σ̂2
− µ̂2

k

2σ̂2
+ log(π̂k) (4.22)
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is largest. The word linear in the classifier’s name stems from the fact
that the discriminant functions δ̂k(x) in (4.22) are linear functions of x (as

discriminant
functionopposed to a more complex function of x).

The right-hand panel of Figure 4.4 displays a histogram of a random
sample of 20 observations from each class. To implement LDA, we began
by estimating πk, µk, and σ2 using (4.20) and (4.21). We then computed the
decision boundary, shown as a black solid line, that results from assigning
an observation to the class for which (4.22) is largest. All points to the left
of this line will be assigned to the green class, while points to the right of
this line are assigned to the purple class. In this case, since n1 = n2 = 20,
we have π̂1 = π̂2. As a result, the decision boundary corresponds to the
midpoint between the sample means for the two classes, (µ̂1 + µ̂2)/2. The
figure indicates that the LDA decision boundary is slightly to the left of
the optimal Bayes decision boundary, which instead equals (µ1 + µ2)/2 =
0. How well does the LDA classifier perform on this data? Since this is
simulated data, we can generate a large number of test observations in order
to compute the Bayes error rate and the LDA test error rate. These are
10.6% and 11.1%, respectively. In other words, the LDA classifier’s error
rate is only 0.5% above the smallest possible error rate! This indicates that
LDA is performing pretty well on this data set.
To reiterate, the LDA classifier results from assuming that the obser-

vations within each class come from a normal distribution with a class-
specific mean and a common variance σ2, and plugging estimates for these
parameters into the Bayes classifier. In Section 4.4.3, we will consider a less
stringent set of assumptions, by allowing the observations in the kth class
to have a class-specific variance, σ2

k.

4.4.2 Linear Discriminant Analysis for p >1

We now extend the LDA classifier to the case of multiple predictors. To
do this, we will assume that X = (X1, X2, . . . , Xp) is drawn from a multi-
variate Gaussian (or multivariate normal) distribution, with a class-specific

multivariate
Gaussianmean vector and a common covariance matrix. We begin with a brief review

of this distribution.
The multivariate Gaussian distribution assumes that each individual pre-

dictor follows a one-dimensional normal distribution, as in (4.16), with some
correlation between each pair of predictors. Two examples of multivariate
Gaussian distributions with p = 2 are shown in Figure 4.5. The height of
the surface at any particular point represents the probability that both X1

and X2 fall in a small region around that point. In either panel, if the sur-
face is cut along the X1 axis or along the X2 axis, the resulting cross-section
will have the shape of a one-dimensional normal distribution. The left-hand
panel of Figure 4.5 illustrates an example in which Var(X1) = Var(X2) and
Cor(X1, X2) = 0; this surface has a characteristic bell shape. However, the
bell shape will be distorted if the predictors are correlated or have unequal
variances, as is illustrated in the right-hand panel of Figure 4.5. In this
situation, the base of the bell will have an elliptical, rather than circular,
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FIGURE 4.5. Two multivariate Gaussian density functions are shown, with
p = 2. Left: The two predictors are uncorrelated. Right: The two variables have
a correlation of 0.7.

shape. To indicate that a p-dimensional random variable X has a multi-
variate Gaussian distribution, we write X ∼ N(µ,Σ). Here E(X) = µ is
the mean of X (a vector with p components), and Cov(X) = Σ is the
p× p covariance matrix of X. Formally, the multivariate Gaussian density
is defined as

f(x) =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (4.23)

In the case of p > 1 predictors, the LDA classifier assumes that the
observations in the kth class are drawn from a multivariate Gaussian dis-
tribution N(µk,Σ), where µk is a class-specific mean vector, and Σ is a
covariance matrix that is common to all K classes. Plugging the density
function for the kth class, fk(X = x), into (4.15) and performing a little
bit of algebra reveals that the Bayes classifier assigns an observation X = x
to the class for which

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + log πk (4.24)

is largest. This is the vector/matrix version of (4.18).
An example is shown in the left-hand panel of Figure 4.6. Three equally-

sized Gaussian classes are shown with class-specific mean vectors and a
common covariance matrix. The three ellipses represent regions that con-
tain 95% of the probability for each of the three classes. The dashed lines
are the Bayes decision boundaries. In other words, they represent the set
of values x for which δk(x) = δℓ(x); i.e.

xTΣ−1µk −
1

2
µT
kΣ

−1µk = xTΣ−1µl −
1

2
µT
l Σ

−1µl (4.25)

for k ̸= l. (The log πk term from (4.24) has disappeared because each of
the three classes has the same number of training observations; i.e. πk is
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FIGURE 4.6. An example with three classes. The observations from each class
are drawn from a multivariate Gaussian distribution with p = 2, with a class-spe-
cific mean vector and a common covariance matrix. Left: Ellipses that contain
95% of the probability for each of the three classes are shown. The dashed lines
are the Bayes decision boundaries. Right: 20 observations were generated from
each class, and the corresponding LDA decision boundaries are indicated using
solid black lines. The Bayes decision boundaries are once again shown as dashed
lines.

the same for each class.) Note that there are three lines representing the
Bayes decision boundaries because there are three pairs of classes among
the three classes. That is, one Bayes decision boundary separates class 1
from class 2, one separates class 1 from class 3, and one separates class 2
from class 3. These three Bayes decision boundaries divide the predictor
space into three regions. The Bayes classifier will classify an observation
according to the region in which it is located.
Once again, we need to estimate the unknown parameters µ1, . . . , µK ,

π1, . . . ,πK , and Σ; the formulas are similar to those used in the one-
dimensional case, given in (4.20). To assign a new observation X = x,
LDA plugs these estimates into (4.24) to obtain quantities δ̂k(x), and clas-
sifies to the class for which δ̂k(x) is largest. Note that in (4.24) δk(x) is
a linear function of x; that is, the LDA decision rule depends on x only
through a linear combination of its elements. As previously discussed, this
is the reason for the word linear in LDA.
In the right-hand panel of Figure 4.6, 20 observations drawn from each of

the three classes are displayed, and the resulting LDA decision boundaries
are shown as solid black lines. Overall, the LDA decision boundaries are
pretty close to the Bayes decision boundaries, shown again as dashed lines.
The test error rates for the Bayes and LDA classifiers are 0.0746 and 0.0770,
respectively. This indicates that LDA is performing well on this data.
We can perform LDA on the Default data in order to predict whether

or not an individual will default on the basis of credit card balance and
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True default status
No Yes Total

Predicted No 9644 252 9896
default status Yes 23 81 104

Total 9667 333 10000

TABLE 4.4. A confusion matrix compares the LDA predictions to the true de-
fault statuses for the 10,000 training observations in the Default data set. Ele-
ments on the diagonal of the matrix represent individuals whose default statuses
were correctly predicted, while off-diagonal elements represent individuals that
were misclassified. LDA made incorrect predictions for 23 individuals who did
not default and for 252 individuals who did default.

student status.4 The LDA model fit to the 10,000 training samples results
in a training error rate of 2.75%. This sounds like a low error rate, but two
caveats must be noted.

• First of all, training error rates will usually be lower than test error
rates, which are the real quantity of interest. In other words, we
might expect this classifier to perform worse if we use it to predict
whether or not a new set of individuals will default. The reason is
that we specifically adjust the parameters of our model to do well on
the training data. The higher the ratio of parameters p to number
of samples n, the more we expect this overfitting to play a role. For

overfitting
these data we don’t expect this to be a problem, since p = 2 and
n = 10, 000.

• Second, since only 3.33% of the individuals in the training sample
defaulted, a simple but useless classifier that always predicts that
an individual will not default, regardless of his or her credit card
balance and student status, will result in an error rate of 3.33%. In
other words, the trivial null classifier will achieve an error rate that

null
is only a bit higher than the LDA training set error rate.

In practice, a binary classifier such as this one can make two types of
errors: it can incorrectly assign an individual who defaults to the no default
category, or it can incorrectly assign an individual who does not default to
the default category. It is often of interest to determine which of these two
types of errors are being made. A confusion matrix, shown for the Default

confusion
matrixdata in Table 4.4, is a convenient way to display this information. The

table reveals that LDA predicted that a total of 104 people would default.
Of these people, 81 actually defaulted and 23 did not. Hence only 23 out
of 9,667 of the individuals who did not default were incorrectly labeled.

4The careful reader will notice that student status is qualitative — thus, the normality
assumption made by LDA is clearly violated in this example! However, LDA is often
remarkably robust to model violations, as this example shows. Naive Bayes, discussed in
Section 4.4.4, provides an alternative to LDA that does not assume normally distributed
predictors.
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This looks like a pretty low error rate! However, of the 333 individuals who
defaulted, 252 (or 75.7%) were missed by LDA. So while the overall error
rate is low, the error rate among individuals who defaulted is very high.
From the perspective of a credit card company that is trying to identify
high-risk individuals, an error rate of 252/333 = 75.7% among individuals
who default may well be unacceptable.
Class-specific performance is also important in medicine and biology,

where the terms sensitivity and specificity characterize the performance of
sensitivity

specificity
a classifier or screening test. In this case the sensitivity is the percentage
of true defaulters that are identified; it equals 24.3%. The specificity is
the percentage of non-defaulters that are correctly identified; it equals (1−
23/9667) = 99.8%.
Why does LDA do such a poor job of classifying the customers who de-

fault? In other words, why does it have such low sensitivity? As we have
seen, LDA is trying to approximate the Bayes classifier, which has the low-
est total error rate out of all classifiers. That is, the Bayes classifier will
yield the smallest possible total number of misclassified observations, re-
gardless of the class from which the errors stem. Some misclassifications will
result from incorrectly assigning a customer who does not default to the
default class, and others will result from incorrectly assigning a customer
who defaults to the non-default class. In contrast, a credit card company
might particularly wish to avoid incorrectly classifying an individual who
will default, whereas incorrectly classifying an individual who will not de-
fault, though still to be avoided, is less problematic. We will now see that it
is possible to modify LDA in order to develop a classifier that better meets
the credit card company’s needs.
The Bayes classifier works by assigning an observation to the class for

which the posterior probability pk(X) is greatest. In the two-class case, this
amounts to assigning an observation to the default class if

Pr(default = Yes|X = x) > 0.5. (4.26)

Thus, the Bayes classifier, and by extension LDA, uses a threshold of 50%
for the posterior probability of default in order to assign an observation
to the default class. However, if we are concerned about incorrectly pre-
dicting the default status for individuals who default, then we can consider
lowering this threshold. For instance, we might label any customer with a
posterior probability of default above 20% to the default class. In other
words, instead of assigning an observation to the default class if (4.26)
holds, we could instead assign an observation to this class if

Pr(default = Yes|X = x) > 0.2. (4.27)

The error rates that result from taking this approach are shown in Table 4.5.
Now LDA predicts that 430 individuals will default. Of the 333 individuals
who default, LDA correctly predicts all but 138, or 41.4%. This is a vast
improvement over the error rate of 75.7% that resulted from using the
threshold of 50%. However, this improvement comes at a cost: now 235
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True default status
No Yes Total

Predicted No 9432 138 9570
default status Yes 235 195 430

Total 9667 333 10000

TABLE 4.5. A confusion matrix compares the LDA predictions to the true de-
fault statuses for the 10,000 training observations in the Default data set, using a
modified threshold value that predicts default for any individuals whose posterior
default probability exceeds 20%.
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FIGURE 4.7. For the Default data set, error rates are shown as a function of
the threshold value for the posterior probability that is used to perform the assign-
ment. The black solid line displays the overall error rate. The blue dashed line
represents the fraction of defaulting customers that are incorrectly classified, and
the orange dotted line indicates the fraction of errors among the non-defaulting
customers.

individuals who do not default are incorrectly classified. As a result, the
overall error rate has increased slightly to 3.73%. But a credit card company
may consider this slight increase in the total error rate to be a small price to
pay for more accurate identification of individuals who do indeed default.
Figure 4.7 illustrates the trade-off that results from modifying the thresh-

old value for the posterior probability of default. Various error rates are
shown as a function of the threshold value. Using a threshold of 0.5, as in
(4.26), minimizes the overall error rate, shown as a black solid line. This
is to be expected, since the Bayes classifier uses a threshold of 0.5 and is
known to have the lowest overall error rate. But when a threshold of 0.5 is
used, the error rate among the individuals who default is quite high (blue
dashed line). As the threshold is reduced, the error rate among individuals
who default decreases steadily, but the error rate among the individuals
who do not default increases. How can we decide which threshold value is
best? Such a decision must be based on domain knowledge, such as detailed
information about the costs associated with default.
The ROC curve is a popular graphic for simultaneously displaying the

ROC curve
two types of errors for all possible thresholds. The name “ROC” is his-
toric, and comes from communications theory. It is an acronym for receiver
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FIGURE 4.8. A ROC curve for the LDA classifier on the Default data. It
traces out two types of error as we vary the threshold value for the posterior
probability of default. The actual thresholds are not shown. The true positive rate
is the sensitivity: the fraction of defaulters that are correctly identified, using
a given threshold value. The false positive rate is 1-specificity: the fraction of
non-defaulters that we classify incorrectly as defaulters, using that same threshold
value. The ideal ROC curve hugs the top left corner, indicating a high true positive
rate and a low false positive rate. The dotted line represents the “no information”
classifier; this is what we would expect if student status and credit card balance
are not associated with probability of default.

operating characteristics. Figure 4.8 displays the ROC curve for the LDA
classifier on the training data. The overall performance of a classifier, sum-
marized over all possible thresholds, is given by the area under the (ROC)
curve (AUC). An ideal ROC curve will hug the top left corner, so the larger

area under
the (ROC)
curve

the AUC the better the classifier. For this data the AUC is 0.95, which is
close to the maximum of one so would be considered very good. We expect
a classifier that performs no better than chance to have an AUC of 0.5
(when evaluated on an independent test set not used in model training).
ROC curves are useful for comparing different classifiers, since they take
into account all possible thresholds. It turns out that the ROC curve for the
logistic regression model of Section 4.3.4 fit to these data is virtually indis-
tinguishable from this one for the LDA model, so we do not display it here.
As we have seen above, varying the classifier threshold changes its true

positive and false positive rate. These are also called the sensitivity and one
sensitivity

minus the specificity of our classifier. Since there is an almost bewildering
specificity

array of terms used in this context, we now give a summary. Table 4.6
shows the possible results when applying a classifier (or diagnostic test)
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True class
− or Null + or Non-null Total

Predicted − or Null True Neg. (TN) False Neg. (FN) N∗

class + or Non-null False Pos. (FP) True Pos. (TP) P∗

Total N P

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a
population.

Name Definition Synonyms
False Pos. rate FP/N Type I error, 1−Specificity
True Pos. rate TP/P 1−Type II error, power, sensitivity, recall
Pos. Pred. value TP/P∗ Precision, 1−false discovery proportion
Neg. Pred. value TN/N∗

TABLE 4.7. Important measures for classification and diagnostic testing,
derived from quantities in Table 4.6.

to a population. To make the connection with the epidemiology literature,
we think of “+” as the “disease” that we are trying to detect, and “−” as
the “non-disease” state. To make the connection to the classical hypothesis
testing literature, we think of “−” as the null hypothesis and “+” as the
alternative (non-null) hypothesis. In the context of the Default data, “+”
indicates an individual who defaults, and “−” indicates one who does not.
Table 4.7 lists many of the popular performance measures that are used in

this context. The denominators for the false positive and true positive rates
are the actual population counts in each class. In contrast, the denominators
for the positive predictive value and the negative predictive value are the
total predicted counts for each class.

4.4.3 Quadratic Discriminant Analysis

As we have discussed, LDA assumes that the observations within each
class are drawn from a multivariate Gaussian distribution with a class-
specific mean vector and a covariance matrix that is common to all K
classes. Quadratic discriminant analysis (QDA) provides an alternative

quadratic
discriminant
analysis

approach. Like LDA, the QDA classifier results from assuming that the
observations from each class are drawn from a Gaussian distribution, and
plugging estimates for the parameters into Bayes’ theorem in order to per-
form prediction. However, unlike LDA, QDA assumes that each class has
its own covariance matrix. That is, it assumes that an observation from the
kth class is of the form X ∼ N(µk,Σk), where Σk is a covariance matrix
for the kth class. Under this assumption, the Bayes classifier assigns an



4.4 Generative Models for Classification 153

observation X = x to the class for which

δk(x) = −1

2
(x− µk)

TΣ−1
k (x− µk)−

1

2
log |Σk|+ log πk

= −1

2
xTΣ−1

k x+ xTΣ−1
k µk −

1

2
µT
kΣ

−1
k µk −

1

2
log |Σk|+ log πk

(4.28)

is largest. So the QDA classifier involves plugging estimates for Σk, µk,
and πk into (4.28), and then assigning an observation X = x to the class
for which this quantity is largest. Unlike in (4.24), the quantity x appears
as a quadratic function in (4.28). This is where QDA gets its name.
Why does it matter whether or not we assume that the K classes share a

common covariance matrix? In other words, why would one prefer LDA to
QDA, or vice-versa? The answer lies in the bias-variance trade-off. When
there are p predictors, then estimating a covariance matrix requires esti-
mating p(p+1)/2 parameters. QDA estimates a separate covariance matrix
for each class, for a total of Kp(p+1)/2 parameters. With 50 predictors this
is some multiple of 1,275, which is a lot of parameters. By instead assum-
ing that the K classes share a common covariance matrix, the LDA model
becomes linear in x, which means there are Kp linear coefficients to esti-
mate. Consequently, LDA is a much less flexible classifier than QDA, and
so has substantially lower variance. This can potentially lead to improved
prediction performance. But there is a trade-off: if LDA’s assumption that
the K classes share a common covariance matrix is badly off, then LDA
can suffer from high bias. Roughly speaking, LDA tends to be a better bet
than QDA if there are relatively few training observations and so reducing
variance is crucial. In contrast, QDA is recommended if the training set is
very large, so that the variance of the classifier is not a major concern, or if
the assumption of a common covariance matrix for the K classes is clearly
untenable.
Figure 4.9 illustrates the performances of LDA and QDA in two scenarios.

In the left-hand panel, the two Gaussian classes have a common correla-
tion of 0.7 between X1 and X2. As a result, the Bayes decision boundary
is linear and is accurately approximated by the LDA decision boundary.
The QDA decision boundary is inferior, because it suffers from higher vari-
ance without a corresponding decrease in bias. In contrast, the right-hand
panel displays a situation in which the orange class has a correlation of 0.7
between the variables and the blue class has a correlation of −0.7. Now
the Bayes decision boundary is quadratic, and so QDA more accurately
approximates this boundary than does LDA.

4.4.4 Naive Bayes

In previous sections, we used Bayes’ theorem (4.15) to develop the LDA
and QDA classifiers. Here, we use Bayes’ theorem to motivate the popular
naive Bayes classifier.

naive Bayes
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FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with Σ1 = Σ2. The
shading indicates the QDA decision rule. Since the Bayes decision boundary is
linear, it is more accurately approximated by LDA than by QDA. Right: Details
are as given in the left-hand panel, except that Σ1 ̸= Σ2. Since the Bayes decision
boundary is non-linear, it is more accurately approximated by QDA than by LDA.

Recall that Bayes’ theorem (4.15) provides an expression for the pos-
terior probability pk(x) = Pr(Y = k|X = x) in terms of π1, . . . ,πK and
f1(x), . . . , fK(x). To use (4.15) in practice, we need estimates for π1, . . . ,πK

and f1(x), . . . , fK(x). As we saw in previous sections, estimating the prior
probabilities π1, . . . ,πK is typically straightforward: for instance, we can
estimate π̂k as the proportion of training observations belonging to the kth
class, for k = 1, . . . ,K.
However, estimating f1(x), . . . , fK(x) is more subtle. Recall that fk(x)

is the p-dimensional density function for an observation in the kth class,
for k = 1, . . . ,K. In general, estimating a p-dimensional density function is
challenging. In LDA, we make a very strong assumption that greatly sim-
plifies the task: we assume that fk is the density function for a multivariate
normal random variable with class-specific mean µk, and shared covariance
matrix Σ. By contrast, in QDA, we assume that fk is the density function
for a multivariate normal random variable with class-specific mean µk, and
class-specific covariance matrix Σk. By making these very strong assump-
tions, we are able to replace the very challenging problem of estimating K
p-dimensional density functions with the much simpler problem of estimat-
ing K p-dimensional mean vectors and one (in the case of LDA) or K (in
the case of QDA) (p× p)-dimensional covariance matrices.
The naive Bayes classifier takes a different tack for estimating f1(x), . . . ,

fK(x). Instead of assuming that these functions belong to a particular
family of distributions (e.g. multivariate normal), we instead make a single
assumption:
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Within the kth class, the p predictors are independent.

Stated mathematically, this assumption means that for k = 1, . . . ,K,

fk(x) = fk1(x1)× fk2(x2)× · · ·× fkp(xp), (4.29)

where fkj is the density function of the jth predictor among observations
in the kth class.
Why is this assumption so powerful? Essentially, estimating a p-dimen-

sional density function is challenging because we must consider not only
the marginal distribution of each predictor — that is, the distribution of

marginal
distributioneach predictor on its own — but also the joint distribution of the predictors

joint
distribution

— that is, the association between the different predictors. In the case of
a multivariate normal distribution, the association between the different
predictors is summarized by the off-diagonal elements of the covariance
matrix. However, in general, this association can be very hard to charac-
terize, and exceedingly challenging to estimate. But by assuming that the
p covariates are independent within each class, we completely eliminate the
need to worry about the association between the p predictors, because we
have simply assumed that there is no association between the predictors!
Do we really believe the naive Bayes assumption that the p covariates

are independent within each class? In most settings, we do not. But even
though this modeling assumption is made for convenience, it often leads
to pretty decent results, especially in settings where n is not large enough
relative to p for us to effectively estimate the joint distribution of the predic-
tors within each class. In fact, since estimating a joint distribution requires
such a huge amount of data, naive Bayes is a good choice in a wide range of
settings. Essentially, the naive Bayes assumption introduces some bias, but
reduces variance, leading to a classifier that works quite well in practice as
a result of the bias-variance trade-off.
Once we have made the naive Bayes assumption, we can plug (4.29) into

(4.15) to obtain an expression for the posterior probability,

Pr(Y = k|X = x) =
πk × fk1(x1)× fk2(x2)× · · ·× fkp(xp)∑K
l=1 πl × fl1(x1)× fl2(x2)× · · ·× flp(xp)

(4.30)

for k = 1, . . . ,K.
To estimate the one-dimensional density function fkj using training data

x1j , . . . , xnj , we have a few options.

• IfXj is quantitative, then we can assume thatXj |Y = k ∼ N(µjk,σ2
jk).

In other words, we assume that within each class, the jth predictor is
drawn from a (univariate) normal distribution. While this may sound
a bit like QDA, there is one key difference, in that here we are assum-
ing that the predictors are independent; this amounts to QDA with
an additional assumption that the class-specific covariance matrix is
diagonal.
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True default status
No Yes Total

Predicted No 9615 241 9856
default status Yes 52 92 144

Total 9667 333 10000

TABLE 4.8. Comparison of the naive Bayes predictions to the true default status
for the 10, 000 training observations in the Default data set, when we predict
default for any observation for which P (Y = default|X = x) > 0.5.

• If Xj is quantitative, then another option is to use a non-parametric
estimate for fkj . A very simple way to do this is by making a his-
togram for the observations of the jth predictor within each class.
Then we can estimate fkj(xj) as the fraction of the training obser-
vations in the kth class that belong to the same histogram bin as xj .
Alternatively, we can use a kernel density estimator, which is essen-

kernel
density
estimator

tially a smoothed version of a histogram.

• If Xj is qualitative, then we can simply count the proportion of train-
ing observations for the jth predictor corresponding to each class. For
instance, suppose that Xj ∈ {1, 2, 3}, and we have 100 observations
in the kth class. Suppose that the jth predictor takes on values of 1,
2, and 3 in 32, 55, and 13 of those observations, respectively. Then
we can estimate fkj as

f̂kj(xj) =

⎧
⎪⎨

⎪⎩

0.32 if xj = 1

0.55 if xj = 2

0.13 if xj = 3.

We now consider the naive Bayes classifier in a toy example with p = 3
predictors and K = 2 classes. The first two predictors are quantitative,
and the third predictor is qualitative with three levels. Suppose further
that π̂1 = π̂2 = 0.5. The estimated density functions f̂kj for k = 1, 2
and j = 1, 2, 3 are displayed in Figure 4.10. Now suppose that we wish
to classify a new observation, x∗ = (0.4, 1.5, 1)T . It turns out that in this
example, f̂11(0.4) = 0.368, f̂12(1.5) = 0.484, f̂13(1) = 0.226, and f̂21(0.4) =
0.030, f̂22(1.5) = 0.130, f̂23(1) = 0.616. Plugging these estimates into (4.30)
results in posterior probability estimates of Pr(Y = 1|X = x∗) = 0.944 and
Pr(Y = 2|X = x∗) = 0.056.
Table 4.8 provides the confusion matrix resulting from applying the naive

Bayes classifier to the Default data set, where we predict a default if the
posterior probability of a default — that is, P (Y = default|X = x) — ex-
ceeds 0.5. Comparing this to the results for LDA in Table 4.4, our findings
are mixed. While LDA has a slightly lower overall error rate, naive Bayes
correctly predicts a higher fraction of the true defaulters. In this implemen-
tation of naive Bayes, we have assumed that each quantitative predictor is
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FIGURE 4.10. In the toy example in Section 4.4.4, we generate data with p = 3
predictors and K = 2 classes. The first two predictors are quantitative, and the
third predictor is qualitative with three levels. In each class, the estimated density
for each of the three predictors is displayed. If the prior probabilities for the two
classes are equal, then the observation x∗ = (0.4, 1.5, 1)T has a 94.4% posterior
probability of belonging to the first class.

True default status
No Yes Total

Predicted No 9320 128 9448
default status Yes 347 205 552

Total 9667 333 10000

TABLE 4.9. Comparison of the naive Bayes predictions to the true default status
for the 10, 000 training observations in the Default data set, when we predict
default for any observation for which P (Y = default|X = x) > 0.2.

drawn from a Gaussian distribution (and, of course, that within each class,
each predictor is independent).
Just as with LDA, we can easily adjust the probability threshold for

predicting a default. For example, Table 4.9 provides the confusion matrix
resulting from predicting a default if P (Y = default|X = x) > 0.2. Again,
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the results are mixed relative to LDA with the same threshold (Table 4.5).
Naive Bayes has a higher error rate, but correctly predicts almost two-thirds
of the true defaults.
In this example, it should not be too surprising that naive Bayes does

not convincingly outperform LDA: this data set has n = 10,000 and p = 4,
and so the reduction in variance resulting from the naive Bayes assumption
is not necessarily worthwhile. We expect to see a greater pay-off to using
naive Bayes relative to LDA or QDA in instances where p is larger or n is
smaller, so that reducing the variance is very important.

4.5 A Comparison of Classification Methods

4.5.1 An Analytical Comparison

We now perform an analytical (or mathematical) comparison of LDA,
QDA, naive Bayes, and logistic regression. We consider these approaches in
a setting with K classes, so that we assign an observation to the class that
maximizes Pr(Y = k|X = x). Equivalently, we can set K as the baseline
class and assign an observation to the class that maximizes

log

(
Pr(Y = k|X = x)

Pr(Y = K|X = x)

)
(4.31)

for k = 1, . . . ,K. Examining the specific form of (4.31) for each method
provides a clear understanding of their similarities and differences.
First, for LDA, we can make use of Bayes’ Theorem (4.15) as well as

the assumption that the predictors within each class are drawn from a
multivariate normal density (4.23) with class-specific mean and shared co-
variance matrix in order to show that

log

(
Pr(Y = k|X = x)

Pr(Y = K|X = x)

)
= log

(
πkfk(x)

πKfK(x)

)

= log

(
πk exp

(
− 1

2 (x− µk)TΣ
−1(x− µk)

)

πK exp
(
− 1

2 (x− µK)TΣ−1(x− µK)
)
)

= log

(
πk

πK

)
− 1

2
(x− µk)

TΣ−1(x− µk)

+
1

2
(x− µK)TΣ−1(x− µK)

= log

(
πk

πK

)
− 1

2
(µk + µK)TΣ−1(µk − µK)

+ xTΣ−1(µk − µK)

= ak +
p∑

j=1

bkjxj , (4.32)
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where ak = log
(

πk
πK

)
− 1

2 (µk + µK)TΣ−1(µk − µK) and bkj is the jth

component of Σ−1(µk − µK). Hence LDA, like logistic regression, assumes
that the log odds of the posterior probabilities is linear in x.
Using similar calculations, in the QDA setting (4.31) becomes

log

(
Pr(Y = k|X = x)

Pr(Y = K|X = x)

)
= ak +

p∑

j=1

bkjxj +
p∑

j=1

p∑

l=1

ckjlxjxl, (4.33)

where ak, bkj , and ckjl are functions of πk,πK , µk, µK ,Σk and ΣK . Again,
as the name suggests, QDA assumes that the log odds of the posterior
probabilities is quadratic in x.
Finally, we examine (4.31) in the naive Bayes setting. Recall that in

this setting, fk(x) is modeled as a product of p one-dimensional functions
fkj(xj) for j = 1, . . . , p. Hence,

log

(
Pr(Y = k|X = x)

Pr(Y = K|X = x)

)
= log

(
πkfk(x)

πKfK(x)

)

= log

(
πk
∏p

j=1 fkj(xj)

πK
∏p

j=1 fKj(xj)

)

= log

(
πk

πK

)
+

p∑

j=1

log

(
fkj(xj)

fKj(xj)

)

= ak +
p∑

j=1

gkj(xj), (4.34)

where ak = log
(

πk
πK

)
and gkj(xj) = log

(
fkj(xj)
fKj(xj)

)
. Hence, the right-hand

side of (4.34) takes the form of a generalized additive model, a topic that is
discussed further in Chapter 7.
Inspection of (4.32), (4.33), and (4.34) yields the following observations

about LDA, QDA, and naive Bayes:

• LDA is a special case of QDA with ckjl = 0 for all j = 1, . . . , p,
l = 1, . . . , p, and k = 1, . . . ,K. (Of course, this is not surprising, since
LDA is simply a restricted version of QDA withΣ1 = · · · = ΣK = Σ.)

• Any classifier with a linear decision boundary is a special case of naive
Bayes with gkj(xj) = bkjxj . In particular, this means that LDA is
a special case of naive Bayes! This is not at all obvious from the
descriptions of LDA and naive Bayes earlier in the chapter, since
each method makes very different assumptions: LDA assumes that
the features are normally distributed with a common within-class
covariance matrix, and naive Bayes instead assumes independence of
the features.
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• If we model fkj(xj) in the naive Bayes classifier using a one-dimensional
Gaussian distribution N(µkj ,σ2

j ), then we end up with gkj(xj) =
bkjxj where bkj = (µkj − µKj)/σ2

j . In this case, naive Bayes is actu-
ally a special case of LDA with Σ restricted to be a diagonal matrix
with jth diagonal element equal to σ2

j .

• Neither QDA nor naive Bayes is a special case of the other. Naive
Bayes can produce a more flexible fit, since any choice can be made
for gkj(xj). However, it is restricted to a purely additive fit, in the
sense that in (4.34), a function of xj is added to a function of xl, for
j ̸= l; however, these terms are never multiplied. By contrast, QDA
includes multiplicative terms of the form ckjlxjxl. Therefore, QDA
has the potential to be more accurate in settings where interactions
among the predictors are important in discriminating between classes.

None of these methods uniformly dominates the others: in any setting, the
choice of method will depend on the true distribution of the predictors in
each of the K classes, as well as other considerations, such as the values of
n and p. The latter ties into the bias-variance trade-off.
How does logistic regression tie into this story? Recall from (4.12) that

multinomial logistic regression takes the form

log

(
Pr(Y = k|X = x)

Pr(Y = K|X = x)

)
= βk0 +

p∑

j=1

βkjxj .

This is identical to the linear form of LDA (4.32): in both cases,

log
(

Pr(Y=k|X=x)
Pr(Y=K|X=x)

)
is a linear function of the predictors. In LDA, the co-

efficients in this linear function are functions of estimates for πk, πK , µk,
µK , and Σ obtained by assuming that X1, . . . , Xp follow a normal distri-
bution within each class. By contrast, in logistic regression, the coefficients
are chosen to maximize the likelihood function (4.5). Thus, we expect LDA
to outperform logistic regression when the normality assumption (approxi-
mately) holds, and we expect logistic regression to perform better when it
does not.
We close with a brief discussion of K-nearest neighbors (KNN), intro-

duced in Chapter 2. Recall that KNN takes a completely different approach
from the classifiers seen in this chapter. In order to make a prediction for
an observation X = x, the training observations that are closest to x are
identified. Then X is assigned to the class to which the plurality of these
observations belong. Hence KNN is a completely non-parametric approach:
no assumptions are made about the shape of the decision boundary. We
make the following observations about KNN:

• Because KNN is completely non-parametric, we can expect this ap-
proach to dominate LDA and logistic regression when the decision
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boundary is highly non-linear, provided that n is very large and p is
small.

• In order to provide accurate classification, KNN requires a lot of ob-
servations relative to the number of predictors—that is, nmuch larger
than p. This has to do with the fact that KNN is non-parametric, and
thus tends to reduce the bias while incurring a lot of variance.

• In settings where the decision boundary is non-linear but n is only
modest, or p is not very small, then QDA may be preferred to KNN.
This is because QDA can provide a non-linear decision boundary
while taking advantage of a parametric form, which means that it
requires a smaller sample size for accurate classification, relative to
KNN.

• Unlike logistic regression, KNN does not tell us which predictors are
important: we don’t get a table of coefficients as in Table 4.3.

4.5.2 An Empirical Comparison

We now compare the empirical (practical) performance of logistic regres-
sion, LDA, QDA, naive Bayes, and KNN. We generated data from six dif-
ferent scenarios, each of which involves a binary (two-class) classification
problem. In three of the scenarios, the Bayes decision boundary is linear,
and in the remaining scenarios it is non-linear. For each scenario, we pro-
duced 100 random training data sets. On each of these training sets, we
fit each method to the data and computed the resulting test error rate on
a large test set. Results for the linear scenarios are shown in Figure 4.11,
and the results for the non-linear scenarios are in Figure 4.12. The KNN
method requires selection of K, the number of neighbors (not to be con-
fused with the number of classes in earlier sections of this chapter). We
performed KNN with two values of K: K = 1, and a value of K that was
chosen automatically using an approach called cross-validation, which we
discuss further in Chapter 5. We applied naive Bayes assuming univariate
Gaussian densities for the features within each class (and, of course — since
this is the key characteristic of naive Bayes — assuming independence of
the features).
In each of the six scenarios, there were p = 2 quantitative predictors.

The scenarios were as follows:

Scenario 1: There were 20 training observations in each of two classes. The
observations within each class were uncorrelated random normal variables
with a different mean in each class. The left-hand panel of Figure 4.11 shows
that LDA performed well in this setting, as one would expect since this is
the model assumed by LDA. Logistic regression also performed quite well,
since it assumes a linear decision boundary. KNN performed poorly because
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FIGURE 4.11. Boxplots of the test error rates for each of the linear scenarios
described in the main text.

it paid a price in terms of variance that was not offset by a reduction in bias.
QDA also performed worse than LDA, since it fit a more flexible classifier
than necessary. The performance of naive Bayes was slightly better than
QDA, because the naive Bayes assumption of independent predictors is
correct.

Scenario 2: Details are as in Scenario 1, except that within each class, the
two predictors had a correlation of −0.5. The center panel of Figure 4.11
indicates that the performance of most methods is similar to the previ-
ous scenario. The notable exception is naive Bayes, which performs very
poorly here, since the naive Bayes assumption of independent predictors is
violated.

Scenario 3: As in the previous scenario, there is substantial negative cor-
relation between the predictors within each class. However, this time we
generatedX1 andX2 from the t-distribution, with 50 observations per class.

t-
distributionThe t-distribution has a similar shape to the normal distribution, but it

has a tendency to yield more extreme points—that is, more points that are
far from the mean. In this setting, the decision boundary was still linear,
and so fit into the logistic regression framework. The set-up violated the
assumptions of LDA, since the observations were not drawn from a normal
distribution. The right-hand panel of Figure 4.11 shows that logistic regres-
sion outperformed LDA, though both methods were superior to the other
approaches. In particular, the QDA results deteriorated considerably as a
consequence of non-normality. Naive Bayes performed very poorly because
the independence assumption is violated.

Scenario 4: The data were generated from a normal distribution, with a
correlation of 0.5 between the predictors in the first class, and correlation of
−0.5 between the predictors in the second class. This setup corresponded to
the QDA assumption, and resulted in quadratic decision boundaries. The
left-hand panel of Figure 4.12 shows that QDA outperformed all of the
other approaches. The naive Bayes assumption of independent predictors
is violated, so naive Bayes performs poorly.
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FIGURE 4.12. Boxplots of the test error rates for each of the non-linear sce-
narios described in the main text.

Scenario 5: The data were generated from a normal distribution with un-
correlated predictors. Then the responses were sampled from the logistic
function applied to a complicated non-linear function of the predictors. The
center panel of Figure 4.12 shows that both QDA and naive Bayes gave
slightly better results than the linear methods, while the much more flexi-
ble KNN-CV method gave the best results. But KNN with K = 1 gave the
worst results out of all methods. This highlights the fact that even when the
data exhibits a complex non-linear relationship, a non-parametric method
such as KNN can still give poor results if the level of smoothness is not
chosen correctly.

Scenario 6: The observations were generated from a normal distribution
with a different diagonal covariance matrix for each class. However, the
sample size was very small: just n = 6 in each class. Naive Bayes performed
very well, because its assumptions are met. LDA and logistic regression
performed poorly because the true decision boundary is non-linear, due to
the unequal covariance matrices. QDA performed a bit worse than naive
Bayes, because given the very small sample size, the former incurred too
much variance in estimating the correlation between the predictors within
each class. KNN’s performance also suffered due to the very small sample
size.

These six examples illustrate that no one method will dominate the oth-
ers in every situation. When the true decision boundaries are linear, then
the LDA and logistic regression approaches will tend to perform well. When
the boundaries are moderately non-linear, QDA or naive Bayes may give
better results. Finally, for much more complicated decision boundaries, a
non-parametric approach such as KNN can be superior. But the level of
smoothness for a non-parametric approach must be chosen carefully. In the
next chapter we examine a number of approaches for choosing the correct
level of smoothness and, in general, for selecting the best overall method.
Finally, recall from Chapter 3 that in the regression setting we can accom-

modate a non-linear relationship between the predictors and the response
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by performing regression using transformations of the predictors. A similar
approach could be taken in the classification setting. For instance, we could
create a more flexible version of logistic regression by including X2, X3,
and even X4 as predictors. This may or may not improve logistic regres-
sion’s performance, depending on whether the increase in variance due to
the added flexibility is offset by a sufficiently large reduction in bias. We
could do the same for LDA. If we added all possible quadratic terms and
cross-products to LDA, the form of the model would be the same as the
QDA model, although the parameter estimates would be different. This
device allows us to move somewhere between an LDA and a QDA model.

4.6 Generalized Linear Models

In Chapter 3, we assumed that the response Y is quantitative, and ex-
plored the use of least squares linear regression to predict Y . Thus far in
this chapter, we have instead assumed that Y is qualitative. However, we
may sometimes be faced with situations in which Y is neither qualitative
nor quantitative, and so neither linear regression from Chapter 3 nor the
classification approaches covered in this chapter is applicable.
As a concrete example, we consider the Bikeshare data set. The response

is bikers, the number of hourly users of a bike sharing program in Wash-
ington, DC. This response value is neither qualitative nor quantitative:
instead, it takes on non-negative integer values, or counts. We will consider

counts
predicting bikers using the covariates mnth (month of the year), hr (hour
of the day, from 0 to 23), workingday (an indicator variable that equals 1 if
it is neither a weekend nor a holiday), temp (the normalized temperature,
in Celsius), and weathersit (a qualitative variable that takes on one of four
possible values: clear; misty or cloudy; light rain or light snow; or heavy
rain or heavy snow.)
In the analyses that follow, we will treat mnth, hr, and weathersit as

qualitative variables.

4.6.1 Linear Regression on the Bikeshare Data

To begin, we consider predicting bikers using linear regression. The results
are shown in Table 4.10.
We see, for example, that a progression of weather from clear to cloudy

results in, on average, 12.89 fewer bikers per hour; however, if the weather
progresses further to rain or snow, then this further results in 53.60 fewer
bikers per hour. Figure 4.13 displays the coefficients associated with mnth

and the coefficients associated with hr. We see that bike usage is highest in
the spring and fall, and lowest during the winter months. Furthermore, bike
usage is greatest around rush hour (9 AM and 6 PM), and lowest overnight.
Thus, at first glance, fitting a linear regression model to the Bikeshare data
set seems to provide reasonable and intuitive results.
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Coefficient Std. error z-statistic p-value
Intercept 73.60 5.13 14.34 0.00
workingday 1.27 1.78 0.71 0.48
temp 157.21 10.26 15.32 0.00
weathersit[cloudy/misty] -12.89 1.96 -6.56 0.00
weathersit[light rain/snow] -66.49 2.97 -22.43 0.00
weathersit[heavy rain/snow] -109.75 76.67 -1.43 0.15

TABLE 4.10. Results for a least squares linear model fit to predict bikers in
the Bikeshare data. The predictors mnth and hr are omitted from this table due
to space constraints, and can be seen in Figure 4.13. For the qualitative variable
weathersit, the baseline level corresponds to clear skies.
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FIGURE 4.13. A least squares linear regression model was fit to predict bikers
in the Bikeshare data set. Left: The coefficients associated with the month of the
year. Bike usage is highest in the spring and fall, and lowest in the winter. Right:
The coefficients associated with the hour of the day. Bike usage is highest during
peak commute times, and lowest overnight.

But upon more careful inspection, some issues become apparent. For
example, 9.6% of the fitted values in the Bikeshare data set are negative:
that is, the linear regression model predicts a negative number of users
during 9.6% of the hours in the data set. This calls into question our ability
to perform meaningful predictions on the data, and it also raises concerns
about the accuracy of the coefficient estimates, confidence intervals, and
other outputs of the regression model.
Furthermore, it is reasonable to suspect that when the expected value

of bikers is small, the variance of bikers should be small as well. For
instance, at 2 AM during a heavy December snow storm, we expect that
extremely few people will use a bike, and moreover that there should be
little variance associated with the number of users during those conditions.
This is borne out in the data: between 1 AM and 4 AM, in December,
January, and February, when it is raining, there are 5.05 users, on average,
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FIGURE 4.14. Left: On the Bikeshare dataset, the number of bikers is dis-
played on the y-axis, and the hour of the day is displayed on the x-axis. Jitter
was applied for ease of visualization. For the most part, as the mean number of
bikers increases, so does the variance in the number of bikers. A smoothing spline
fit is shown in green. Right: The log of the number of bikers is now displayed on
the y-axis.

with a standard deviation of 3.73. By contrast, between 7 AM and 10 AM,
in April, May, and June, when skies are clear, there are 243.59 users, on
average, with a standard deviation of 131.7. The mean-variance relationship
is displayed in the left-hand panel of Figure 4.14. This is a major violation
of the assumptions of a linear model, which state that Y =

∑p
j=1 Xjβj + ϵ,

where ϵ is a mean-zero error term with variance σ2 that is constant, and
not a function of the covariates. Therefore, the heteroscedasticity of the
data calls into question the suitability of a linear regression model.
Finally, the response bikers is integer-valued. But under a linear model,

Y = β0 +
∑p

j=1 Xjβj + ϵ, where ϵ is a continuous-valued error term. This
means that in a linear model, the response Y is necessarily continuous-
valued (quantitative). Thus, the integer nature of the response bikers sug-
gests that a linear regression model is not entirely satisfactory for this data
set.
Some of the problems that arise when fitting a linear regression model

to the Bikeshare data can be overcome by transforming the response; for
instance, we can fit the model

log(Y ) =
p∑

j=1

Xjβj + ϵ.

Transforming the response avoids the possibility of negative predictions,
and it overcomes much of the heteroscedasticity in the untransformed data,
as is shown in the right-hand panel of Figure 4.14. However, it is not quite
a satisfactory solution, since predictions and inference are made in terms of
the log of the response, rather than the response. This leads to challenges
in interpretation, e.g. “a one-unit increase in Xj is associated with an
increase in the mean of the log of Y by an amount βj”. Furthermore, a
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log transformation of the response cannot be applied in settings where the
response can take on a value of 0. Thus, while fitting a linear model to
a transformation of the response may be an adequate approach for some
count-valued data sets, it often leaves something to be desired. We will see
in the next section that a Poisson regression model provides a much more
natural and elegant approach for this task.

4.6.2 Poisson Regression on the Bikeshare Data

To overcome the inadequacies of linear regression for analyzing the Bikeshare

data set, we will make use of an alternative approach, called Poisson
regression. Before we can talk about Poisson regression, we must first in-

Poisson
regressiontroduce the Poisson distribution.

Poisson
distribution

Suppose that a random variable Y takes on nonnegative integer values,
i.e. Y ∈ {0, 1, 2, . . .}. If Y follows the Poisson distribution, then

Pr(Y = k) =
e−λλk

k!
for k = 0, 1, 2, . . . . (4.35)

Here, λ > 0 is the expected value of Y , i.e. E(Y ). It turns out that λ also
equals the variance of Y , i.e. λ = E(Y ) = Var(Y ). This means that if Y
follows the Poisson distribution, then the larger the mean of Y , the larger
its variance. (In (4.35), the notation k!, pronounced “k factorial”, is defined
as k! = k × (k − 1)× (k − 2)× . . .× 3× 2× 1.)
The Poisson distribution is typically used to model counts ; this is a

natural choice for a number of reasons, including the fact that counts, like
the Poisson distribution, take on nonnegative integer values. To see how we
might use the Poisson distribution in practice, let Y denote the number of
users of the bike sharing program during a particular hour of the day, under
a particular set of weather conditions, and during a particular month of the
year. We might model Y as a Poisson distribution with mean E(Y ) = λ = 5.
This means that the probability of no users during this particular hour is
Pr(Y = 0) = e−550

0! = e−5 = 0.0067 (where 0! = 1 by convention). The

probability that there is exactly one user is Pr(Y = 1) = e−551

1! = 5e−5 =

0.034, the probability of two users is Pr(Y = 2) = e−552

2! = 0.084, and so
on.
Of course, in reality, we expect the mean number of users of the bike

sharing program, λ = E(Y ), to vary as a function of the hour of the day,
the month of the year, the weather conditions, and so forth. So rather
than modeling the number of bikers, Y , as a Poisson distribution with a
fixed mean value like λ = 5, we would like to allow the mean to vary as a
function of the covariates. In particular, we consider the following model
for the mean λ = E(Y ), which we now write as λ(X1, . . . , Xp) to emphasize
that it is a function of the covariates X1, . . . , Xp:

log(λ(X1, . . . , Xp)) = β0 + β1X1 + · · ·+ βpXp (4.36)
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Coefficient Std. error z-statistic p-value
Intercept 4.12 0.01 683.96 0.00
workingday 0.01 0.00 7.5 0.00
temp 0.79 0.01 68.43 0.00
weathersit[cloudy/misty] -0.08 0.00 -34.53 0.00
weathersit[light rain/snow] -0.58 0.00 -141.91 0.00
weathersit[heavy rain/snow] -0.93 0.17 -5.55 0.00

TABLE 4.11. Results for a Poisson regression model fit to predict bikers in
the Bikeshare data. The predictors mnth and hr are omitted from this table due
to space constraints, and can be seen in Figure 4.15. For the qualitative variable
weathersit, the baseline corresponds to clear skies.

or equivalently

λ(X1, . . . , Xp) = eβ0+β1X1+···+βpXp . (4.37)

Here, β0,β1, . . . ,βp are parameters to be estimated. Together, (4.35) and
(4.36) define the Poisson regression model. Notice that in (4.36), we take
the log of λ(X1, . . . , Xp) to be linear in X1, . . . , Xp, rather than hav-
ing λ(X1, . . . , Xp) itself be linear in X1, . . . , Xp, in order to ensure that
λ(X1, . . . , Xp) takes on nonnegative values for all values of the covariates.
To estimate the coefficients β0,β1, . . . ,βp, we use the same maximum

likelihood approach that we adopted for logistic regression in Section 4.3.2.
Specifically, given n independent observations from the Poisson regression
model, the likelihood takes the form

ℓ(β0,β1, . . . ,βp) =
n∏

i=1

e−λ(xi)λ(xi)yi

yi!
, (4.38)

where λ(xi) = eβ0+β1xi1+···+βpxip , due to (4.37). We estimate the coef-
ficients that maximize the likelihood ℓ(β0,β1, . . . ,βp), i.e. that make the
observed data as likely as possible.
We now fit a Poisson regression model to the Bikeshare data set. The

results are shown in Table 4.11 and Figure 4.15. Qualitatively, the results
are similar to those from linear regression in Section 4.6.1. We again see
that bike usage is highest in the spring and fall and during rush hour,
and lowest during the winter and in the early morning hours. Moreover,
bike usage increases as the temperature increases, and decreases as the
weather worsens. Interestingly, the coefficient associated with workingday

is statistically significant under the Poisson regression model, but not under
the linear regression model.
Some important distinctions between the Poisson regression model and

the linear regression model are as follows:

• Interpretation: To interpret the coefficients in the Poisson regression
model, we must pay close attention to (4.37), which states that an
increase in Xj by one unit is associated with a change in E(Y ) = λ
by a factor of exp(βj). For example, a change in weather from clear
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FIGURE 4.15. A Poisson regression model was fit to predict bikers in the
Bikeshare data set. Left: The coefficients associated with the month of the year.
Bike usage is highest in the spring and fall, and lowest in the winter. Right: The
coefficients associated with the hour of the day. Bike usage is highest during peak
commute times, and lowest overnight.

to cloudy skies is associated with a change in mean bike usage by a
factor of exp(−0.08) = 0.923, i.e. on average, only 92.3% as many
people will use bikes when it is cloudy relative to when it is clear.
If the weather worsens further and it begins to rain, then the mean
bike usage will further change by a factor of exp(−0.5) = 0.607, i.e.
on average only 60.7% as many people will use bikes when it is rainy
relative to when it is cloudy.

• Mean-variance relationship: As mentioned earlier, under the Poisson
model, λ = E(Y ) = Var(Y ). Thus, by modeling bike usage with a
Poisson regression, we implicitly assume that mean bike usage in a
given hour equals the variance of bike usage during that hour. By
contrast, under a linear regression model, the variance of bike usage
always takes on a constant value. Recall from Figure 4.14 that in the
Bikeshare data, when biking conditions are favorable, both the mean
and the variance in bike usage are much higher than when conditions
are unfavorable. Thus, the Poisson regression model is able to handle
the mean-variance relationship seen in the Bikeshare data in a way
that the linear regression model is not.5

overdispersion

• nonnegative fitted values: There are no negative predictions using the
Poisson regression model. This is because the Poisson model itself
only allows for nonnegative values; see (4.35). By contrast, when we

5In fact, the variance in the Bikeshare data appears to be much higher than the
mean, a situation referred to as overdispersion. This causes the Z-values to be inflated
in Table 4.11. A more careful analysis should account for this overdispersion to obtain
more accurate Z-values, and there are a variety of methods for doing this. But they are
beyond the scope of this book.
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fit a linear regression model to the Bikeshare data set, almost 10% of
the predictions were negative.

4.6.3 Generalized Linear Models in Greater Generality

We have now discussed three types of regression models: linear, logistic and
Poisson. These approaches share some common characteristics:

1. Each approach uses predictors X1, . . . , Xp to predict a response Y .
We assume that, conditional on X1, . . . , Xp, Y belongs to a certain
family of distributions. For linear regression, we typically assume that
Y follows a Gaussian or normal distribution. For logistic regression,
we assume that Y follows a Bernoulli distribution. Finally, for Poisson
regression, we assume that Y follows a Poisson distribution.

2. Each approach models the mean of Y as a function of the predictors.
In linear regression, the mean of Y takes the form

E(Y |X1, . . . , Xp) = β0 + β1X1 + · · ·+ βpXp, (4.39)

i.e. it is a linear function of the predictors. For logistic regression, the
mean instead takes the form

E(Y |X1, . . . , Xp) = Pr(Y = 1|X1, . . . , Xp)

=
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
, (4.40)

while for Poisson regression it takes the form

E(Y |X1, . . . , Xp) = λ(X1, . . . , Xp) = eβ0+β1X1+···+βpXp . (4.41)

Equations (4.39)–(4.41) can be expressed using a link function, η, which
link function

applies a transformation to E(Y |X1, . . . , Xp) so that the transformed mean
is a linear function of the predictors. That is,

η(E(Y |X1, . . . , Xp)) = β0 + β1X1 + · · ·+ βpXp. (4.42)

The link functions for linear, logistic and Poisson regression are η(µ) = µ,
η(µ) = log(µ/(1− µ)), and η(µ) = log(µ), respectively.
The Gaussian, Bernoulli and Poisson distributions are all members of a

wider class of distributions, known as the exponential family. Other well-
exponential
familyknown members of this family are the exponential distribution, the Gamma

exponential
distribution

distribution, and the negative binomial distribution. In general, we can per-

Gamma
distribution
negative
binomial
distribution

form a regression by modeling the response Y as coming from a particular
member of the exponential family, and then transforming the mean of the
response so that the transformed mean is a linear function of the predictors
via (4.42). Any regression approach that follows this very general recipe is
known as a generalized linear model (GLM). Thus, linear regression, logistic

generalized
linear model

regression, and Poisson regression are three examples of GLMs. Other ex-
amples not covered here include Gamma regression and negative binomial

Gamma
regression

regression.

negative
binomial
regression
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4.7 Lab: Classification Methods

4.7.1 The Stock Market Data

We will begin by examining some numerical and graphical summaries of
the Smarket data, which is part of the ISLR2 library. This data set consists of
percentage returns for the S&P 500 stock index over 1, 250 days, from the
beginning of 2001 until the end of 2005. For each date, we have recorded
the percentage returns for each of the five previous trading days, Lag1

through Lag5. We have also recorded Volume (the number of shares traded
on the previous day, in billions), Today (the percentage return on the date
in question) and Direction (whether the market was Up or Down on this
date). Our goal is to predict Direction (a qualitative response) using the
other features.

> library(ISLR2)

> names(Smarket)

[1] "Year" "Lag1" "Lag2" "Lag3" "Lag4"

[6] "Lag5" "Volume" "Today" "Direction"

> dim(Smarket)

[1] 1250 9

> summary(Smarket)

Year Lag1 Lag2

Min. :2001 Min. : -4.92200 Min. : -4.92200

1st Qu .:2002 1st Qu.: -0.63950 1st Qu .: -0.63950

Median :2003 Median : 0.03900 Median : 0.03900

Mean :2003 Mean : 0.00383 Mean : 0.00392

3rd Qu .:2004 3rd Qu.: 0.59675 3rd Qu.: 0.59675

Max. :2005 Max. : 5.73300 Max. : 5.73300

Lag3 Lag4 Lag5

Min. : -4.92200 Min. : -4.92200 Min. : -4.92200

1st Qu.: -0.64000 1st Qu.: -0.64000 1st Qu .: -0.64000

Median : 0.03850 Median : 0.03850 Median : 0.03850

Mean : 0.00172 Mean : 0.00164 Mean : 0.00561

3rd Qu.: 0.59675 3rd Qu.: 0.59675 3rd Qu.: 0.59700

Max. : 5.73300 Max. : 5.73300 Max. : 5.73300

Volume Today Direction

Min. :0.356 Min. : -4.92200 Down :602

1st Qu .:1.257 1st Qu .: -0.63950 Up :648

Median :1.423 Median : 0.03850

Mean :1.478 Mean : 0.00314

3rd Qu .:1.642 3rd Qu.: 0.59675

Max. :3.152 Max. : 5.73300

> pairs(Smarket)

The cor() function produces a matrix that contains all of the pairwise
correlations among the predictors in a data set. The first command below
gives an error message because the Direction variable is qualitative.

> cor(Smarket)

Error in cor(Smarket) : ‘x’ must be numeric

> cor(Smarket[, -9])
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Year Lag1 Lag2 Lag3 Lag4 Lag5

Year 1.0000 0.02970 0.03060 0.03319 0.03569 0.02979

Lag1 0.0297 1.00000 -0.02629 -0.01080 -0.00299 -0.00567

Lag2 0.0306 -0.02629 1.00000 -0.02590 -0.01085 -0.00356

Lag3 0.0332 -0.01080 -0.02590 1.00000 -0.02405 -0.01881

Lag4 0.0357 -0.00299 -0.01085 -0.02405 1.00000 -0.02708

Lag5 0.0298 -0.00567 -0.00356 -0.01881 -0.02708 1.00000

Volume 0.5390 0.04091 -0.04338 -0.04182 -0.04841 -0.02200

Today 0.0301 -0.02616 -0.01025 -0.00245 -0.00690 -0.03486

Volume Today

Year 0.5390 0.03010

Lag1 0.0409 -0.02616

Lag2 -0.0434 -0.01025

Lag3 -0.0418 -0.00245

Lag4 -0.0484 -0.00690

Lag5 -0.0220 -0.03486

Volume 1.0000 0.01459

Today 0.0146 1.00000

As one would expect, the correlations between the lag variables and to-
day’s returns are close to zero. In other words, there appears to be little
correlation between today’s returns and previous days’ returns. The only
substantial correlation is between Year and Volume. By plotting the data,
which is ordered chronologically, we see that Volume is increasing over time.
In other words, the average number of shares traded daily increased from
2001 to 2005.

> attach(Smarket)

> plot(Volume)

4.7.2 Logistic Regression

Next, we will fit a logistic regression model in order to predict Direction

using Lag1 through Lag5 and Volume. The glm() function can be used to fit
glm()

many types of generalized linear models, including logistic regression. The
generalized
linear modelsyntax of the glm() function is similar to that of lm(), except that we must

pass in the argument family = binomial in order to tell R to run a logistic
regression rather than some other type of generalized linear model.

> glm.fits <- glm(

Direction ∼ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume ,

data = Smarket , family = binomial

)

> summary(glm.fits)

Call:

glm(formula = Direction ∼ Lag1 + Lag2 + Lag3 + Lag4 + Lag5

+ Volume , family = binomial , data = Smarket)

Deviance Residuals:

Min 1Q Median 3Q Max
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-1.45 -1.20 1.07 1.15 1.33

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.12600 0.24074 -0.52 0.60

Lag1 -0.07307 0.05017 -1.46 0.15

Lag2 -0.04230 0.05009 -0.84 0.40

Lag3 0.01109 0.04994 0.22 0.82

Lag4 0.00936 0.04997 0.19 0.85

Lag5 0.01031 0.04951 0.21 0.83

Volume 0.13544 0.15836 0.86 0.39

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1731.2 on 1249 degrees of freedom

Residual deviance: 1727.6 on 1243 degrees of freedom

AIC: 1742

Number of Fisher Scoring iterations: 3

The smallest p-value here is associated with Lag1. The negative coefficient
for this predictor suggests that if the market had a positive return yesterday,
then it is less likely to go up today. However, at a value of 0.15, the p-value
is still relatively large, and so there is no clear evidence of a real association
between Lag1 and Direction.
We use the coef() function in order to access just the coefficients for this

fitted model. We can also use the summary() function to access particular
aspects of the fitted model, such as the p-values for the coefficients.

> coef(glm.fits)

(Intercept) Lag1 Lag2 Lag3 Lag4

-0.12600 -0.07307 -0.04230 0.01109 0.00936

Lag5 Volume

0.01031 0.13544

> summary(glm.fits)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.12600 0.2407 -0.523 0.601

Lag1 -0.07307 0.0502 -1.457 0.145

Lag2 -0.04230 0.0501 -0.845 0.398

Lag3 0.01109 0.0499 0.222 0.824

Lag4 0.00936 0.0500 0.187 0.851

Lag5 0.01031 0.0495 0.208 0.835

Volume 0.13544 0.1584 0.855 0.392

> summary(glm.fits)$coef[, 4]

(Intercept) Lag1 Lag2 Lag3 Lag4

0.601 0.145 0.398 0.824 0.851

Lag5 Volume

0.835 0.392

The predict() function can be used to predict the probability that the
market will go up, given values of the predictors. The type = "response"

option tells R to output probabilities of the form P (Y = 1|X), as opposed
to other information such as the logit. If no data set is supplied to the
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predict() function, then the probabilities are computed for the training
data that was used to fit the logistic regression model. Here we have printed
only the first ten probabilities. We know that these values correspond to
the probability of the market going up, rather than down, because the
contrasts() function indicates that R has created a dummy variable with
a 1 for Up.

> glm.probs <- predict(glm.fits , type = "response")

> glm.probs [1:10]

1 2 3 4 5 6 7 8 9 10

0.507 0.481 0.481 0.515 0.511 0.507 0.493 0.509 0.518 0.489

> contrasts(Direction)

Up

Down 0

Up 1

In order to make a prediction as to whether the market will go up or
down on a particular day, we must convert these predicted probabilities
into class labels, Up or Down. The following two commands create a vector
of class predictions based on whether the predicted probability of a market
increase is greater than or less than 0.5.

> glm.pred <- rep("Down", 1250)

> glm.pred[glm.probs > .5] = "Up"

The first command creates a vector of 1,250 Down elements. The second line
transforms to Up all of the elements for which the predicted probability of a
market increase exceeds 0.5. Given these predictions, the table() function

table()
can be used to produce a confusion matrix in order to determine how many
observations were correctly or incorrectly classified.

> table(glm.pred , Direction)

Direction

glm.pred Down Up

Down 145 141

Up 457 507

> (507 + 145) / 1250

[1] 0.5216

> mean(glm.pred == Direction)

[1] 0.5216

The diagonal elements of the confusion matrix indicate correct predictions,
while the off-diagonals represent incorrect predictions. Hence our model
correctly predicted that the market would go up on 507 days and that
it would go down on 145 days, for a total of 507 + 145 = 652 correct
predictions. The mean() function can be used to compute the fraction of
days for which the prediction was correct. In this case, logistic regression
correctly predicted the movement of the market 52.2% of the time.
At first glance, it appears that the logistic regression model is working

a little better than random guessing. However, this result is misleading
because we trained and tested the model on the same set of 1, 250 ob-
servations. In other words, 100% − 52.2% = 47.8%, is the training error
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rate. As we have seen previously, the training error rate is often overly
optimistic—it tends to underestimate the test error rate. In order to better
assess the accuracy of the logistic regression model in this setting, we can
fit the model using part of the data, and then examine how well it predicts
the held out data. This will yield a more realistic error rate, in the sense
that in practice we will be interested in our model’s performance not on
the data that we used to fit the model, but rather on days in the future for
which the market’s movements are unknown.
To implement this strategy, we will first create a vector corresponding

to the observations from 2001 through 2004. We will then use this vector
to create a held out data set of observations from 2005.

> train <- (Year < 2005)

> Smarket .2005 <- Smarket [!train , ]

> dim(Smarket .2005)

[1] 252 9

> Direction .2005 <- Direction [!train]

The object train is a vector of 1,250 elements, corresponding to the ob-
servations in our data set. The elements of the vector that correspond to
observations that occurred before 2005 are set to TRUE, whereas those that
correspond to observations in 2005 are set to FALSE. The object train is a
Boolean vector, since its elements are TRUE and FALSE. Boolean vectors can

boolean
be used to obtain a subset of the rows or columns of a matrix. For instance,
the command Smarket[train, ] would pick out a submatrix of the stock
market data set, corresponding only to the dates before 2005, since those
are the ones for which the elements of train are TRUE. The ! symbol can be
used to reverse all of the elements of a Boolean vector. That is, !train is
a vector similar to train, except that the elements that are TRUE in train

get swapped to FALSE in !train, and the elements that are FALSE in train

get swapped to TRUE in !train. Therefore, Smarket[!train, ] yields a sub-
matrix of the stock market data containing only the observations for which
train is FALSE—that is, the observations with dates in 2005. The output
above indicates that there are 252 such observations.
We now fit a logistic regression model using only the subset of the obser-

vations that correspond to dates before 2005, using the subset argument.
We then obtain predicted probabilities of the stock market going up for
each of the days in our test set—that is, for the days in 2005.

> glm.fits <- glm(

Direction ∼ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume ,

data = Smarket , family = binomial , subset = train

)

> glm.probs <- predict(glm.fits , Smarket .2005 ,

type = "response")

Notice that we have trained and tested our model on two completely sep-
arate data sets: training was performed using only the dates before 2005,
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and testing was performed using only the dates in 2005. Finally, we com-
pute the predictions for 2005 and compare them to the actual movements
of the market over that time period.

> glm.pred <- rep("Down", 252)

> glm.pred[glm.probs > .5] <- "Up"

> table(glm.pred , Direction .2005)

Direction .2005

glm.pred Down Up

Down 77 97

Up 34 44

> mean(glm.pred == Direction .2005)

[1] 0.48

> mean(glm.pred != Direction .2005)

[1] 0.52

The != notation means not equal to, and so the last command computes
the test set error rate. The results are rather disappointing: the test error
rate is 52%, which is worse than random guessing! Of course this result
is not all that surprising, given that one would not generally expect to be
able to use previous days’ returns to predict future market performance.
(After all, if it were possible to do so, then the authors of this book would
be out striking it rich rather than writing a statistics textbook.)
We recall that the logistic regression model had very underwhelming p-

values associated with all of the predictors, and that the smallest p-value,
though not very small, corresponded to Lag1. Perhaps by removing the
variables that appear not to be helpful in predicting Direction, we can
obtain a more effective model. After all, using predictors that have no
relationship with the response tends to cause a deterioration in the test
error rate (since such predictors cause an increase in variance without a
corresponding decrease in bias), and so removing such predictors may in
turn yield an improvement. Below we have refit the logistic regression using
just Lag1 and Lag2, which seemed to have the highest predictive power in
the original logistic regression model.

> glm.fits <- glm(Direction ∼ Lag1 + Lag2 , data = Smarket ,

family = binomial , subset = train)

> glm.probs <- predict(glm.fits , Smarket .2005 ,

type = "response")

> glm.pred <- rep("Down", 252)

> glm.pred[glm.probs > .5] <- "Up"

> table(glm.pred , Direction .2005)

Direction .2005

glm.pred Down Up

Down 35 35

Up 76 106

> mean(glm.pred == Direction .2005)

[1] 0.56

> 106 / (106 + 76)

[1] 0.582
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Now the results appear to be a little better: 56% of the daily movements
have been correctly predicted. It is worth noting that in this case, a much
simpler strategy of predicting that the market will increase every day will
also be correct 56% of the time! Hence, in terms of overall error rate, the
logistic regression method is no better than the naive approach. However,
the confusion matrix shows that on days when logistic regression predicts
an increase in the market, it has a 58% accuracy rate. This suggests a
possible trading strategy of buying on days when the model predicts an in-
creasing market, and avoiding trades on days when a decrease is predicted.
Of course one would need to investigate more carefully whether this small
improvement was real or just due to random chance.
Suppose that we want to predict the returns associated with particular

values of Lag1 and Lag2. In particular, we want to predict Direction on a
day when Lag1 and Lag2 equal 1.2 and 1.1, respectively, and on a day when
they equal 1.5 and −0.8. We do this using the predict() function.

> predict(glm.fits,

newdata =

data.frame(Lag1 = c(1.2, 1.5), Lag2 = c(1.1, -0.8)),

type = "response"

)

1 2

0.4791 0.4961

4.7.3 Linear Discriminant Analysis

Now we will perform LDA on the Smarket data. In R, we fit an LDA model
using the lda() function, which is part of the MASS library. Notice that the

lda()
syntax for the lda() function is identical to that of lm(), and to that of
glm() except for the absence of the family option. We fit the model using
only the observations before 2005.

> library(MASS)

> lda.fit <- lda(Direction ∼ Lag1 + Lag2 , data = Smarket ,

subset = train)

> lda.fit

Call:

lda(Direction ∼ Lag1 + Lag2 , data = Smarket , subset = train)

Prior probabilities of groups:

Down Up

0.492 0.508

Group means:

Lag1 Lag2

Down 0.0428 0.0339

Up -0.0395 -0.0313
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Coefficients of linear discriminants:

LD1

Lag1 -0.642

Lag2 -0.514

> plot(lda.fit)

The LDA output indicates that π̂1 = 0.492 and π̂2 = 0.508; in other words,
49.2% of the training observations correspond to days during which the
market went down. It also provides the group means; these are the average
of each predictor within each class, and are used by LDA as estimates of
µk. These suggest that there is a tendency for the previous 2 days’ returns
to be negative on days when the market increases, and a tendency for the
previous days’ returns to be positive on days when the market declines. The
coefficients of linear discriminants output provides the linear combination
of Lag1 and Lag2 that are used to form the LDA decision rule. In other
words, these are the multipliers of the elements of X = x in (4.24). If
−0.642× Lag1− 0.514× Lag2 is large, then the LDA classifier will predict
a market increase, and if it is small, then the LDA classifier will predict a
market decline.
The plot() function produces plots of the linear discriminants, obtained

by computing −0.642× Lag1− 0.514× Lag2 for each of the training obser-
vations. The Up and Down observations are displayed separately.
The predict() function returns a list with three elements. The first ele-

ment, class, contains LDA’s predictions about the movement of the market.
The second element, posterior, is a matrix whose kth column contains the
posterior probability that the corresponding observation belongs to the kth
class, computed from (4.15). Finally, x contains the linear discriminants,
described earlier.

> lda.pred <- predict(lda.fit , Smarket .2005)

> names(lda.pred)

[1] "class" "posterior" "x"

As we observed in Section 4.5, the LDA and logistic regression predictions
are almost identical.

> lda.class <- lda.pred$class

> table(lda.class, Direction .2005)

Direction .2005

lda.pred Down Up

Down 35 35

Up 76 106

> mean(lda.class == Direction .2005)

[1] 0.56

Applying a 50% threshold to the posterior probabilities allows us to recre-
ate the predictions contained in lda.pred$class.

> sum(lda.pred$posterior[, 1] >= .5)

[1] 70
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> sum(lda.pred$posterior[, 1] < .5)

[1] 182

Notice that the posterior probability output by the model corresponds to
the probability that the market will decrease:

> lda.pred$posterior [1:20, 1]

> lda.class [1:20]

If we wanted to use a posterior probability threshold other than 50% in
order to make predictions, then we could easily do so. For instance, suppose
that we wish to predict a market decrease only if we are very certain that the
market will indeed decrease on that day—say, if the posterior probability
is at least 90%.

> sum(lda.pred$posterior[, 1] > .9)

[1] 0

No days in 2005 meet that threshold! In fact, the greatest posterior prob-
ability of decrease in all of 2005 was 52.02%.

4.7.4 Quadratic Discriminant Analysis

We will now fit a QDA model to the Smarket data. QDA is implemented
in R using the qda() function, which is also part of the MASS library. The

qda()
syntax is identical to that of lda().

> qda.fit <- qda(Direction ∼ Lag1 + Lag2 , data = Smarket ,

subset = train)

> qda.fit

Call:

qda(Direction ∼ Lag1 + Lag2 , data = Smarket , subset = train)

Prior probabilities of groups:

Down Up

0.492 0.508

Group means:

Lag1 Lag2

Down 0.0428 0.0339

Up -0.0395 -0.0313

The output contains the group means. But it does not contain the coef-
ficients of the linear discriminants, because the QDA classifier involves a
quadratic, rather than a linear, function of the predictors. The predict()

function works in exactly the same fashion as for LDA.

> qda.class <- predict(qda.fit , Smarket .2005)$class

> table(qda.class , Direction .2005)

Direction .2005

qda.class Down Up

Down 30 20
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Up 81 121

> mean(qda.class == Direction .2005)

[1] 0.599

Interestingly, the QDA predictions are accurate almost 60% of the time,
even though the 2005 data was not used to fit the model. This level of accu-
racy is quite impressive for stock market data, which is known to be quite
hard to model accurately. This suggests that the quadratic form assumed
by QDA may capture the true relationship more accurately than the linear
forms assumed by LDA and logistic regression. However, we recommend
evaluating this method’s performance on a larger test set before betting
that this approach will consistently beat the market!

4.7.5 Naive Bayes

Next, we fit a naive Bayes model to the Smarket data. Naive Bayes is im-
plemented in R using the naiveBayes() function, which is part of the e1071

naiveBayes()
library. The syntax is identical to that of lda() and qda(). By default, this
implementation of the naive Bayes classifier models each quantitative fea-
ture using a Gaussian distribution. However, a kernel density method can
also be used to estimate the distributions.

> library(e1071)

> nb.fit <- naiveBayes(Direction ∼ Lag1 + Lag2 , data = Smarket ,

subset = train)

> nb.fit

Naive Bayes Classifier for Discrete Predictors

Call:

naiveBayes.default(x = X, y = Y, laplace = laplace)

A-priori probabilities:

Y

Down Up

0.492 0.508

Conditional probabilities:

Lag1

Y [,1] [,2]

Down 0.0428 1.23

Up -0.0395 1.23

Lag2

Y [,1] [,2]

Down 0.0339 1.24

Up -0.0313 1.22

The output contains the estimated mean and standard deviation for each
variable in each class. For example, the mean for Lag1 is 0.0428 for
Direction=Down, and the standard deviation is 1.23. We can easily verify
this:
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> mean(Lag1[train][ Direction[train] == "Down"])

[1] 0.0428

> sd(Lag1[train ][ Direction[train] == "Down"])

[1] 1.23

The predict() function is straightforward.

> nb.class <- predict(nb.fit , Smarket .2005)

> table(nb.class , Direction .2005)

Direction .2005

nb.class Down Up

Down 28 20

Up 83 121

> mean(nb.class == Direction .2005)

[1] 0.591

Naive Bayes performs very well on this data, with accurate predictions over
59% of the time. This is slightly worse than QDA, but much better than
LDA.
The predict() function can also generate estimates of the probability

that each observation belongs to a particular class.

> nb.preds <- predict(nb.fit , Smarket .2005, type = "raw")

> nb.preds [1:5, ]

Down Up

[1,] 0.487 0.513

[2,] 0.476 0.524

[3,] 0.465 0.535

[4,] 0.475 0.525

[5,] 0.490 0.510

4.7.6 K-Nearest Neighbors

We will now perform KNN using the knn() function, which is part of the
knn()

class library. This function works rather differently from the other model-
fitting functions that we have encountered thus far. Rather than a two-step
approach in which we first fit the model and then we use the model to make
predictions, knn() forms predictions using a single command. The function
requires four inputs.

1. A matrix containing the predictors associated with the training data,
labeled train.X below.

2. A matrix containing the predictors associated with the data for which
we wish to make predictions, labeled test.X below.

3. A vector containing the class labels for the training observations,
labeled train.Direction below.

4. A value for K, the number of nearest neighbors to be used by the
classifier.
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We use the cbind() function, short for column bind, to bind the Lag1 and
cbind()

Lag2 variables together into two matrices, one for the training set and the
other for the test set.

> library(class)

> train.X <- cbind(Lag1 , Lag2)[train , ]

> test.X <- cbind(Lag1 , Lag2)[!train , ]

> train.Direction <- Direction[train]

Now the knn() function can be used to predict the market’s movement for
the dates in 2005. We set a random seed before we apply knn() because
if several observations are tied as nearest neighbors, then R will randomly
break the tie. Therefore, a seed must be set in order to ensure reproducibil-
ity of results.

> set.seed (1)

> knn.pred <- knn(train.X, test.X, train.Direction , k = 1)

> table(knn.pred , Direction .2005)

Direction .2005

knn.pred Down Up

Down 43 58

Up 68 83

> (83 + 43) / 252

[1] 0.5

The results using K = 1 are not very good, since only 50% of the observa-
tions are correctly predicted. Of course, it may be that K = 1 results in an
overly flexible fit to the data. Below, we repeat the analysis using K = 3.

> knn.pred <- knn(train.X, test.X, train.Direction , k = 3)

> table(knn.pred , Direction .2005)

Direction .2005

knn.pred Down Up

Down 48 54

Up 63 87

> mean(knn.pred == Direction .2005)

[1] 0.536

The results have improved slightly. But increasing K further turns out
to provide no further improvements. It appears that for this data, QDA
provides the best results of the methods that we have examined so far.
KNN does not perform well on the Smarket data but it does often provide

impressive results. As an example we will apply the KNN approach to the
Caravan data set, which is part of the ISLR2 library. This data set includes 85
predictors that measure demographic characteristics for 5,822 individuals.
The response variable is Purchase, which indicates whether or not a given
individual purchases a caravan insurance policy. In this data set, only 6%
of people purchased caravan insurance.

> dim(Caravan)

[1] 5822 86
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> attach(Caravan)

> summary(Purchase)

No Yes

5474 348

> 348 / 5822

[1] 0.0598

Because the KNN classifier predicts the class of a given test observation by
identifying the observations that are nearest to it, the scale of the variables
matters. Variables that are on a large scale will have a much larger effect
on the distance between the observations, and hence on the KNN classifier,
than variables that are on a small scale. For instance, imagine a data set
that contains two variables, salary and age (measured in dollars and years,
respectively). As far as KNN is concerned, a difference of $1,000 in salary
is enormous compared to a difference of 50 years in age. Consequently,
salary will drive the KNN classification results, and age will have almost
no effect. This is contrary to our intuition that a salary difference of $1,000
is quite small compared to an age difference of 50 years. Furthermore, the
importance of scale to the KNN classifier leads to another issue: if we
measured salary in Japanese yen, or if we measured age in minutes, then
we’d get quite different classification results from what we get if these two
variables are measured in dollars and years.
A good way to handle this problem is to standardize the data so that all

standardize
variables are given a mean of zero and a standard deviation of one. Then
all variables will be on a comparable scale. The scale() function does just

scale()
this. In standardizing the data, we exclude column 86, because that is the
qualitative Purchase variable.

> standardized.X <- scale(Caravan[, -86])

> var(Caravan[, 1])

[1] 165

> var(Caravan[, 2])

[1] 0.165

> var(standardized.X[, 1])

[1] 1

> var(standardized.X[, 2])

[1] 1

Now every column of standardized.X has a standard deviation of one and
a mean of zero.
We now split the observations into a test set, containing the first 1,000

observations, and a training set, containing the remaining observations.
We fit a KNN model on the training data using K = 1, and evaluate its
performance on the test data.

> test <- 1:1000

> train.X <- standardized.X[-test , ]

> test.X <- standardized.X[test , ]

> train.Y <- Purchase[-test]
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> test.Y <- Purchase[test]

> set.seed (1)

> knn.pred <- knn(train.X, test.X, train.Y, k = 1)

> mean(test.Y != knn.pred)

[1] 0.118

> mean(test.Y != "No")

[1] 0.059

The vector test is numeric, with values from 1 through 1, 000. Typing
standardized.X[test, ] yields the submatrix of the data containing the
observations whose indices range from 1 to 1, 000, whereas typing
standardized.X[-test, ] yields the submatrix containing the observations
whose indices do not range from 1 to 1, 000. The KNN error rate on the
1,000 test observations is just under 12%. At first glance, this may ap-
pear to be fairly good. However, since only 6% of customers purchased
insurance, we could get the error rate down to 6% by always predicting No

regardless of the values of the predictors!
Suppose that there is some non-trivial cost to trying to sell insurance

to a given individual. For instance, perhaps a salesperson must visit each
potential customer. If the company tries to sell insurance to a random
selection of customers, then the success rate will be only 6%, which may
be far too low given the costs involved. Instead, the company would like
to try to sell insurance only to customers who are likely to buy it. So the
overall error rate is not of interest. Instead, the fraction of individuals that
are correctly predicted to buy insurance is of interest.
It turns out that KNN with K = 1 does far better than random guessing

among the customers that are predicted to buy insurance. Among 77 such
customers, 9, or 11.7%, actually do purchase insurance. This is double the
rate that one would obtain from random guessing.

> table(knn.pred , test.Y)

test.Y

knn.pred No Yes

No 873 50

Yes 68 9

> 9 / (68 + 9)

[1] 0.117

Using K = 3, the success rate increases to 19%, and with K = 5 the rate is
26.7%. This is over four times the rate that results from random guessing.
It appears that KNN is finding some real patterns in a difficult data set!

> knn.pred <- knn(train.X, test.X, train.Y, k = 3)

> table(knn.pred , test.Y)

test.Y

knn.pred No Yes

No 920 54

Yes 21 5

> 5 / 26

[1] 0.192

> knn.pred <- knn(train.X, test.X, train.Y, k = 5)
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> table(knn.pred , test.Y)

test.Y

knn.pred No Yes

No 930 55

Yes 11 4

> 4 / 15

[1] 0.267

However, while this strategy is cost-effective, it is worth noting that only
15 customers are predicted to purchase insurance using KNN with K =
5. In practice, the insurance company may wish to expend resources on
convincing more than just 15 potential customers to buy insurance.
As a comparison, we can also fit a logistic regression model to the data.

If we use 0.5 as the predicted probability cut-off for the classifier, then
we have a problem: only seven of the test observations are predicted to
purchase insurance. Even worse, we are wrong about all of these! However,
we are not required to use a cut-off of 0.5. If we instead predict a purchase
any time the predicted probability of purchase exceeds 0.25, we get much
better results: we predict that 33 people will purchase insurance, and we
are correct for about 33% of these people. This is over five times better
than random guessing!

> glm.fits <- glm(Purchase ∼ ., data = Caravan ,

family = binomial , subset = -test)

Warning message:

glm.fits: fitted probabilities numerically 0 or 1 occurred

> glm.probs <- predict(glm.fits , Caravan[test , ],

type = "response ")

> glm.pred <- rep("No", 1000)

> glm.pred[glm.probs > .5] <- "Yes"

> table(glm.pred , test.Y)

test.Y

glm.pred No Yes

No 934 59

Yes 7 0

> glm.pred <- rep("No", 1000)

> glm.pred[glm.probs > .25] <- "Yes"

> table(glm.pred , test.Y)

test.Y

glm.pred No Yes

No 919 48

Yes 22 11

> 11 / (22 + 11)

[1] 0.333

4.7.7 Poisson Regression

Finally, we fit a Poisson regression model to the Bikeshare data set, which
measures the number of bike rentals (bikers) per hour in Washington, DC.
The data can be found in the ISLR2 library.
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> attach(Bikeshare)

> dim(Bikeshare)

[1] 8645 15

> names(Bikeshare)

[1] "season" "mnth" "day" "hr"

[5] "holiday" "weekday" "workingday" "weathersit"

[9] "temp" "atemp" "hum" "windspeed"

[13] "casual" "registered" "bikers"

We begin by fitting a least squares linear regression model to the data.

> mod.lm <- lm(

bikers ∼ mnth + hr + workingday + temp + weathersit ,

data = Bikeshare

)

> summary(mod.lm)

Call:

lm(formula = bikers ∼ mnth + hr + workingday + temp +

weathersit , data = Bikeshare)

Residuals:

Min 1Q Median 3Q Max

-299.00 -45.70 -6.23 41.08 425.29

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -68.632 5.307 -12.932 < 2e-16 ***

mnthFeb 6.845 4.287 1.597 0.110398

mnthMarch 16.551 4.301 3.848 0.000120 ***

mnthApril 41.425 4.972 8.331 < 2e-16 ***

mnthMay 72.557 5.641 12.862 < 2e-16 ***

Due to space constraints, we truncate the output of summary(mod.lm). In
mod.lm, the first level of hr (0) and mnth (Jan) are treated as the baseline
values, and so no coefficient estimates are provided for them: implicitly,
their coefficient estimates are zero, and all other levels are measured relative
to these baselines. For example, the Feb coefficient of 6.845 signifies that,
holding all other variables constant, there are on average about 7 more
riders in February than in January. Similarly there are about 16.5 more
riders in March than in January.
The results seen in Section 4.6.1 used a slightly different coding of the

variables hr and mnth, as follows:

> contrasts(Bikeshare$hr) = contr.sum (24)

> contrasts(Bikeshare$mnth) = contr.sum (12)

> mod.lm2 <- lm(

bikers ∼ mnth + hr + workingday + temp + weathersit ,

data = Bikeshare

)

> summary(mod.lm2)

Call:

lm(formula = bikers ∼ mnth + hr + workingday + temp +

weathersit , data = Bikeshare)
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Residuals:

Min 1Q Median 3Q Max

-299.00 -45.70 -6.23 41.08 425.29

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 73.597 5.132 14.340 < 2e-16 ***

mnth1 -46.087 4.086 -11.281 < 2e-16 ***

mnth2 -39.242 3.539 -11.088 < 2e-16 ***

mnth3 -29.536 3.155 -9.361 < 2e-16 ***

mnth4 -4.662 2.741 -1.701 0.08895 .

What is the difference between the two codings? In mod.lm2, a coefficient
estimate is reported for all but the last level of hr and mnth. Importantly,
in mod.lm2, the coefficient estimate for the last level of mnth is not zero:
instead, it equals the negative of the sum of the coefficient estimates for
all of the other levels. Similarly, in mod.lm2, the coefficient estimate for the
last level of hr is the negative of the sum of the coefficient estimates for
all of the other levels. This means that the coefficients of hr and mnth in
mod.lm2 will always sum to zero, and can be interpreted as the difference
from the mean level. For example, the coefficient for January of −46.087
indicates that, holding all other variables constant, there are typically 46
fewer riders in January relative to the yearly average.
It is important to realize that the choice of coding really does not matter,

provided that we interpret the model output correctly in light of the coding
used. For example, we see that the predictions from the linear model are
the same regardless of coding:

> sum(( predict(mod.lm) - predict(mod.lm2))^2)

[1] 1.426e-18

The sum of squared differences is zero. We can also see this using the
all.equal() function:

all.equal()

> all.equal(predict(mod.lm), predict(mod.lm2))

To reproduce the left-hand side of Figure 4.13, we must first obtain
the coefficient estimates associated with mnth. The coefficients for January
through November can be obtained directly from the mod.lm2 object. The
coefficient for December must be explicitly computed as the negative sum
of all the other months.

> coef.months <- c(coef(mod.lm2)[2:12] ,

-sum(coef(mod.lm2)[2:12]))

To make the plot, we manually label the x-axis with the names of the
months.

> plot(coef.months , xlab = "Month", ylab = "Coefficient",

xaxt = "n", col = "blue", pch = 19, type = "o")
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> axis(side = 1, at = 1:12, labels = c("J", "F", "M", "A",

"M", "J", "J", "A", "S", "O", "N", "D"))

Reproducing the right-hand side of Figure 4.13 follows a similar process.

> coef.hours <- c(coef(mod.lm2)[13:35] ,

-sum(coef(mod.lm2)[13:35]))

> plot(coef.hours , xlab = "Hour", ylab = "Coefficient",

col = "blue", pch = 19, type = "o")

Now, we consider instead fitting a Poisson regression model to the Bikeshare

data. Very little changes, except that we now use the function glm() with
the argument family = poisson to specify that we wish to fit a Poisson
regression model:

> mod.pois <- glm(

bikers ∼ mnth + hr + workingday + temp + weathersit ,

data = Bikeshare , family = poisson

)

> summary(mod.pois)

Call:

glm(formula = bikers ∼ mnth + hr + workingday + temp +

weathersit , family = poisson , data = Bikeshare)

Deviance Residuals:

Min 1Q Median 3Q Max

-20.7574 -3.3441 -0.6549 2.6999 21.9628

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.118245 0.006021 683.964 < 2e-16 ***

mnth1 -0.670170 0.005907 -113.445 < 2e-16 ***

mnth2 -0.444124 0.004860 -91.379 < 2e-16 ***

mnth3 -0.293733 0.004144 -70.886 < 2e-16 ***

mnth4 0.021523 0.003125 6.888 5.66e-12 ***

We can plot the coefficients associated with mnth and hr, in order to repro-
duce Figure 4.15:

> coef.mnth <- c(coef(mod.pois)[2:12] ,

-sum(coef(mod.pois)[2:12]))

> plot(coef.mnth , xlab = "Month", ylab = "Coefficient",

xaxt = "n", col = "blue", pch = 19, type = "o")

> axis(side = 1, at = 1:12, labels = c("J", "F", "M", "A", "M",

"J", "J", "A", "S", "O", "N", "D"))

> coef.hours <- c(coef(mod.pois)[13:35] ,

-sum(coef(mod.pois)[13:35]))

> plot(coef.hours , xlab = "Hour", ylab = "Coefficient",

col = "blue", pch = 19, type = "o")

We can once again use the predict() function to obtain the fitted values
(predictions) from this Poisson regression model. However, we must use the
argument type = "response" to specify that we want R to output exp(β̂0 +
β̂1X1+ . . .+ β̂pXp) rather than β̂0+ β̂1X1+ . . .+ β̂pXp, which it will output
by default.
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> plot(predict(mod.lm2), predict(mod.pois , type = "response"))

> abline(0, 1, col = 2, lwd = 3)

The predictions from the Poisson regression model are correlated with those
from the linear model; however, the former are non-negative. As a result
the Poisson regression predictions tend to be larger than those from the
linear model for either very low or very high levels of ridership.
In this section, we used the glm() function with the argument family =

poisson in order to perform Poisson regression. Earlier in this lab we used
the glm() function with family = binomial to perform logistic regression.
Other choices for the family argument can be used to fit other types of
GLMs. For instance, family = Gamma fits a gamma regression model.

4.8 Exercises

Conceptual

1. Using a little bit of algebra, prove that (4.2) is equivalent to (4.3). In
other words, the logistic function representation and logit represen-
tation for the logistic regression model are equivalent.

2. It was stated in the text that classifying an observation to the class
for which (4.17) is largest is equivalent to classifying an observation
to the class for which (4.18) is largest. Prove that this is the case. In
other words, under the assumption that the observations in the kth
class are drawn from a N(µk,σ2) distribution, the Bayes classifier
assigns an observation to the class for which the discriminant function
is maximized.

3. This problem relates to the QDA model, in which the observations
within each class are drawn from a normal distribution with a class-
specific mean vector and a class specific covariance matrix. We con-
sider the simple case where p = 1; i.e. there is only one feature.

Suppose that we have K classes, and that if an observation belongs
to the kth class then X comes from a one-dimensional normal dis-
tribution, X ∼ N(µk,σ2

k). Recall that the density function for the
one-dimensional normal distribution is given in (4.16). Prove that in
this case, the Bayes classifier is not linear. Argue that it is in fact
quadratic.

Hint: For this problem, you should follow the arguments laid out in
Section 4.4.1, but without making the assumption that σ2

1 = . . . = σ2
K .

4. When the number of features p is large, there tends to be a deteri-
oration in the performance of KNN and other local approaches that
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perform prediction using only observations that are near the test ob-
servation for which a prediction must be made. This phenomenon is
known as the curse of dimensionality, and it ties into the fact that

curse of di-
mensionalitynon-parametric approaches often perform poorly when p is large. We

will now investigate this curse.

(a) Suppose that we have a set of observations, each with measure-
ments on p = 1 feature, X. We assume that X is uniformly
(evenly) distributed on [0, 1]. Associated with each observation
is a response value. Suppose that we wish to predict a test obser-
vation’s response using only observations that are within 10% of
the range of X closest to that test observation. For instance, in
order to predict the response for a test observation with X = 0.6,
we will use observations in the range [0.55, 0.65]. On average,
what fraction of the available observations will we use to make
the prediction?

(b) Now suppose that we have a set of observations, each with
measurements on p = 2 features, X1 and X2. We assume that
(X1, X2) are uniformly distributed on [0, 1]× [0, 1]. We wish to
predict a test observation’s response using only observations that
are within 10% of the range of X1 and within 10% of the range
of X2 closest to that test observation. For instance, in order to
predict the response for a test observation with X1 = 0.6 and
X2 = 0.35, we will use observations in the range [0.55, 0.65] for
X1 and in the range [0.3, 0.4] for X2. On average, what fraction
of the available observations will we use to make the prediction?

(c) Now suppose that we have a set of observations on p = 100 fea-
tures. Again the observations are uniformly distributed on each
feature, and again each feature ranges in value from 0 to 1. We
wish to predict a test observation’s response using observations
within the 10% of each feature’s range that is closest to that test
observation. What fraction of the available observations will we
use to make the prediction?

(d) Using your answers to parts (a)–(c), argue that a drawback of
KNN when p is large is that there are very few training obser-
vations “near” any given test observation.

(e) Now suppose that we wish to make a prediction for a test obser-
vation by creating a p-dimensional hypercube centered around
the test observation that contains, on average, 10% of the train-
ing observations. For p = 1, 2, and 100, what is the length of
each side of the hypercube? Comment on your answer.
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Note: A hypercube is a generalization of a cube to an arbitrary
number of dimensions. When p = 1, a hypercube is simply a line
segment, when p = 2 it is a square, and when p = 100 it is a
100-dimensional cube.

5. We now examine the differences between LDA and QDA.

(a) If the Bayes decision boundary is linear, do we expect LDA or
QDA to perform better on the training set? On the test set?

(b) If the Bayes decision boundary is non-linear, do we expect LDA
or QDA to perform better on the training set? On the test set?

(c) In general, as the sample size n increases, do we expect the test
prediction accuracy of QDA relative to LDA to improve, decline,
or be unchanged? Why?

(d) True or False: Even if the Bayes decision boundary for a given
problem is linear, we will probably achieve a superior test er-
ror rate using QDA rather than LDA because QDA is flexible
enough to model a linear decision boundary. Justify your answer.

6. Suppose we collect data for a group of students in a statistics class
with variables X1 =hours studied, X2 =undergrad GPA, and Y =
receive an A. We fit a logistic regression and produce estimated
coefficient, β̂0 = −6, β̂1 = 0.05, β̂2 = 1.

(a) Estimate the probability that a student who studies for 40 h and
has an undergrad GPA of 3.5 gets an A in the class.

(b) How many hours would the student in part (a) need to study to
have a 50% chance of getting an A in the class?

7. Suppose that we wish to predict whether a given stock will issue a
dividend this year (“Yes” or “No”) based on X, last year’s percent
profit. We examine a large number of companies and discover that the
mean value of X for companies that issued a dividend was X̄ = 10,
while the mean for those that didn’t was X̄ = 0. In addition, the
variance of X for these two sets of companies was σ̂2 = 36. Finally,
80% of companies issued dividends. Assuming that X follows a nor-
mal distribution, predict the probability that a company will issue
a dividend this year given that its percentage profit was X = 4 last
year.

Hint: Recall that the density function for a normal random variable
is f(x) = 1√

2πσ2
e−(x−µ)2/2σ2

. You will need to use Bayes’ theorem.

8. Suppose that we take a data set, divide it into equally-sized training
and test sets, and then try out two different classification procedures.
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First we use logistic regression and get an error rate of 20% on the
training data and 30% on the test data. Next we use 1-nearest neigh-
bors (i.e. K = 1) and get an average error rate (averaged over both
test and training data sets) of 18%. Based on these results, which
method should we prefer to use for classification of new observations?
Why?

9. This problem has to do with odds.

(a) On average, what fraction of people with an odds of 0.37 of
defaulting on their credit card payment will in fact default?

(b) Suppose that an individual has a 16% chance of defaulting on
her credit card payment. What are the odds that she will de-
fault?

10. Equation 4.32 derived an expression for log
(

Pr(Y=k|X=x)
Pr(Y=K|X=x)

)
in the

setting where p > 1, so that the mean for the kth class, µk, is a p-
dimensional vector, and the shared covariance Σ is a p × p matrix.
However, in the setting with p = 1, (4.32) takes a simpler form, since
the means µ1, . . . , µK and the variance σ2 are scalars. In this simpler
setting, repeat the calculation in (4.32), and provide expressions for
ak and bkj in terms of πk, πK , µk, µK , and σ2.

11. Work out the detailed forms of ak, bkj , and bkjl in (4.33). Your answer
should involve πk, πK , µk, µK , Σk, and ΣK .

12. Suppose that you wish to classify an observation X ∈ R into apples

and oranges. You fit a logistic regression model and find that

P̂r(Y = orange|X = x) =
exp(β̂0 + β̂1x)

1 + exp(β̂0 + β̂1x)
.

Your friend fits a logistic regression model to the same data using the
softmax formulation in (4.13), and finds that

P̂r(Y = orange|X = x) =

exp(α̂orange0 + α̂orange1x)

exp(α̂orange0 + α̂orange1x) + exp(α̂apple0 + α̂apple1x)
.

(a) What is the log odds of orange versus apple in your model?

(b) What is the log odds of orange versus apple in your friend’s
model?

(c) Suppose that in your model, β̂0 = 2 and β̂1 = −1. What are
the coefficient estimates in your friend’s model? Be as specific
as possible.
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(d) Now suppose that you and your friend fit the same two models
on a different data set. This time, your friend gets the coefficient
estimates α̂orange0 = 1.2, α̂orange1 = −2, α̂apple0 = 3, α̂apple1 =
0.6. What are the coefficient estimates in your model?

(e) Finally, suppose you apply both models from (d) to a data set
with 2,000 test observations. What fraction of the time do you
expect the predicted class labels from your model to agree with
those from your friend’s model? Explain your answer.

Applied

13. This question should be answered using the Weekly data set, which
is part of the ISLR2 package. This data is similar in nature to the
Smarket data from this chapter’s lab, except that it contains 1, 089
weekly returns for 21 years, from the beginning of 1990 to the end of
2010.

(a) Produce some numerical and graphical summaries of the Weekly

data. Do there appear to be any patterns?

(b) Use the full data set to perform a logistic regression with
Direction as the response and the five lag variables plus Volume

as predictors. Use the summary function to print the results. Do
any of the predictors appear to be statistically significant? If so,
which ones?

(c) Compute the confusion matrix and overall fraction of correct
predictions. Explain what the confusion matrix is telling you
about the types of mistakes made by logistic regression.

(d) Now fit the logistic regression model using a training data period
from 1990 to 2008, with Lag2 as the only predictor. Compute the
confusion matrix and the overall fraction of correct predictions
for the held out data (that is, the data from 2009 and 2010).

(e) Repeat (d) using LDA.

(f) Repeat (d) using QDA.

(g) Repeat (d) using KNN with K = 1.

(h) Repeat (d) using naive Bayes.

(i) Which of these methods appears to provide the best results on
this data?

(j) Experiment with different combinations of predictors, includ-
ing possible transformations and interactions, for each of the
methods. Report the variables, method, and associated confu-
sion matrix that appears to provide the best results on the held
out data. Note that you should also experiment with values for
K in the KNN classifier.
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14. In this problem, you will develop a model to predict whether a given
car gets high or low gas mileage based on the Auto data set.

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains
a value above its median, and a 0 if mpg contains a value below
its median. You can compute the median using the median()

function. Note you may find it helpful to use the data.frame()

function to create a single data set containing both mpg01 and
the other Auto variables.

(b) Explore the data graphically in order to investigate the associ-
ation between mpg01 and the other features. Which of the other
features seem most likely to be useful in predicting mpg01? Scat-
terplots and boxplots may be useful tools to answer this ques-
tion. Describe your findings.

(c) Split the data into a training set and a test set.

(d) Perform LDA on the training data in order to predict mpg01

using the variables that seemed most associated with mpg01 in
(b). What is the test error of the model obtained?

(e) Perform QDA on the training data in order to predict mpg01

using the variables that seemed most associated with mpg01 in
(b). What is the test error of the model obtained?

(f) Perform logistic regression on the training data in order to pre-
dict mpg01 using the variables that seemed most associated with
mpg01 in (b). What is the test error of the model obtained?

(g) Perform naive Bayes on the training data in order to predict
mpg01 using the variables that seemed most associated with mpg01

in (b). What is the test error of the model obtained?

(h) Perform KNN on the training data, with several values of K, in
order to predict mpg01. Use only the variables that seemed most
associated with mpg01 in (b). What test errors do you obtain?
Which value of K seems to perform the best on this data set?

15. This problem involves writing functions.

(a) Write a function, Power(), that prints out the result of raising 2
to the 3rd power. In other words, your function should compute
23 and print out the results.

Hint: Recall that x^a raises x to the power a. Use the print()

function to output the result.

(b) Create a new function, Power2(), that allows you to pass any
two numbers, x and a, and prints out the value of x^a. You can
do this by beginning your function with the line

> Power2 <- function(x, a) {
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You should be able to call your function by entering, for instance,

> Power2(3, 8)

on the command line. This should output the value of 38, namely,
6, 561.

(c) Using the Power2() function that you just wrote, compute 103,
817, and 1313.

(d) Now create a new function, Power3(), that actually returns the
result x^a as an R object, rather than simply printing it to the
screen. That is, if you store the value x^a in an object called
result within your function, then you can simply return() this

return()
result, using the following line:

return(result)

The line above should be the last line in your function, before
the } symbol.

(e) Now using the Power3() function, create a plot of f(x) = x2.
The x-axis should display a range of integers from 1 to 10, and
the y-axis should display x2. Label the axes appropriately, and
use an appropriate title for the figure. Consider displaying either
the x-axis, the y-axis, or both on the log-scale. You can do this
by using log = "x", log = "y", or log = "xy" as arguments to
the plot() function.

(f) Create a function, PlotPower(), that allows you to create a plot
of x against x^a for a fixed a and for a range of values of x. For
instance, if you call

> PlotPower (1:10 , 3)

then a plot should be created with an x-axis taking on values
1, 2, . . . , 10, and a y-axis taking on values 13, 23, . . . , 103.

16. Using the Boston data set, fit classification models in order to predict
whether a given census tract has a crime rate above or below the me-
dian. Explore logistic regression, LDA, naive Bayes, and KNN models
using various subsets of the predictors. Describe your findings.

Hint: You will have to create the response variable yourself, using the
variables that are contained in the Boston data set.



5
Resampling Methods

Resampling methods are an indispensable tool in modern statistics. They
involve repeatedly drawing samples from a training set and refitting a model
of interest on each sample in order to obtain additional information about
the fitted model. For example, in order to estimate the variability of a linear
regression fit, we can repeatedly draw different samples from the training
data, fit a linear regression to each new sample, and then examine the
extent to which the resulting fits differ. Such an approach may allow us to
obtain information that would not be available from fitting the model only
once using the original training sample.
Resampling approaches can be computationally expensive, because they

involve fitting the same statistical method multiple times using different
subsets of the training data. However, due to recent advances in computing
power, the computational requirements of resampling methods generally
are not prohibitive. In this chapter, we discuss two of the most commonly
used resampling methods, cross-validation and the bootstrap. Both methods
are important tools in the practical application of many statistical learning
procedures. For example, cross-validation can be used to estimate the test
error associated with a given statistical learning method in order to evaluate
its performance, or to select the appropriate level of flexibility. The process
of evaluating a model’s performance is known as model assessment, whereas

model
assessmentthe process of selecting the proper level of flexibility for a model is known as

model selection. The bootstrap is used in several contexts, most commonly
model
selectionto provide a measure of accuracy of a parameter estimate or of a given

statistical learning method.
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5.1 Cross-Validation

In Chapter 2 we discuss the distinction between the test error rate and the
training error rate. The test error is the average error that results from using
a statistical learning method to predict the response on a new observation—
that is, a measurement that was not used in training the method. Given
a data set, the use of a particular statistical learning method is warranted
if it results in a low test error. The test error can be easily calculated if a
designated test set is available. Unfortunately, this is usually not the case.
In contrast, the training error can be easily calculated by applying the
statistical learning method to the observations used in its training. But as
we saw in Chapter 2, the training error rate often is quite different from the
test error rate, and in particular the former can dramatically underestimate
the latter.
In the absence of a very large designated test set that can be used to

directly estimate the test error rate, a number of techniques can be used
to estimate this quantity using the available training data. Some methods
make a mathematical adjustment to the training error rate in order to
estimate the test error rate. Such approaches are discussed in Chapter 6.
In this section, we instead consider a class of methods that estimate the
test error rate by holding out a subset of the training observations from the
fitting process, and then applying the statistical learning method to those
held out observations.
In Sections 5.1.1–5.1.4, for simplicity we assume that we are interested

in performing regression with a quantitative response. In Section 5.1.5 we
consider the case of classification with a qualitative response. As we will
see, the key concepts remain the same regardless of whether the response
is quantitative or qualitative.

5.1.1 The Validation Set Approach

Suppose that we would like to estimate the test error associated with fit-
ting a particular statistical learning method on a set of observations. The
validation set approach, displayed in Figure 5.1, is a very simple strategy

validation
set approachfor this task. It involves randomly dividing the available set of observa-

tions into two parts, a training set and a validation set or hold-out set. The
validation
set
hold-out set

model is fit on the training set, and the fitted model is used to predict the
responses for the observations in the validation set. The resulting validation
set error rate—typically assessed using MSE in the case of a quantitative
response—provides an estimate of the test error rate.
We illustrate the validation set approach on the Auto data set. Recall from

Chapter 3 that there appears to be a non-linear relationship between mpg

and horsepower, and that a model that predicts mpg using horsepower and
horsepower2 gives better results than a model that uses only a linear term.
It is natural to wonder whether a cubic or higher-order fit might provide
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FIGURE 5.1. A schematic display of the validation set approach. A set of n
observations are randomly split into a training set (shown in blue, containing
observations 7, 22, and 13, among others) and a validation set (shown in beige,
and containing observation 91, among others). The statistical learning method is
fit on the training set, and its performance is evaluated on the validation set.

even better results. We answer this question in Chapter 3 by looking at
the p-values associated with a cubic term and higher-order polynomial
terms in a linear regression. But we could also answer this question using
the validation method. We randomly split the 392 observations into two
sets, a training set containing 196 of the data points, and a validation set
containing the remaining 196 observations. The validation set error rates
that result from fitting various regression models on the training sample
and evaluating their performance on the validation sample, using MSE
as a measure of validation set error, are shown in the left-hand panel of
Figure 5.2. The validation set MSE for the quadratic fit is considerably
smaller than for the linear fit. However, the validation set MSE for the cubic
fit is actually slightly larger than for the quadratic fit. This implies that
including a cubic term in the regression does not lead to better prediction
than simply using a quadratic term.
Recall that in order to create the left-hand panel of Figure 5.2, we ran-

domly divided the data set into two parts, a training set and a validation
set. If we repeat the process of randomly splitting the sample set into two
parts, we will get a somewhat different estimate for the test MSE. As an
illustration, the right-hand panel of Figure 5.2 displays ten different vali-
dation set MSE curves from the Auto data set, produced using ten different
random splits of the observations into training and validation sets. All ten
curves indicate that the model with a quadratic term has a dramatically
smaller validation set MSE than the model with only a linear term. Fur-
thermore, all ten curves indicate that there is not much benefit in including
cubic or higher-order polynomial terms in the model. But it is worth noting
that each of the ten curves results in a different test MSE estimate for each
of the ten regression models considered. And there is no consensus among
the curves as to which model results in the smallest validation set MSE.
Based on the variability among these curves, all that we can conclude with
any confidence is that the linear fit is not adequate for this data.
The validation set approach is conceptually simple and is easy to imple-

ment. But it has two potential drawbacks:



200 5. Resampling Methods

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

Degree of Polynomial

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

Degree of Polynomial

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

FIGURE 5.2. The validation set approach was used on the Auto data set in
order to estimate the test error that results from predicting mpg using polynomial
functions of horsepower. Left: Validation error estimates for a single split into
training and validation data sets. Right: The validation method was repeated ten
times, each time using a different random split of the observations into a training
set and a validation set. This illustrates the variability in the estimated test MSE
that results from this approach.

1. As is shown in the right-hand panel of Figure 5.2, the validation esti-
mate of the test error rate can be highly variable, depending on pre-
cisely which observations are included in the training set and which
observations are included in the validation set.

2. In the validation approach, only a subset of the observations—those
that are included in the training set rather than in the validation
set—are used to fit the model. Since statistical methods tend to per-
form worse when trained on fewer observations, this suggests that the
validation set error rate may tend to overestimate the test error rate
for the model fit on the entire data set.

In the coming subsections, we will present cross-validation, a refinement of
the validation set approach that addresses these two issues.

5.1.2 Leave-One-Out Cross-Validation

Leave-one-out cross-validation (LOOCV) is closely related to the validation
leave-one-
out
cross-
validation

set approach of Section 5.1.1, but it attempts to address that method’s
drawbacks.
Like the validation set approach, LOOCV involves splitting the set of

observations into two parts. However, instead of creating two subsets of
comparable size, a single observation (x1, y1) is used for the validation
set, and the remaining observations {(x2, y2), . . . , (xn, yn)} make up the
training set. The statistical learning method is fit on the n − 1 training
observations, and a prediction ŷ1 is made for the excluded observation,
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FIGURE 5.3. A schematic display of LOOCV. A set of n data points is repeat-
edly split into a training set (shown in blue) containing all but one observation,
and a validation set that contains only that observation (shown in beige). The test
error is then estimated by averaging the n resulting MSE’s. The first training set
contains all but observation 1, the second training set contains all but observation
2, and so forth.

using its value x1. Since (x1, y1) was not used in the fitting process, MSE1 =
(y1 − ŷ1)2 provides an approximately unbiased estimate for the test error.
But even though MSE1 is unbiased for the test error, it is a poor estimate
because it is highly variable, since it is based upon a single observation
(x1, y1).
We can repeat the procedure by selecting (x2, y2) for the validation

data, training the statistical learning procedure on the n− 1 observations
{(x1, y1), (x3, y3), . . . , (xn, yn)}, and computing MSE2 = (y2−ŷ2)2. Repeat-
ing this approach n times produces n squared errors, MSE1, . . . , MSEn.
The LOOCV estimate for the test MSE is the average of these n test error
estimates:

CV(n) =
1

n

n∑

i=1

MSEi. (5.1)

A schematic of the LOOCV approach is illustrated in Figure 5.3.
LOOCV has a couple of major advantages over the validation set ap-

proach. First, it has far less bias. In LOOCV, we repeatedly fit the sta-
tistical learning method using training sets that contain n − 1 observa-
tions, almost as many as are in the entire data set. This is in contrast to
the validation set approach, in which the training set is typically around
half the size of the original data set. Consequently, the LOOCV approach
tends not to overestimate the test error rate as much as the validation
set approach does. Second, in contrast to the validation approach which
will yield different results when applied repeatedly due to randomness in
the training/validation set splits, performing LOOCV multiple times will
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FIGURE 5.4. Cross-validation was used on the Auto data set in order to es-
timate the test error that results from predicting mpg using polynomial functions
of horsepower. Left: The LOOCV error curve. Right: 10-fold CV was run nine
separate times, each with a different random split of the data into ten parts. The
figure shows the nine slightly different CV error curves.

always yield the same results: there is no randomness in the training/vali-
dation set splits.
We used LOOCV on the Auto data set in order to obtain an estimate

of the test set MSE that results from fitting a linear regression model to
predict mpg using polynomial functions of horsepower. The results are shown
in the left-hand panel of Figure 5.4.
LOOCV has the potential to be expensive to implement, since the model

has to be fit n times. This can be very time consuming if n is large, and if
each individual model is slow to fit. With least squares linear or polynomial
regression, an amazing shortcut makes the cost of LOOCV the same as that
of a single model fit! The following formula holds:

CV(n) =
1

n

n∑

i=1

(
yi − ŷi
1− hi

)2

, (5.2)

where ŷi is the ith fitted value from the original least squares fit, and hi is
the leverage defined in (3.37) on page 99.1 This is like the ordinary MSE,
except the ith residual is divided by 1− hi. The leverage lies between 1/n
and 1, and reflects the amount that an observation influences its own fit.
Hence the residuals for high-leverage points are inflated in this formula by
exactly the right amount for this equality to hold.
LOOCV is a very general method, and can be used with any kind of

predictive modeling. For example we could use it with logistic regression

1In the case of multiple linear regression, the leverage takes a slightly more compli-
cated form than (3.37), but (5.2) still holds.
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FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
blue). The test error is estimated by averaging the five resulting MSE estimates.

or linear discriminant analysis, or any of the methods discussed in later
chapters. The magic formula (5.2) does not hold in general, in which case
the model has to be refit n times.

5.1.3 k-Fold Cross-Validation

An alternative to LOOCV is k-fold CV. This approach involves randomly
k-fold CV

dividing the set of observations into k groups, or folds, of approximately
equal size. The first fold is treated as a validation set, and the method
is fit on the remaining k − 1 folds. The mean squared error, MSE1, is
then computed on the observations in the held-out fold. This procedure is
repeated k times; each time, a different group of observations is treated
as a validation set. This process results in k estimates of the test error,
MSE1,MSE2, . . . ,MSEk. The k-fold CV estimate is computed by averaging
these values,

CV(k) =
1

k

k∑

i=1

MSEi. (5.3)

Figure 5.5 illustrates the k-fold CV approach.
It is not hard to see that LOOCV is a special case of k-fold CV in which k

is set to equal n. In practice, one typically performs k-fold CV using k = 5
or k = 10. What is the advantage of using k = 5 or k = 10 rather than
k = n? The most obvious advantage is computational. LOOCV requires
fitting the statistical learning method n times. This has the potential to be
computationally expensive (except for linear models fit by least squares,
in which case formula (5.2) can be used). But cross-validation is a very
general approach that can be applied to almost any statistical learning
method. Some statistical learning methods have computationally intensive
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FIGURE 5.6. True and estimated test MSE for the simulated data sets in Fig-
ures 2.9 ( left), 2.10 ( center), and 2.11 ( right). The true test MSE is shown in
blue, the LOOCV estimate is shown as a black dashed line, and the 10-fold CV
estimate is shown in orange. The crosses indicate the minimum of each of the
MSE curves.

fitting procedures, and so performing LOOCV may pose computational
problems, especially if n is extremely large. In contrast, performing 10-fold
CV requires fitting the learning procedure only ten times, which may be
much more feasible. As we see in Section 5.1.4, there also can be other
non-computational advantages to performing 5-fold or 10-fold CV, which
involve the bias-variance trade-off.
The right-hand panel of Figure 5.4 displays nine different 10-fold CV

estimates for the Auto data set, each resulting from a different random
split of the observations into ten folds. As we can see from the figure, there
is some variability in the CV estimates as a result of the variability in how
the observations are divided into ten folds. But this variability is typically
much lower than the variability in the test error estimates that results from
the validation set approach (right-hand panel of Figure 5.2).
When we examine real data, we do not know the true test MSE, and

so it is difficult to determine the accuracy of the cross-validation estimate.
However, if we examine simulated data, then we can compute the true
test MSE, and can thereby evaluate the accuracy of our cross-validation
results. In Figure 5.6, we plot the cross-validation estimates and true test
error rates that result from applying smoothing splines to the simulated
data sets illustrated in Figures 2.9–2.11 of Chapter 2. The true test MSE
is displayed in blue. The black dashed and orange solid lines respectively
show the estimated LOOCV and 10-fold CV estimates. In all three plots,
the two cross-validation estimates are very similar. In the right-hand panel
of Figure 5.6, the true test MSE and the cross-validation curves are almost
identical. In the center panel of Figure 5.6, the two sets of curves are similar
at the lower degrees of flexibility, while the CV curves overestimate the test
set MSE for higher degrees of flexibility. In the left-hand panel of Figure 5.6,
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the CV curves have the correct general shape, but they underestimate the
true test MSE.
When we perform cross-validation, our goal might be to determine how

well a given statistical learning procedure can be expected to perform on
independent data; in this case, the actual estimate of the test MSE is
of interest. But at other times we are interested only in the location of
the minimum point in the estimated test MSE curve. This is because we
might be performing cross-validation on a number of statistical learning
methods, or on a single method using different levels of flexibility, in order
to identify the method that results in the lowest test error. For this purpose,
the location of the minimum point in the estimated test MSE curve is
important, but the actual value of the estimated test MSE is not. We find
in Figure 5.6 that despite the fact that they sometimes underestimate the
true test MSE, all of the CV curves come close to identifying the correct
level of flexibility—that is, the flexibility level corresponding to the smallest
test MSE.

5.1.4 Bias-Variance Trade-Off for k-Fold Cross-Validation

We mentioned in Section 5.1.3 that k-fold CV with k < n has a compu-
tational advantage to LOOCV. But putting computational issues aside,
a less obvious but potentially more important advantage of k-fold CV is
that it often gives more accurate estimates of the test error rate than does
LOOCV. This has to do with a bias-variance trade-off.
It was mentioned in Section 5.1.1 that the validation set approach can

lead to overestimates of the test error rate, since in this approach the
training set used to fit the statistical learning method contains only half
the observations of the entire data set. Using this logic, it is not hard to see
that LOOCV will give approximately unbiased estimates of the test error,
since each training set contains n−1 observations, which is almost as many
as the number of observations in the full data set. And performing k-fold
CV for, say, k = 5 or k = 10 will lead to an intermediate level of bias,
since each training set contains approximately (k − 1)n/k observations—
fewer than in the LOOCV approach, but substantially more than in the
validation set approach. Therefore, from the perspective of bias reduction,
it is clear that LOOCV is to be preferred to k-fold CV.
However, we know that bias is not the only source for concern in an esti-

mating procedure; we must also consider the procedure’s variance. It turns
out that LOOCV has higher variance than does k-fold CV with k < n. Why
is this the case? When we perform LOOCV, we are in effect averaging the
outputs of n fitted models, each of which is trained on an almost identical
set of observations; therefore, these outputs are highly (positively) corre-
lated with each other. In contrast, when we perform k-fold CV with k < n,
we are averaging the outputs of k fitted models that are somewhat less
correlated with each other, since the overlap between the training sets in



206 5. Resampling Methods

each model is smaller. Since the mean of many highly correlated quantities
has higher variance than does the mean of many quantities that are not
as highly correlated, the test error estimate resulting from LOOCV tends
to have higher variance than does the test error estimate resulting from
k-fold CV.
To summarize, there is a bias-variance trade-off associated with the

choice of k in k-fold cross-validation. Typically, given these considerations,
one performs k-fold cross-validation using k = 5 or k = 10, as these values
have been shown empirically to yield test error rate estimates that suffer
neither from excessively high bias nor from very high variance.

5.1.5 Cross-Validation on Classification Problems

In this chapter so far, we have illustrated the use of cross-validation in the
regression setting where the outcome Y is quantitative, and so have used
MSE to quantify test error. But cross-validation can also be a very useful
approach in the classification setting when Y is qualitative. In this setting,
cross-validation works just as described earlier in this chapter, except that
rather than using MSE to quantify test error, we instead use the number
of misclassified observations. For instance, in the classification setting, the
LOOCV error rate takes the form

CV(n) =
1

n

n∑

i=1

Erri, (5.4)

where Erri = I(yi ̸= ŷi). The k-fold CV error rate and validation set error
rates are defined analogously.
As an example, we fit various logistic regression models on the two-

dimensional classification data displayed in Figure 2.13. In the top-left
panel of Figure 5.7, the black solid line shows the estimated decision bound-
ary resulting from fitting a standard logistic regression model to this data
set. Since this is simulated data, we can compute the true test error rate,
which takes a value of 0.201 and so is substantially larger than the Bayes
error rate of 0.133. Clearly logistic regression does not have enough flexi-
bility to model the Bayes decision boundary in this setting. We can easily
extend logistic regression to obtain a non-linear decision boundary by using
polynomial functions of the predictors, as we did in the regression setting in
Section 3.3.2. For example, we can fit a quadratic logistic regression model,
given by

log

(
p

1− p

)
= β0 + β1X1 + β2X

2
1 + β3X2 + β4X

2
2 . (5.5)

The top-right panel of Figure 5.7 displays the resulting decision boundary,
which is now curved. However, the test error rate has improved only slightly,
to 0.197. A much larger improvement is apparent in the bottom-left panel
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FIGURE 5.7. Logistic regression fits on the two-dimensional classification data
displayed in Figure 2.13. The Bayes decision boundary is represented using a
purple dashed line. Estimated decision boundaries from linear, quadratic, cubic
and quartic (degrees 1–4) logistic regressions are displayed in black. The test error
rates for the four logistic regression fits are respectively 0.201, 0.197, 0.160, and
0.162, while the Bayes error rate is 0.133.

of Figure 5.7, in which we have fit a logistic regression model involving
cubic polynomials of the predictors. Now the test error rate has decreased
to 0.160. Going to a quartic polynomial (bottom-right) slightly increases
the test error.
In practice, for real data, the Bayes decision boundary and the test er-

ror rates are unknown. So how might we decide between the four logistic
regression models displayed in Figure 5.7? We can use cross-validation in
order to make this decision. The left-hand panel of Figure 5.8 displays in
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FIGURE 5.8. Test error (brown), training error (blue), and 10-fold CV error
(black) on the two-dimensional classification data displayed in Figure 5.7. Left:
Logistic regression using polynomial functions of the predictors. The order of
the polynomials used is displayed on the x-axis. Right: The KNN classifier with
different values of K, the number of neighbors used in the KNN classifier.

black the 10-fold CV error rates that result from fitting ten logistic regres-
sion models to the data, using polynomial functions of the predictors up
to tenth order. The true test errors are shown in brown, and the training
errors are shown in blue. As we have seen previously, the training error
tends to decrease as the flexibility of the fit increases. (The figure indicates
that though the training error rate doesn’t quite decrease monotonically,
it tends to decrease on the whole as the model complexity increases.) In
contrast, the test error displays a characteristic U-shape. The 10-fold CV
error rate provides a pretty good approximation to the test error rate.
While it somewhat underestimates the error rate, it reaches a minimum
when fourth-order polynomials are used, which is very close to the min-
imum of the test curve, which occurs when third-order polynomials are
used. In fact, using fourth-order polynomials would likely lead to good test
set performance, as the true test error rate is approximately the same for
third, fourth, fifth, and sixth-order polynomials.
The right-hand panel of Figure 5.8 displays the same three curves us-

ing the KNN approach for classification, as a function of the value of K
(which in this context indicates the number of neighbors used in the KNN
classifier, rather than the number of CV folds used). Again the training
error rate declines as the method becomes more flexible, and so we see that
the training error rate cannot be used to select the optimal value for K.
Though the cross-validation error curve slightly underestimates the test
error rate, it takes on a minimum very close to the best value for K.
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5.2 The Bootstrap

The bootstrap is a widely applicable and extremely powerful statistical tool
bootstrap

that can be used to quantify the uncertainty associated with a given esti-
mator or statistical learning method. As a simple example, the bootstrap
can be used to estimate the standard errors of the coefficients from a linear
regression fit. In the specific case of linear regression, this is not particularly
useful, since we saw in Chapter 3 that standard statistical software such as
R outputs such standard errors automatically. However, the power of the
bootstrap lies in the fact that it can be easily applied to a wide range of
statistical learning methods, including some for which a measure of vari-
ability is otherwise difficult to obtain and is not automatically output by
statistical software.
In this section we illustrate the bootstrap on a toy example in which we

wish to determine the best investment allocation under a simple model.
In Section 5.3 we explore the use of the bootstrap to assess the variability
associated with the regression coefficients in a linear model fit.
Suppose that we wish to invest a fixed sum of money in two financial

assets that yield returns of X and Y , respectively, where X and Y are
random quantities. We will invest a fraction α of our money in X, and will
invest the remaining 1 − α in Y . Since there is variability associated with
the returns on these two assets, we wish to choose α to minimize the total
risk, or variance, of our investment. In other words, we want to minimize
Var(αX + (1−α)Y ). One can show that the value that minimizes the risk
is given by

α =
σ2
Y − σXY

σ2
X + σ2

Y − 2σXY
, (5.6)

where σ2
X = Var(X),σ2

Y = Var(Y ), and σXY = Cov(X,Y ).
In reality, the quantities σ2

X , σ2
Y , and σXY are unknown. We can compute

estimates for these quantities, σ̂2
X , σ̂2

Y , and σ̂XY , using a data set that
contains past measurements for X and Y . We can then estimate the value
of α that minimizes the variance of our investment using

α̂ =
σ̂2
Y − σ̂XY

σ̂2
X + σ̂2

Y − 2σ̂XY
. (5.7)

Figure 5.9 illustrates this approach for estimating α on a simulated data
set. In each panel, we simulated 100 pairs of returns for the investments
X and Y . We used these returns to estimate σ2

X ,σ2
Y , and σXY , which we

then substituted into (5.7) in order to obtain estimates for α. The value of
α̂ resulting from each simulated data set ranges from 0.532 to 0.657.
It is natural to wish to quantify the accuracy of our estimate of α. To

estimate the standard deviation of α̂, we repeated the process of simu-
lating 100 paired observations of X and Y , and estimating α using (5.7),
1,000 times. We thereby obtained 1,000 estimates for α, which we can call
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FIGURE 5.9. Each panel displays 100 simulated returns for investments
X and Y . From left to right and top to bottom, the resulting estimates for α
are 0.576, 0.532, 0.657, and 0.651.

α̂1, α̂2, . . . , α̂1,000. The left-hand panel of Figure 5.10 displays a histogram
of the resulting estimates. For these simulations the parameters were set to
σ2
X = 1,σ2

Y = 1.25, and σXY = 0.5, and so we know that the true value of
α is 0.6. We indicated this value using a solid vertical line on the histogram.
The mean over all 1,000 estimates for α is

ᾱ =
1

1000

1000∑

r=1

α̂r = 0.5996,

very close to α = 0.6, and the standard deviation of the estimates is

√√√√ 1

1000− 1

1000∑

r=1

(α̂r − ᾱ)2 = 0.083.

This gives us a very good idea of the accuracy of α̂: SE(α̂) ≈ 0.083. So
roughly speaking, for a random sample from the population, we would
expect α̂ to differ from α by approximately 0.08, on average.
In practice, however, the procedure for estimating SE(α̂) outlined above

cannot be applied, because for real data we cannot generate new samples
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FIGURE 5.10. Left: A histogram of the estimates of α obtained by generating
1,000 simulated data sets from the true population. Center: A histogram of the
estimates of α obtained from 1,000 bootstrap samples from a single data set.
Right: The estimates of α displayed in the left and center panels are shown as
boxplots. In each panel, the pink line indicates the true value of α.

from the original population. However, the bootstrap approach allows us
to use a computer to emulate the process of obtaining new sample sets,
so that we can estimate the variability of α̂ without generating additional
samples. Rather than repeatedly obtaining independent data sets from the
population, we instead obtain distinct data sets by repeatedly sampling
observations from the original data set.
This approach is illustrated in Figure 5.11 on a simple data set, which

we call Z, that contains only n = 3 observations. We randomly select n
observations from the data set in order to produce a bootstrap data set,
Z∗1. The sampling is performed with replacement, which means that the

with
replacementsame observation can occur more than once in the bootstrap data set. In

this example, Z∗1 contains the third observation twice, the first observation
once, and no instances of the second observation. Note that if an observation
is contained in Z∗1, then both its X and Y values are included. We can use
Z∗1 to produce a new bootstrap estimate for α, which we call α̂∗1. This
procedure is repeated B times for some large value of B, in order to produce
B different bootstrap data sets, Z∗1, Z∗2, . . . , Z∗B , and B corresponding α
estimates, α̂∗1, α̂∗2, . . . , α̂∗B . We can compute the standard error of these
bootstrap estimates using the formula

SEB(α̂) =

√√√√ 1

B − 1

B∑

r=1

(
α̂∗r − 1

B

B∑

r′=1

α̂∗r′

)2

. (5.8)

This serves as an estimate of the standard error of α̂ estimated from the
original data set.
The bootstrap approach is illustrated in the center panel of Figure 5.10,

which displays a histogram of 1,000 bootstrap estimates of α, each com-
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FIGURE 5.11. A graphical illustration of the bootstrap approach on a small
sample containing n = 3 observations. Each bootstrap data set contains n obser-
vations, sampled with replacement from the original data set. Each bootstrap data
set is used to obtain an estimate of α.

puted using a distinct bootstrap data set. This panel was constructed on
the basis of a single data set, and hence could be created using real data.
Note that the histogram looks very similar to the left-hand panel, which
displays the idealized histogram of the estimates of α obtained by gener-
ating 1,000 simulated data sets from the true population. In particular the
bootstrap estimate SE(α̂) from (5.8) is 0.087, very close to the estimate
of 0.083 obtained using 1,000 simulated data sets. The right-hand panel
displays the information in the center and left panels in a different way, via
boxplots of the estimates for α obtained by generating 1,000 simulated data
sets from the true population and using the bootstrap approach. Again, the
boxplots have similar spreads, indicating that the bootstrap approach can
be used to effectively estimate the variability associated with α̂.

5.3 Lab: Cross-Validation and the Bootstrap

In this lab, we explore the resampling techniques covered in this chapter.
Some of the commands in this lab may take a while to run on your com-
puter.
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5.3.1 The Validation Set Approach

We explore the use of the validation set approach in order to estimate the
test error rates that result from fitting various linear models on the Auto

data set.
Before we begin, we use the set.seed() function in order to set a seed for

seed
R’s random number generator, so that the reader of this book will obtain
precisely the same results as those shown below. It is generally a good idea
to set a random seed when performing an analysis such as cross-validation
that contains an element of randomness, so that the results obtained can
be reproduced precisely at a later time.
We begin by using the sample() function to split the set of observations

sample()
into two halves, by selecting a random subset of 196 observations out of
the original 392 observations. We refer to these observations as the training
set.

> library(ISLR2)

> set.seed (1)

> train <- sample (392, 196)

(Here we use a shortcut in the sample command; see ?sample for details.)
We then use the subset option in lm() to fit a linear regression using only
the observations corresponding to the training set.

> lm.fit <- lm(mpg ∼ horsepower , data = Auto , subset = train)

We now use the predict() function to estimate the response for all 392
observations, and we use the mean() function to calculate the MSE of the
196 observations in the validation set. Note that the -train index below
selects only the observations that are not in the training set.

> attach(Auto)

> mean((mpg - predict(lm.fit , Auto))[-train ]^2)

[1] 23.27

Therefore, the estimated test MSE for the linear regression fit is 23.27. We
can use the poly() function to estimate the test error for the quadratic and
cubic regressions.

> lm.fit2 <- lm(mpg ∼ poly(horsepower , 2), data = Auto ,

subset = train)

> mean((mpg - predict(lm.fit2 , Auto))[-train ]^2)

[1] 18.72

> lm.fit3 <- lm(mpg ∼ poly(horsepower , 3), data = Auto ,

subset = train)

> mean((mpg - predict(lm.fit3 , Auto))[-train ]^2)

[1] 18.79

These error rates are 18.72 and 18.79, respectively. If we choose a different
training set instead, then we will obtain somewhat different errors on the
validation set.
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> set.seed (2)

> train <- sample (392, 196)

> lm.fit <- lm(mpg ∼ horsepower , subset = train)

> mean((mpg - predict(lm.fit , Auto))[-train ]^2)

[1] 25.73

> lm.fit2 <- lm(mpg ∼ poly(horsepower , 2), data = Auto ,

subset = train)

> mean((mpg - predict(lm.fit2 , Auto))[-train ]^2)

[1] 20.43

> lm.fit3 <- lm(mpg ∼ poly(horsepower , 3), data = Auto ,

subset = train)

> mean((mpg - predict(lm.fit3 , Auto))[-train ]^2)

[1] 20.39

Using this split of the observations into a training set and a validation
set, we find that the validation set error rates for the models with linear,
quadratic, and cubic terms are 25.73, 20.43, and 20.39, respectively.
These results are consistent with our previous findings: a model that

predicts mpg using a quadratic function of horsepower performs better than
a model that involves only a linear function of horsepower, and there is
little evidence in favor of a model that uses a cubic function of horsepower.

5.3.2 Leave-One-Out Cross-Validation

The LOOCV estimate can be automatically computed for any generalized
linear model using the glm() and cv.glm() functions. In the lab for Chap-

cv.glm()
ter 4, we used the glm() function to perform logistic regression by passing
in the family = "binomial" argument. But if we use glm() to fit a model
without passing in the family argument, then it performs linear regression,
just like the lm() function. So for instance,

> glm.fit <- glm(mpg ∼ horsepower , data = Auto)

> coef(glm.fit)

(Intercept) horsepower

39.936 -0.158

and

> lm.fit <- lm(mpg ∼ horsepower , data = Auto)

> coef(lm.fit)

(Intercept) horsepower

39.936 -0.158

yield identical linear regression models. In this lab, we will perform linear
regression using the glm() function rather than the lm() function because
the former can be used together with cv.glm(). The cv.glm() function is
part of the boot library.

> library(boot)

> glm.fit <- glm(mpg ∼ horsepower , data = Auto)

> cv.err <- cv.glm(Auto , glm.fit)

> cv.err$delta
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1 1

24.23 24.23

The cv.glm() function produces a list with several components. The two
numbers in the delta vector contain the cross-validation results. In this
case the numbers are identical (up to two decimal places) and correspond
to the LOOCV statistic given in (5.1). Below, we discuss a situation in
which the two numbers differ. Our cross-validation estimate for the test
error is approximately 24.23.
We can repeat this procedure for increasingly complex polynomial fits.

To automate the process, we use the for() function to initiate a for loop
for()

for loop
which iteratively fits polynomial regressions for polynomials of order i = 1
to i = 10, computes the associated cross-validation error, and stores it in
the ith element of the vector cv.error. We begin by initializing the vector.

> cv.error <- rep(0, 10)

> for (i in 1:10) {

+ glm.fit <- glm(mpg ∼ poly(horsepower , i), data = Auto)

+ cv.error[i] <- cv.glm(Auto , glm.fit)$delta [1]

+ }

> cv.error

[1] 24.23 19.25 19.33 19.42 19.03 18.98 18.83 18.96 19.07 19.49

As in Figure 5.4, we see a sharp drop in the estimated test MSE between
the linear and quadratic fits, but then no clear improvement from using
higher-order polynomials.

5.3.3 k-Fold Cross-Validation

The cv.glm() function can also be used to implement k-fold CV. Below we
use k = 10, a common choice for k, on the Auto data set. We once again set
a random seed and initialize a vector in which we will store the CV errors
corresponding to the polynomial fits of orders one to ten.

> set.seed (17)

> cv.error .10 <- rep(0, 10)

> for (i in 1:10) {

+ glm.fit <- glm(mpg ∼ poly(horsepower , i), data = Auto)

+ cv.error .10[i] <- cv.glm(Auto , glm.fit , K = 10)$delta [1]

+ }

> cv.error .10

[1] 24.27 19.27 19.35 19.29 19.03 18.90 19.12 19.15 18.87 20.96

Notice that the computation time is shorter than that of LOOCV. (In
principle, the computation time for LOOCV for a least squares linear model
should be faster than for k-fold CV, due to the availability of the formula
(5.2) for LOOCV; however, unfortunately the cv.glm() function does not
make use of this formula.) We still see little evidence that using cubic or
higher-order polynomial terms leads to lower test error than simply using
a quadratic fit.
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We saw in Section 5.3.2 that the two numbers associated with delta are
essentially the same when LOOCV is performed. When we instead perform
k-fold CV, then the two numbers associated with delta differ slightly. The
first is the standard k-fold CV estimate, as in (5.3). The second is a bias-
corrected version. On this data set, the two estimates are very similar to
each other.

5.3.4 The Bootstrap

We illustrate the use of the bootstrap in the simple example of Section 5.2,
as well as on an example involving estimating the accuracy of the linear
regression model on the Auto data set.

Estimating the Accuracy of a Statistic of Interest

One of the great advantages of the bootstrap approach is that it can be
applied in almost all situations. No complicated mathematical calculations
are required. Performing a bootstrap analysis in R entails only two steps.
First, we must create a function that computes the statistic of interest.
Second, we use the boot() function, which is part of the boot library, to

boot()
perform the bootstrap by repeatedly sampling observations from the data
set with replacement.
The Portfolio data set in the ISLR2 package is simulated data of 100

pairs of returns, generated in the fashion described in Section 5.2. To illus-
trate the use of the bootstrap on this data, we must first create a function,
alpha.fn(), which takes as input the (X,Y ) data as well as a vector indi-
cating which observations should be used to estimate α. The function then
outputs the estimate for α based on the selected observations.

> alpha.fn <- function(data , index) {

+ X <- data$X[index]

+ Y <- data$Y[index]

+ (var(Y) - cov(X, Y)) / (var(X) + var(Y) - 2 * cov(X, Y))

+ }

This function returns, or outputs, an estimate for α based on applying
(5.7) to the observations indexed by the argument index. For instance, the
following command tells R to estimate α using all 100 observations.

> alpha.fn(Portfolio , 1:100)

[1] 0.576

The next command uses the sample() function to randomly select 100 ob-
servations from the range 1 to 100, with replacement. This is equivalent
to constructing a new bootstrap data set and recomputing α̂ based on the
new data set.

> set.seed (7)

> alpha.fn(Portfolio , sample (100, 100, replace = T))

[1] 0.539
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We can implement a bootstrap analysis by performing this command many
times, recording all of the corresponding estimates for α, and computing
the resulting standard deviation. However, the boot() function automates

boot()
this approach. Below we produce R = 1, 000 bootstrap estimates for α.

> boot(Portfolio , alpha.fn, R = 1000)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = Portfolio , statistic = alpha.fn , R = 1000)

Bootstrap Statistics :

original bias std. error

t1* 0.5758 0.001 0.0897

The final output shows that using the original data, α̂ = 0.5758, and that
the bootstrap estimate for SE(α̂) is 0.0897.

Estimating the Accuracy of a Linear Regression Model

The bootstrap approach can be used to assess the variability of the coef-
ficient estimates and predictions from a statistical learning method. Here
we use the bootstrap approach in order to assess the variability of the
estimates for β0 and β1, the intercept and slope terms for the linear regres-
sion model that uses horsepower to predict mpg in the Auto data set. We
will compare the estimates obtained using the bootstrap to those obtained
using the formulas for SE(β̂0) and SE(β̂1) described in Section 3.1.2.
We first create a simple function, boot.fn(), which takes in the Auto data

set as well as a set of indices for the observations, and returns the intercept
and slope estimates for the linear regression model. We then apply this
function to the full set of 392 observations in order to compute the esti-
mates of β0 and β1 on the entire data set using the usual linear regression
coefficient estimate formulas from Chapter 3. Note that we do not need the
{ and } at the beginning and end of the function because it is only one line
long.

> boot.fn <- function(data , index)

+ coef(lm(mpg ∼ horsepower , data = data , subset = index))

> boot.fn(Auto , 1:392)

(Intercept) horsepower

39.936 -0.158

The boot.fn() function can also be used in order to create bootstrap esti-
mates for the intercept and slope terms by randomly sampling from among
the observations with replacement. Here we give two examples.

> set.seed (1)

> boot.fn(Auto , sample (392, 392, replace = T))

(Intercept) horsepower

40.341 -0.164
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> boot.fn(Auto , sample (392, 392, replace = T))

(Intercept) horsepower

40.119 -0.158

Next, we use the boot() function to compute the standard errors of 1,000
bootstrap estimates for the intercept and slope terms.

> boot(Auto , boot.fn, 1000)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = Auto , statistic = boot.fn , R = 1000)

Bootstrap Statistics :

original bias std. error

t1* 39.936 0.0545 0.8413

t2* -0.158 -0.0006 0.0073

This indicates that the bootstrap estimate for SE(β̂0) is 0.84, and that
the bootstrap estimate for SE(β̂1) is 0.0073. As discussed in Section 3.1.2,
standard formulas can be used to compute the standard errors for the
regression coefficients in a linear model. These can be obtained using the
summary() function.

> summary(lm(mpg ∼ horsepower , data = Auto))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.936 0.71750 55.7 1.22e-187

horsepower -0.158 0.00645 -24.5 7.03e-81

The standard error estimates for β̂0 and β̂1 obtained using the formulas
from Section 3.1.2 are 0.717 for the intercept and 0.0064 for the slope.
Interestingly, these are somewhat different from the estimates obtained
using the bootstrap. Does this indicate a problem with the bootstrap? In
fact, it suggests the opposite. Recall that the standard formulas given in
Equation 3.8 on page 66 rely on certain assumptions. For example, they
depend on the unknown parameter σ2, the noise variance. We then estimate
σ2 using the RSS. Now although the formulas for the standard errors do not
rely on the linear model being correct, the estimate for σ2 does. We see in
Figure 3.8 on page 91 that there is a non-linear relationship in the data, and
so the residuals from a linear fit will be inflated, and so will σ̂2. Secondly,
the standard formulas assume (somewhat unrealistically) that the xi are
fixed, and all the variability comes from the variation in the errors ϵi. The
bootstrap approach does not rely on any of these assumptions, and so it is
likely giving a more accurate estimate of the standard errors of β̂0 and β̂1

than is the summary() function.
Below we compute the bootstrap standard error estimates and the stan-

dard linear regression estimates that result from fitting the quadratic model
to the data. Since this model provides a good fit to the data (Figure 3.8),
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there is now a better correspondence between the bootstrap estimates and
the standard estimates of SE(β̂0), SE(β̂1) and SE(β̂2).

> boot.fn <- function(data , index)

+ coef(

lm(mpg ∼ horsepower + I(horsepower ^2),

data = data , subset = index)

)

> set.seed (1)

> boot(Auto , boot.fn, 1000)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = Auto , statistic = boot.fn , R = 1000)

Bootstrap Statistics :

original bias std. error

t1* 56.9001 3.51e-02 2.0300

t2* -0.4661 -7.08e-04 0.0324

t3* 0.0012 2.84e-06 0.0001

> summary(

lm(mpg ∼ horsepower + I(horsepower ^2), data = Auto)

)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.9001 1.8004 32 1.7e-109

horsepower -0.4662 0.0311 -15 2.3e-40

I(horsepower ^2) 0.0012 0.0001 10 2.2e-21

5.4 Exercises

Conceptual

1. Using basic statistical properties of the variance, as well as single-
variable calculus, derive (5.6). In other words, prove that α given by
(5.6) does indeed minimize Var(αX + (1− α)Y ).

2. We will now derive the probability that a given observation is part
of a bootstrap sample. Suppose that we obtain a bootstrap sample
from a set of n observations.

(a) What is the probability that the first bootstrap observation is
not the jth observation from the original sample? Justify your
answer.

(b) What is the probability that the second bootstrap observation
is not the jth observation from the original sample?

(c) Argue that the probability that the jth observation is not in the
bootstrap sample is (1− 1/n)n.
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(d) When n = 5, what is the probability that the jth observation is
in the bootstrap sample?

(e) When n = 100, what is the probability that the jth observation
is in the bootstrap sample?

(f) When n = 10, 000, what is the probability that the jth observa-
tion is in the bootstrap sample?

(g) Create a plot that displays, for each integer value of n from 1
to 100, 000, the probability that the jth observation is in the
bootstrap sample. Comment on what you observe.

(h) We will now investigate numerically the probability that a boot-
strap sample of size n = 100 contains the jth observation. Here
j = 4. We repeatedly create bootstrap samples, and each time
we record whether or not the fourth observation is contained in
the bootstrap sample.

> store <- rep(NA, 10000)

> for(i in 1:10000){

store[i] <- sum(sample (1:100 , rep=TRUE) == 4) > 0

}

> mean(store)

Comment on the results obtained.

3. We now review k-fold cross-validation.

(a) Explain how k-fold cross-validation is implemented.

(b) What are the advantages and disadvantages of k-fold cross-
validation relative to:

i. The validation set approach?

ii. LOOCV?

4. Suppose that we use some statistical learning method to make a pre-
diction for the response Y for a particular value of the predictor X.
Carefully describe how we might estimate the standard deviation of
our prediction.

Applied

5. In Chapter 4, we used logistic regression to predict the probability of
default using income and balance on the Default data set. We will
now estimate the test error of this logistic regression model using the
validation set approach. Do not forget to set a random seed before
beginning your analysis.

(a) Fit a logistic regression model that uses income and balance to
predict default.
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(b) Using the validation set approach, estimate the test error of this
model. In order to do this, you must perform the following steps:

i. Split the sample set into a training set and a validation set.

ii. Fit a multiple logistic regression model using only the train-
ing observations.

iii. Obtain a prediction of default status for each individual in
the validation set by computing the posterior probability of
default for that individual, and classifying the individual to
the default category if the posterior probability is greater
than 0.5.

iv. Compute the validation set error, which is the fraction of
the observations in the validation set that are misclassified.

(c) Repeat the process in (b) three times, using three different splits
of the observations into a training set and a validation set. Com-
ment on the results obtained.

(d) Now consider a logistic regression model that predicts the prob-
ability of default using income, balance, and a dummy variable
for student. Estimate the test error for this model using the val-
idation set approach. Comment on whether or not including a
dummy variable for student leads to a reduction in the test error
rate.

6. We continue to consider the use of a logistic regression model to
predict the probability of default using income and balance on the
Default data set. In particular, we will now compute estimates for
the standard errors of the income and balance logistic regression co-
efficients in two different ways: (1) using the bootstrap, and (2) using
the standard formula for computing the standard errors in the glm()

function. Do not forget to set a random seed before beginning your
analysis.

(a) Using the summary() and glm() functions, determine the esti-
mated standard errors for the coefficients associated with income

and balance in a multiple logistic regression model that uses
both predictors.

(b) Write a function, boot.fn(), that takes as input the Default data
set as well as an index of the observations, and that outputs
the coefficient estimates for income and balance in the multiple
logistic regression model.

(c) Use the boot() function together with your boot.fn() function to
estimate the standard errors of the logistic regression coefficients
for income and balance.

(d) Comment on the estimated standard errors obtained using the
glm() function and using your bootstrap function.
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7. In Sections 5.3.2 and 5.3.3, we saw that the cv.glm() function can be
used in order to compute the LOOCV test error estimate. Alterna-
tively, one could compute those quantities using just the glm() and
predict.glm() functions, and a for loop. You will now take this ap-
proach in order to compute the LOOCV error for a simple logistic
regression model on the Weekly data set. Recall that in the context
of classification problems, the LOOCV error is given in (5.4).

(a) Fit a logistic regression model that predicts Direction using Lag1

and Lag2.

(b) Fit a logistic regression model that predicts Direction using Lag1

and Lag2 using all but the first observation.

(c) Use the model from (b) to predict the direction of the first obser-
vation. You can do this by predicting that the first observation
will go up if P (Direction = "Up"|Lag1, Lag2) > 0.5. Was this
observation correctly classified?

(d) Write a for loop from i = 1 to i = n, where n is the number of
observations in the data set, that performs each of the following
steps:

i. Fit a logistic regression model using all but the ith obser-
vation to predict Direction using Lag1 and Lag2.

ii. Compute the posterior probability of the market moving up
for the ith observation.

iii. Use the posterior probability for the ith observation in order
to predict whether or not the market moves up.

iv. Determine whether or not an error was made in predicting
the direction for the ith observation. If an error was made,
then indicate this as a 1, and otherwise indicate it as a 0.

(e) Take the average of the n numbers obtained in (d)iv in order to
obtain the LOOCV estimate for the test error. Comment on the
results.

8. We will now perform cross-validation on a simulated data set.

(a) Generate a simulated data set as follows:

> set.seed (1)

> x <- rnorm (100)

> y <- x - 2 * x^2 + rnorm (100)

In this data set, what is n and what is p? Write out the model
used to generate the data in equation form.

(b) Create a scatterplot of X against Y . Comment on what you find.

(c) Set a random seed, and then compute the LOOCV errors that
result from fitting the following four models using least squares:
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i. Y = β0 + β1X + ϵ
ii. Y = β0 + β1X + β2X2 + ϵ
iii. Y = β0 + β1X + β2X2 + β3X3 + ϵ
iv. Y = β0 + β1X + β2X2 + β3X3 + β4X4 + ϵ.

Note you may find it helpful to use the data.frame() function
to create a single data set containing both X and Y .

(d) Repeat (c) using another random seed, and report your results.
Are your results the same as what you got in (c)? Why?

(e) Which of the models in (c) had the smallest LOOCV error? Is
this what you expected? Explain your answer.

(f) Comment on the statistical significance of the coefficient esti-
mates that results from fitting each of the models in (c) using
least squares. Do these results agree with the conclusions drawn
based on the cross-validation results?

9. We will now consider the Boston housing data set, from the ISLR2

library.

(a) Based on this data set, provide an estimate for the population
mean of medv. Call this estimate µ̂.

(b) Provide an estimate of the standard error of µ̂. Interpret this
result.
Hint: We can compute the standard error of the sample mean by
dividing the sample standard deviation by the square root of the
number of observations.

(c) Now estimate the standard error of µ̂ using the bootstrap. How
does this compare to your answer from (b)?

(d) Based on your bootstrap estimate from (c), provide a 95% con-
fidence interval for the mean of medv. Compare it to the results
obtained using t.test(Boston$medv).
Hint: You can approximate a 95% confidence interval using the
formula [µ̂− 2SE(µ̂), µ̂+ 2SE(µ̂)].

(e) Based on this data set, provide an estimate, µ̂med, for the median
value of medv in the population.

(f) We now would like to estimate the standard error of µ̂med. Unfor-
tunately, there is no simple formula for computing the standard
error of the median. Instead, estimate the standard error of the
median using the bootstrap. Comment on your findings.

(g) Based on this data set, provide an estimate for the tenth per-
centile of medv in Boston census tracts. Call this quantity µ̂0.1.
(You can use the quantile() function.)

(h) Use the bootstrap to estimate the standard error of µ̂0.1. Com-
ment on your findings.



6
Linear Model Selection
and Regularization

In the regression setting, the standard linear model

Y = β0 + β1X1 + · · ·+ βpXp + ϵ (6.1)

is commonly used to describe the relationship between a response Y and
a set of variables X1, X2, . . . , Xp. We have seen in Chapter 3 that one
typically fits this model using least squares.
In the chapters that follow, we consider some approaches for extending

the linear model framework. In Chapter 7 we generalize (6.1) in order to
accommodate non-linear, but still additive, relationships, while in Chap-
ters 8 and 10 we consider even more general non-linear models. However,
the linear model has distinct advantages in terms of inference and, on real-
world problems, is often surprisingly competitive in relation to non-linear
methods. Hence, before moving to the non-linear world, we discuss in this
chapter some ways in which the simple linear model can be improved, by re-
placing plain least squares fitting with some alternative fitting procedures.
Why might we want to use another fitting procedure instead of least

squares? As we will see, alternative fitting procedures can yield better pre-
diction accuracy and model interpretability.

• Prediction Accuracy : Provided that the true relationship between the
response and the predictors is approximately linear, the least squares
estimates will have low bias. If n ≫ p—that is, if n, the number of
observations, is much larger than p, the number of variables—then the
least squares estimates tend to also have low variance, and hence will
perform well on test observations. However, if n is not much larger
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than p, then there can be a lot of variability in the least squares fit,
resulting in overfitting and consequently poor predictions on future
observations not used in model training. And if p > n, then there
is no longer a unique least squares coefficient estimate: the variance
is infinite so the method cannot be used at all. By constraining or
shrinking the estimated coefficients, we can often substantially reduce
the variance at the cost of a negligible increase in bias. This can
lead to substantial improvements in the accuracy with which we can
predict the response for observations not used in model training.

• Model Interpretability : It is often the case that some or many of the
variables used in a multiple regression model are in fact not associ-
ated with the response. Including such irrelevant variables leads to
unnecessary complexity in the resulting model. By removing these
variables—that is, by setting the corresponding coefficient estimates
to zero—we can obtain a model that is more easily interpreted. Now
least squares is extremely unlikely to yield any coefficient estimates
that are exactly zero. In this chapter, we see some approaches for au-
tomatically performing feature selection or variable selection—that is,

feature
selection
variable
selection

for excluding irrelevant variables from a multiple regression model.

There are many alternatives, both classical and modern, to using least
squares to fit (6.1). In this chapter, we discuss three important classes of
methods.

• Subset Selection. This approach involves identifying a subset of the p
predictors that we believe to be related to the response. We then fit
a model using least squares on the reduced set of variables.

• Shrinkage. This approach involves fitting a model involving all p pre-
dictors. However, the estimated coefficients are shrunken towards zero
relative to the least squares estimates. This shrinkage (also known as
regularization) has the effect of reducing variance. Depending on what
type of shrinkage is performed, some of the coefficients may be esti-
mated to be exactly zero. Hence, shrinkage methods can also perform
variable selection.

• Dimension Reduction. This approach involves projecting the p predic-
tors into an M -dimensional subspace, where M < p. This is achieved
by computing M different linear combinations, or projections, of the
variables. Then these M projections are used as predictors to fit a
linear regression model by least squares.

In the following sections we describe each of these approaches in greater de-
tail, along with their advantages and disadvantages. Although this chapter
describes extensions and modifications to the linear model for regression
seen in Chapter 3, the same concepts apply to other methods, such as the
classification models seen in Chapter 4.
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6.1 Subset Selection

In this section we consider some methods for selecting subsets of predictors.
These include best subset and stepwise model selection procedures.

6.1.1 Best Subset Selection

To perform best subset selection, we fit a separate least squares regression
best subset
selectionfor each possible combination of the p predictors. That is, we fit all pmodels

that contain exactly one predictor, all
(p
2

)
= p(p−1)/2 models that contain

exactly two predictors, and so forth. We then look at all of the resulting
models, with the goal of identifying the one that is best.
The problem of selecting the best model from among the 2p possibilities

considered by best subset selection is not trivial. This is usually broken up
into two stages, as described in Algorithm 6.1.

Algorithm 6.1 Best subset selection

1. Let M0 denote the null model , which contains no predictors. This
model simply predicts the sample mean for each observation.

2. For k = 1, 2, . . . p:

(a) Fit all
(p
k

)
models that contain exactly k predictors.

(b) Pick the best among these
(p
k

)
models, and call it Mk. Here best

is defined as having the smallest RSS, or equivalently largest R2.

3. Select a single best model from among M0, . . . ,Mp using cross-
validated prediction error, Cp (AIC), BIC, or adjusted R2.

In Algorithm 6.1, Step 2 identifies the best model (on the training data)
for each subset size, in order to reduce the problem from one of 2p possible
models to one of p + 1 possible models. In Figure 6.1, these models form
the lower frontier depicted in red.
Now in order to select a single best model, we must simply choose among

these p + 1 options. This task must be performed with care, because the
RSS of these p + 1 models decreases monotonically, and the R2 increases
monotonically, as the number of features included in the models increases.
Therefore, if we use these statistics to select the best model, then we will
always end up with a model involving all of the variables. The problem is
that a low RSS or a high R2 indicates a model with a low training error,
whereas we wish to choose a model that has a low test error. (As shown
in Chapter 2 in Figures 2.9–2.11, training error tends to be quite a bit
smaller than test error, and a low training error by no means guarantees
a low test error.) Therefore, in Step 3, we use cross-validated prediction
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FIGURE 6.1. For each possible model containing a subset of the ten predictors
in the Credit data set, the RSS and R2 are displayed. The red frontier tracks the
best model for a given number of predictors, according to RSS and R2. Though
the data set contains only ten predictors, the x-axis ranges from 1 to 11, since one
of the variables is categorical and takes on three values, leading to the creation of
two dummy variables.

error, Cp, BIC, or adjusted R2 in order to select among M0,M1, . . . ,Mp.
These approaches are discussed in Section 6.1.3.
An application of best subset selection is shown in Figure 6.1. Each

plotted point corresponds to a least squares regression model fit using a
different subset of the 10 predictors in the Credit data set, discussed in
Chapter 3. Here the variable region is a three-level qualitative variable,
and so is represented by two dummy variables, which are selected sepa-
rately in this case. Hence, there are a total of 11 possible variables which
can be included in the model. We have plotted the RSS and R2 statistics
for each model, as a function of the number of variables. The red curves
connect the best models for each model size, according to RSS or R2. The
figure shows that, as expected, these quantities improve as the number of
variables increases; however, from the three-variable model on, there is little
improvement in RSS and R2 as a result of including additional predictors.
Although we have presented best subset selection here for least squares

regression, the same ideas apply to other types of models, such as logistic
regression. In the case of logistic regression, instead of ordering models by
RSS in Step 2 of Algorithm 6.1, we instead use the deviance, a measure

deviance
that plays the role of RSS for a broader class of models. The deviance is
negative two times the maximized log-likelihood; the smaller the deviance,
the better the fit.
While best subset selection is a simple and conceptually appealing ap-

proach, it suffers from computational limitations. The number of possible
models that must be considered grows rapidly as p increases. In general,
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there are 2p models that involve subsets of p predictors. So if p = 10,
then there are approximately 1,000 possible models to be considered, and if
p = 20, then there are over one million possibilities! Consequently, best sub-
set selection becomes computationally infeasible for values of p greater than
around 40, even with extremely fast modern computers. There are compu-
tational shortcuts—so called branch-and-bound techniques—for eliminat-
ing some choices, but these have their limitations as p gets large. They also
only work for least squares linear regression. We present computationally
efficient alternatives to best subset selection next.

6.1.2 Stepwise Selection

For computational reasons, best subset selection cannot be applied with
very large p. Best subset selection may also suffer from statistical problems
when p is large. The larger the search space, the higher the chance of finding
models that look good on the training data, even though they might not
have any predictive power on future data. Thus an enormous search space
can lead to overfitting and high variance of the coefficient estimates.
For both of these reasons, stepwise methods, which explore a far more

restricted set of models, are attractive alternatives to best subset selection.

Forward Stepwise Selection

Forward stepwise selection is a computationally efficient alternative to best
forward
stepwise
selection

subset selection. While the best subset selection procedure considers all
2p possible models containing subsets of the p predictors, forward step-
wise considers a much smaller set of models. Forward stepwise selection
begins with a model containing no predictors, and then adds predictors
to the model, one-at-a-time, until all of the predictors are in the model.
In particular, at each step the variable that gives the greatest additional
improvement to the fit is added to the model. More formally, the forward
stepwise selection procedure is given in Algorithm 6.2.

Unlike best subset selection, which involved fitting 2p models, forward
stepwise selection involves fitting one null model, along with p− k models
in the kth iteration, for k = 0, . . . , p − 1. This amounts to a total of 1 +∑p−1

k=0(p−k) = 1+p(p+1)/2 models. This is a substantial difference: when
p = 20, best subset selection requires fitting 1,048,576 models, whereas
forward stepwise selection requires fitting only 211 models.1

1Though forward stepwise selection considers p(p + 1)/2 + 1 models, it performs a
guided search over model space, and so the effective model space considered contains
substantially more than p(p+ 1)/2 + 1 models.
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Algorithm 6.2 Forward stepwise selection

1. Let M0 denote the null model, which contains no predictors.

2. For k = 0, . . . , p− 1:

(a) Consider all p − k models that augment the predictors in Mk

with one additional predictor.

(b) Choose the best among these p − k models, and call it Mk+1.
Here best is defined as having smallest RSS or highest R2.

3. Select a single best model from among M0, . . . ,Mp using cross-
validated prediction error, Cp (AIC), BIC, or adjusted R2.

In Step 2(b) of Algorithm 6.2, we must identify the best model from
among those p−k that augment Mk with one additional predictor. We can
do this by simply choosing the model with the lowest RSS or the highest
R2. However, in Step 3, we must identify the best model among a set of
models with different numbers of variables. This is more challenging, and
is discussed in Section 6.1.3.
Forward stepwise selection’s computational advantage over best subset

selection is clear. Though forward stepwise tends to do well in practice,
it is not guaranteed to find the best possible model out of all 2p mod-
els containing subsets of the p predictors. For instance, suppose that in a
given data set with p = 3 predictors, the best possible one-variable model
contains X1, and the best possible two-variable model instead contains X2

and X3. Then forward stepwise selection will fail to select the best possible
two-variable model, because M1 will contain X1, so M2 must also contain
X1 together with one additional variable.
Table 6.1, which shows the first four selected models for best subset

and forward stepwise selection on the Credit data set, illustrates this phe-
nomenon. Both best subset selection and forward stepwise selection choose
rating for the best one-variable model and then include income and student

for the two- and three-variable models. However, best subset selection re-
places rating by cards in the four-variable model, while forward stepwise
selection must maintain rating in its four-variable model. In this example,
Figure 6.1 indicates that there is not much difference between the three-
and four-variable models in terms of RSS, so either of the four-variable
models will likely be adequate.
Forward stepwise selection can be applied even in the high-dimensional

setting where n < p; however, in this case, it is possible to construct sub-
models M0, . . . ,Mn−1 only, since each submodel is fit using least squares,
which will not yield a unique solution if p ≥ n.
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# Variables Best subset Forward stepwise
One rating rating

Two rating, income rating, income
Three rating, income, student rating, income, student
Four cards, income rating, income,

student, limit student, limit

TABLE 6.1. The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are identical but
the fourth models differ.

Backward Stepwise Selection

Like forward stepwise selection, backward stepwise selection provides an ef-
backward
stepwise
selection

ficient alternative to best subset selection. However, unlike forward stepwise
selection, it begins with the full least squares model containing all p predic-
tors, and then iteratively removes the least useful predictor, one-at-a-time.
Details are given in Algorithm 6.3.

Algorithm 6.3 Backward stepwise selection

1. Let Mp denote the full model, which contains all p predictors.

2. For k = p, p− 1, . . . , 1:

(a) Consider all k models that contain all but one of the predictors
in Mk, for a total of k − 1 predictors.

(b) Choose the best among these k models, and call it Mk−1. Here
best is defined as having smallest RSS or highest R2.

3. Select a single best model from among M0, . . . ,Mp using cross-
validated prediction error, Cp (AIC), BIC, or adjusted R2.

Like forward stepwise selection, the backward selection approach searches
through only 1+p(p+1)/2 models, and so can be applied in settings where
p is too large to apply best subset selection.2 Also like forward stepwise
selection, backward stepwise selection is not guaranteed to yield the best
model containing a subset of the p predictors.
Backward selection requires that the number of samples n is larger than

the number of variables p (so that the full model can be fit). In contrast,
forward stepwise can be used even when n < p, and so is the only viable
subset method when p is very large.

2Like forward stepwise selection, backward stepwise selection performs a guided
search over model space, and so effectively considers substantially more than 1+p(p+1)/2
models.
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Hybrid Approaches

The best subset, forward stepwise, and backward stepwise selection ap-
proaches generally give similar but not identical models. As another al-
ternative, hybrid versions of forward and backward stepwise selection are
available, in which variables are added to the model sequentially, in analogy
to forward selection. However, after adding each new variable, the method
may also remove any variables that no longer provide an improvement in
the model fit. Such an approach attempts to more closely mimic best sub-
set selection while retaining the computational advantages of forward and
backward stepwise selection.

6.1.3 Choosing the Optimal Model

Best subset selection, forward selection, and backward selection result in
the creation of a set of models, each of which contains a subset of the p
predictors. To apply these methods, we need a way to determine which of
these models is best. As we discussed in Section 6.1.1, the model containing
all of the predictors will always have the smallest RSS and the largest R2,
since these quantities are related to the training error. Instead, we wish to
choose a model with a low test error. As is evident here, and as we show
in Chapter 2, the training error can be a poor estimate of the test error.
Therefore, RSS and R2 are not suitable for selecting the best model among
a collection of models with different numbers of predictors.
In order to select the best model with respect to test error, we need to

estimate this test error. There are two common approaches:

1. We can indirectly estimate test error by making an adjustment to the
training error to account for the bias due to overfitting.

2. We can directly estimate the test error, using either a validation set
approach or a cross-validation approach, as discussed in Chapter 5.

We consider both of these approaches below.

Cp, AIC, BIC, and Adjusted R2

We show in Chapter 2 that the training set MSE is generally an under-
estimate of the test MSE. (Recall that MSE = RSS/n.) This is because
when we fit a model to the training data using least squares, we specifi-
cally estimate the regression coefficients such that the training RSS (but
not the test RSS) is as small as possible. In particular, the training error
will decrease as more variables are included in the model, but the test error
may not. Therefore, training set RSS and training set R2 cannot be used
to select from among a set of models with different numbers of variables.
However, a number of techniques for adjusting the training error for the

model size are available. These approaches can be used to select among a set
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FIGURE 6.2. Cp, BIC, and adjusted R2 are shown for the best models of each
size for the Credit data set (the lower frontier in Figure 6.1). Cp and BIC are
estimates of test MSE. In the middle plot we see that the BIC estimate of test
error shows an increase after four variables are selected. The other two plots are
rather flat after four variables are included.

of models with different numbers of variables. We now consider four such
approaches: Cp, Akaike information criterion (AIC), Bayesian information

Cp

Akaike
information
criterion

criterion (BIC), and adjusted R2. Figure 6.2 displays Cp, BIC, and adjusted

Bayesian
information
criterion

adjusted R2

R2 for the best model of each size produced by best subset selection on the
Credit data set.
For a fitted least squares model containing d predictors, the Cp estimate

of test MSE is computed using the equation

Cp =
1

n

(
RSS + 2dσ̂2

)
, (6.2)

where σ̂2 is an estimate of the variance of the error ϵ associated with each
response measurement in (6.1).3 Typically σ̂2 is estimated using the full
model containing all predictors. Essentially, the Cp statistic adds a penalty
of 2dσ̂2 to the training RSS in order to adjust for the fact that the training
error tends to underestimate the test error. Clearly, the penalty increases as
the number of predictors in the model increases; this is intended to adjust
for the corresponding decrease in training RSS. Though it is beyond the
scope of this book, one can show that if σ̂2 is an unbiased estimate of σ2 in
(6.2), then Cp is an unbiased estimate of test MSE. As a consequence, the
Cp statistic tends to take on a small value for models with a low test error,
so when determining which of a set of models is best, we choose the model
with the lowest Cp value. In Figure 6.2, Cp selects the six-variable model
containing the predictors income, limit, rating, cards, age and student.

3Mallow’s Cp is sometimes defined as C′
p = RSS/σ̂2 + 2d − n. This is equivalent to

the definition given above in the sense that Cp = 1
n σ̂2(C′

p + n), and so the model with
smallest Cp also has smallest C′

p.
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The AIC criterion is defined for a large class of models fit by maximum
likelihood. In the case of the model (6.1) with Gaussian errors, maximum
likelihood and least squares are the same thing. In this case AIC is given by

AIC =
1

n

(
RSS + 2dσ̂2

)
,

where, for simplicity, we have omitted irrelevant constants.4 Hence for least
squares models, Cp and AIC are proportional to each other, and so only
Cp is displayed in Figure 6.2.
BIC is derived from a Bayesian point of view, but ends up looking similar

to Cp (and AIC) as well. For the least squares model with d predictors, the
BIC is, up to irrelevant constants, given by

BIC =
1

n

(
RSS + log(n)dσ̂2

)
. (6.3)

Like Cp, the BIC will tend to take on a small value for a model with a
low test error, and so generally we select the model that has the lowest
BIC value. Notice that BIC replaces the 2dσ̂2 used by Cp with a log(n)dσ̂2

term, where n is the number of observations. Since log n > 2 for any n > 7,
the BIC statistic generally places a heavier penalty on models with many
variables, and hence results in the selection of smaller models than Cp.
In Figure 6.2, we see that this is indeed the case for the Credit data set;
BIC chooses a model that contains only the four predictors income, limit,
cards, and student. In this case the curves are very flat and so there does
not appear to be much difference in accuracy between the four-variable and
six-variable models.
The adjustedR2 statistic is another popular approach for selecting among

a set of models that contain different numbers of variables. Recall from
Chapter 3 that the usual R2 is defined as 1 − RSS/TSS, where TSS =∑

(yi − y)2 is the total sum of squares for the response. Since RSS always
decreases as more variables are added to the model, the R2 always increases
as more variables are added. For a least squares model with d variables,
the adjusted R2 statistic is calculated as

Adjusted R2 = 1− RSS/(n− d− 1)

TSS/(n− 1)
. (6.4)

Unlike Cp, AIC, and BIC, for which a small value indicates a model with
a low test error, a large value of adjusted R2 indicates a model with a

4There are two formulas for AIC for least squares regression. The formula that we
provide here requires an expression for σ2, which we obtain using the full model con-
taining all predictors. The second formula is appropriate when σ2 is unknown and we do
not want to explicitly estimate it; that formula has a log(RSS) term instead of an RSS
term. Detailed derivations of these two formulas are outside of the scope of this book.
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small test error. Maximizing the adjusted R2 is equivalent to minimizing
RSS

n−d−1 . While RSS always decreases as the number of variables in the model

increases, RSS
n−d−1 may increase or decrease, due to the presence of d in the

denominator.
The intuition behind the adjusted R2 is that once all of the correct

variables have been included in the model, adding additional noise variables
will lead to only a very small decrease in RSS. Since adding noise variables

leads to an increase in d, such variables will lead to an increase in RSS
n−d−1 ,

and consequently a decrease in the adjusted R2. Therefore, in theory, the
model with the largest adjusted R2 will have only correct variables and
no noise variables. Unlike the R2 statistic, the adjusted R2 statistic pays
a price for the inclusion of unnecessary variables in the model. Figure 6.2
displays the adjusted R2 for the Credit data set. Using this statistic results
in the selection of a model that contains seven variables, adding own to the
model selected by Cp and AIC.
Cp, AIC, and BIC all have rigorous theoretical justifications that are

beyond the scope of this book. These justifications rely on asymptotic ar-
guments (scenarios where the sample size n is very large). Despite its pop-
ularity, and even though it is quite intuitive, the adjusted R2 is not as well
motivated in statistical theory as AIC, BIC, and Cp. All of these measures
are simple to use and compute. Here we have presented their formulas in
the case of a linear model fit using least squares; however, AIC and BIC
can also be defined for more general types of models.

Validation and Cross-Validation

As an alternative to the approaches just discussed, we can directly esti-
mate the test error using the validation set and cross-validation methods
discussed in Chapter 5. We can compute the validation set error or the
cross-validation error for each model under consideration, and then select
the model for which the resulting estimated test error is smallest. This pro-
cedure has an advantage relative to AIC, BIC, Cp, and adjusted R2, in that
it provides a direct estimate of the test error, and makes fewer assumptions
about the true underlying model. It can also be used in a wider range of
model selection tasks, even in cases where it is hard to pinpoint the model
degrees of freedom (e.g. the number of predictors in the model) or hard to
estimate the error variance σ2.
In the past, performing cross-validation was computationally prohibitive

for many problems with large p and/or large n, and so AIC, BIC, Cp,
and adjusted R2 were more attractive approaches for choosing among a
set of models. However, nowadays with fast computers, the computations
required to perform cross-validation are hardly ever an issue. Thus, cross-
validation is a very attractive approach for selecting from among a number
of models under consideration.
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FIGURE 6.3. For the Credit data set, three quantities are displayed for the
best model containing d predictors, for d ranging from 1 to 11. The overall best
model, based on each of these quantities, is shown as a blue cross. Left: Square
root of BIC. Center: Validation set errors. Right: Cross-validation errors.

Figure 6.3 displays, as a function of d, the BIC, validation set errors, and
cross-validation errors on the Credit data, for the best d-variable model.
The validation errors were calculated by randomly selecting three-quarters
of the observations as the training set, and the remainder as the valida-
tion set. The cross-validation errors were computed using k = 10 folds.
In this case, the validation and cross-validation methods both result in a
six-variable model. However, all three approaches suggest that the four-,
five-, and six-variable models are roughly equivalent in terms of their test
errors.
In fact, the estimated test error curves displayed in the center and right-

hand panels of Figure 6.3 are quite flat. While a three-variable model clearly
has lower estimated test error than a two-variable model, the estimated test
errors of the 3- to 11-variable models are quite similar. Furthermore, if we
repeated the validation set approach using a different split of the data into
a training set and a validation set, or if we repeated cross-validation using
a different set of cross-validation folds, then the precise model with the
lowest estimated test error would surely change. In this setting, we can
select a model using the one-standard-error rule. We first calculate the one-

standard-
error
rule

standard error of the estimated test MSE for each model size, and then
select the smallest model for which the estimated test error is within one
standard error of the lowest point on the curve. The rationale here is that
if a set of models appear to be more or less equally good, then we might
as well choose the simplest model—that is, the model with the smallest
number of predictors. In this case, applying the one-standard-error rule
to the validation set or cross-validation approach leads to selection of the
three-variable model.
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6.2 Shrinkage Methods

The subset selection methods described in Section 6.1 involve using least
squares to fit a linear model that contains a subset of the predictors. As an
alternative, we can fit a model containing all p predictors using a technique
that constrains or regularizes the coefficient estimates, or equivalently, that
shrinks the coefficient estimates towards zero. It may not be immediately
obvious why such a constraint should improve the fit, but it turns out that
shrinking the coefficient estimates can significantly reduce their variance.
The two best-known techniques for shrinking the regression coefficients
towards zero are ridge regression and the lasso.

6.2.1 Ridge Regression

Recall from Chapter 3 that the least squares fitting procedure estimates
β0,β1, . . . ,βp using the values that minimize

RSS =
n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

.

Ridge regression is very similar to least squares, except that the coefficients
ridge
regressionare estimated by minimizing a slightly different quantity. In particular, the

ridge regression coefficient estimates β̂R are the values that minimize

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

+ λ
p∑

j=1

β2
j = RSS + λ

p∑

j=1

β2
j , (6.5)

where λ ≥ 0 is a tuning parameter, to be determined separately. Equa-
tuning
parametertion 6.5 trades off two different criteria. As with least squares, ridge regres-

sion seeks coefficient estimates that fit the data well, by making the RSS
small. However, the second term, λ

∑
j β

2
j , called a shrinkage penalty, is

shrinkage
penaltysmall when β1, . . . ,βp are close to zero, and so it has the effect of shrinking

the estimates of βj towards zero. The tuning parameter λ serves to control
the relative impact of these two terms on the regression coefficient esti-
mates. When λ = 0, the penalty term has no effect, and ridge regression
will produce the least squares estimates. However, as λ→∞, the impact of
the shrinkage penalty grows, and the ridge regression coefficient estimates
will approach zero. Unlike least squares, which generates only one set of co-
efficient estimates, ridge regression will produce a different set of coefficient
estimates, β̂R

λ , for each value of λ. Selecting a good value for λ is critical;
we defer this discussion to Section 6.2.3, where we use cross-validation.
Note that in (6.5), the shrinkage penalty is applied to β1, . . . ,βp, but

not to the intercept β0. We want to shrink the estimated association of
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FIGURE 6.4. The standardized ridge regression coefficients are displayed for
the Credit data set, as a function of λ and ∥β̂R

λ ∥2/∥β̂∥2.

each variable with the response; however, we do not want to shrink the
intercept, which is simply a measure of the mean value of the response
when xi1 = xi2 = . . . = xip = 0. If we assume that the variables—that is,
the columns of the data matrix X—have been centered to have mean zero
before ridge regression is performed, then the estimated intercept will take
the form β̂0 = ȳ =

∑n
i=1 yi/n.

An Application to the Credit Data

In Figure 6.4, the ridge regression coefficient estimates for the Credit data
set are displayed. In the left-hand panel, each curve corresponds to the
ridge regression coefficient estimate for one of the ten variables, plotted
as a function of λ. For example, the black solid line represents the ridge
regression estimate for the income coefficient, as λ is varied. At the extreme
left-hand side of the plot, λ is essentially zero, and so the corresponding
ridge coefficient estimates are the same as the usual least squares esti-
mates. But as λ increases, the ridge coefficient estimates shrink towards
zero. When λ is extremely large, then all of the ridge coefficient estimates
are basically zero; this corresponds to the null model that contains no pre-
dictors. In this plot, the income, limit, rating, and student variables are
displayed in distinct colors, since these variables tend to have by far the
largest coefficient estimates. While the ridge coefficient estimates tend to
decrease in aggregate as λ increases, individual coefficients, such as rating

and income, may occasionally increase as λ increases.
The right-hand panel of Figure 6.4 displays the same ridge coefficient

estimates as the left-hand panel, but instead of displaying λ on the x-axis,
we now display ∥β̂R

λ ∥2/∥β̂∥2, where β̂ denotes the vector of least squares
coefficient estimates. The notation ∥β∥2 denotes the ℓ2 norm (pronounced

ℓ2 norm
“ell 2”) of a vector, and is defined as ∥β∥2 =

√∑p
j=1 βj

2. It measures
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the distance of β from zero. As λ increases, the ℓ2 norm of β̂R
λ will always

decrease, and so will ∥β̂R
λ ∥2/∥β̂∥2. The latter quantity ranges from 1 (when

λ = 0, in which case the ridge regression coefficient estimate is the same
as the least squares estimate, and so their ℓ2 norms are the same) to 0
(when λ = ∞, in which case the ridge regression coefficient estimate is a
vector of zeros, with ℓ2 norm equal to zero). Therefore, we can think of the
x-axis in the right-hand panel of Figure 6.4 as the amount that the ridge
regression coefficient estimates have been shrunken towards zero; a small
value indicates that they have been shrunken very close to zero.
The standard least squares coefficient estimates discussed in Chapter 3

are scale equivariant: multiplying Xj by a constant c simply leads to a
scale
equivariantscaling of the least squares coefficient estimates by a factor of 1/c. In other

words, regardless of how the jth predictor is scaled, Xj β̂j will remain the
same. In contrast, the ridge regression coefficient estimates can change sub-
stantially when multiplying a given predictor by a constant. For instance,
consider the income variable, which is measured in dollars. One could rea-
sonably have measured income in thousands of dollars, which would result
in a reduction in the observed values of income by a factor of 1,000. Now due
to the sum of squared coefficients term in the ridge regression formulation
(6.5), such a change in scale will not simply cause the ridge regression co-
efficient estimate for income to change by a factor of 1,000. In other words,
Xj β̂R

j,λ will depend not only on the value of λ, but also on the scaling of the

jth predictor. In fact, the value of Xj β̂R
j,λ may even depend on the scaling

of the other predictors! Therefore, it is best to apply ridge regression after
standardizing the predictors, using the formula

x̃ij =
xij√

1
n

∑n
i=1(xij − xj)2

, (6.6)

so that they are all on the same scale. In (6.6), the denominator is the
estimated standard deviation of the jth predictor. Consequently, all of the
standardized predictors will have a standard deviation of one. As a re-
sult the final fit will not depend on the scale on which the predictors are
measured. In Figure 6.4, the y-axis displays the standardized ridge regres-
sion coefficient estimates—that is, the coefficient estimates that result from
performing ridge regression using standardized predictors.

Why Does Ridge Regression Improve Over Least Squares?

Ridge regression’s advantage over least squares is rooted in the bias-variance
trade-off. As λ increases, the flexibility of the ridge regression fit decreases,
leading to decreased variance but increased bias. This is illustrated in the
left-hand panel of Figure 6.5, using a simulated data set containing p = 45
predictors and n = 50 observations. The green curve in the left-hand panel
of Figure 6.5 displays the variance of the ridge regression predictions as a
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FIGURE 6.5. Squared bias (black), variance (green), and test mean squared
error (purple) for the ridge regression predictions on a simulated data set, as a
function of λ and ∥β̂R

λ ∥2/∥β̂∥2. The horizontal dashed lines indicate the minimum
possible MSE. The purple crosses indicate the ridge regression models for which
the MSE is smallest.

function of λ. At the least squares coefficient estimates, which correspond
to ridge regression with λ = 0, the variance is high but there is no bias. But
as λ increases, the shrinkage of the ridge coefficient estimates leads to a
substantial reduction in the variance of the predictions, at the expense of a
slight increase in bias. Recall that the test mean squared error (MSE), plot-
ted in purple, is closely related to the variance plus the squared bias. For
values of λ up to about 10, the variance decreases rapidly, with very little
increase in bias, plotted in black. Consequently, the MSE drops consider-
ably as λ increases from 0 to 10. Beyond this point, the decrease in variance
due to increasing λ slows, and the shrinkage on the coefficients causes them
to be significantly underestimated, resulting in a large increase in the bias.
The minimum MSE is achieved at approximately λ = 30. Interestingly,
because of its high variance, the MSE associated with the least squares
fit, when λ = 0, is almost as high as that of the null model for which all
coefficient estimates are zero, when λ = ∞. However, for an intermediate
value of λ, the MSE is considerably lower.
The right-hand panel of Figure 6.5 displays the same curves as the left-

hand panel, this time plotted against the ℓ2 norm of the ridge regression
coefficient estimates divided by the ℓ2 norm of the least squares estimates.
Now as we move from left to right, the fits become more flexible, and so
the bias decreases and the variance increases.
In general, in situations where the relationship between the response

and the predictors is close to linear, the least squares estimates will have
low bias but may have high variance. This means that a small change in
the training data can cause a large change in the least squares coefficient
estimates. In particular, when the number of variables p is almost as large
as the number of observations n, as in the example in Figure 6.5, the
least squares estimates will be extremely variable. And if p > n, then the
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least squares estimates do not even have a unique solution, whereas ridge
regression can still perform well by trading off a small increase in bias for a
large decrease in variance. Hence, ridge regression works best in situations
where the least squares estimates have high variance.
Ridge regression also has substantial computational advantages over best

subset selection, which requires searching through 2p models. As we dis-
cussed previously, even for moderate values of p, such a search can be
computationally infeasible. In contrast, for any fixed value of λ, ridge re-
gression only fits a single model, and the model-fitting procedure can be
performed quite quickly. In fact, one can show that the computations re-
quired to solve (6.5), simultaneously for all values of λ, are almost identical
to those for fitting a model using least squares.

6.2.2 The Lasso

Ridge regression does have one obvious disadvantage. Unlike best subset,
forward stepwise, and backward stepwise selection, which will generally
select models that involve just a subset of the variables, ridge regression
will include all p predictors in the final model. The penalty λ

∑
β2
j in (6.5)

will shrink all of the coefficients towards zero, but it will not set any of them
exactly to zero (unless λ =∞). This may not be a problem for prediction
accuracy, but it can create a challenge in model interpretation in settings in
which the number of variables p is quite large. For example, in the Credit

data set, it appears that the most important variables are income, limit,
rating, and student. So we might wish to build a model including just
these predictors. However, ridge regression will always generate a model
involving all ten predictors. Increasing the value of λ will tend to reduce
the magnitudes of the coefficients, but will not result in exclusion of any of
the variables.
The lasso is a relatively recent alternative to ridge regression that over-

lasso
comes this disadvantage. The lasso coefficients, β̂L

λ , minimize the quantity

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

+ λ
p∑

j=1

|βj | = RSS + λ
p∑

j=1

|βj |. (6.7)

Comparing (6.7) to (6.5), we see that the lasso and ridge regression have
similar formulations. The only difference is that the β2

j term in the ridge
regression penalty (6.5) has been replaced by |βj | in the lasso penalty (6.7).
In statistical parlance, the lasso uses an ℓ1 (pronounced “ell 1”) penalty
instead of an ℓ2 penalty. The ℓ1 norm of a coefficient vector β is given by
∥β∥1 =

∑
|βj |.

As with ridge regression, the lasso shrinks the coefficient estimates to-
wards zero. However, in the case of the lasso, the ℓ1 penalty has the effect
of forcing some of the coefficient estimates to be exactly equal to zero when
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the tuning parameter λ is sufficiently large. Hence, much like best subset se-
lection, the lasso performs variable selection. As a result, models generated
from the lasso are generally much easier to interpret than those produced
by ridge regression. We say that the lasso yields sparse models—that is, sparse
models that involve only a subset of the variables. As in ridge regression,
selecting a good value of λ for the lasso is critical; we defer this discussion
to Section 6.2.3, where we use cross-validation.
As an example, consider the coefficient plots in Figure 6.6, which are gen-

erated from applying the lasso to the Credit data set. When λ = 0, then
the lasso simply gives the least squares fit, and when λ becomes sufficiently
large, the lasso gives the null model in which all coefficient estimates equal
zero. However, in between these two extremes, the ridge regression and
lasso models are quite different from each other. Moving from left to right
in the right-hand panel of Figure 6.6, we observe that at first the lasso re-
sults in a model that contains only the rating predictor. Then student and
limit enter the model almost simultaneously, shortly followed by income.
Eventually, the remaining variables enter the model. Hence, depending on
the value of λ, the lasso can produce a model involving any number of vari-
ables. In contrast, ridge regression will always include all of the variables in
the model, although the magnitude of the coefficient estimates will depend
on λ.
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FIGURE 6.6. The standardized lasso coefficients on the Credit data set are
shown as a function of λ and ∥β̂L

λ ∥1/∥β̂∥1.
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Another Formulation for Ridge Regression and the Lasso

One can show that the lasso and ridge regression coefficient estimates solve
the problems

minimize
β

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2
⎫
⎪⎬

⎪⎭
subject to

p∑

j=1

|βj | ≤ s

(6.8)
and

minimize
β

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2
⎫
⎪⎬

⎪⎭
subject to

p∑

j=1

β2
j ≤ s,

(6.9)
respectively. In other words, for every value of λ, there is some s such that
the Equations (6.7) and (6.8) will give the same lasso coefficient estimates.
Similarly, for every value of λ there is a corresponding s such that Equa-
tions (6.5) and (6.9) will give the same ridge regression coefficient estimates.
When p = 2, then (6.8) indicates that the lasso coefficient estimates have
the smallest RSS out of all points that lie within the diamond defined by
|β1| + |β2| ≤ s. Similarly, the ridge regression estimates have the smallest
RSS out of all points that lie within the circle defined by β2

1 + β2
2 ≤ s.

We can think of (6.8) as follows. When we perform the lasso we are trying
to find the set of coefficient estimates that lead to the smallest RSS, subject
to the constraint that there is a budget s for how large

∑p
j=1 |βj | can be.

When s is extremely large, then this budget is not very restrictive, and so
the coefficient estimates can be large. In fact, if s is large enough that the
least squares solution falls within the budget, then (6.8) will simply yield
the least squares solution. In contrast, if s is small, then

∑p
j=1 |βj | must be

small in order to avoid violating the budget. Similarly, (6.9) indicates that
when we perform ridge regression, we seek a set of coefficient estimates
such that the RSS is as small as possible, subject to the requirement that∑p

j=1 β
2
j not exceed the budget s.

The formulations (6.8) and (6.9) reveal a close connection between the
lasso, ridge regression, and best subset selection. Consider the problem

minimize
β

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2
⎫
⎪⎬

⎪⎭
subject to

p∑

j=1

I(βj ̸= 0) ≤ s.

(6.10)
Here I(βj ̸= 0) is an indicator variable: it takes on a value of 1 if βj ̸= 0, and
equals zero otherwise. Then (6.10) amounts to finding a set of coefficient
estimates such that RSS is as small as possible, subject to the constraint
that no more than s coefficients can be nonzero. The problem (6.10) is
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FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |β1|+ |β2| ≤ s and β2

1 + β2
2 ≤ s, while the red ellipses are the contours of

the RSS.

equivalent to best subset selection. Unfortunately, solving (6.10) is com-
putationally infeasible when p is large, since it requires considering all

(p
s

)

models containing s predictors. Therefore, we can interpret ridge regression
and the lasso as computationally feasible alternatives to best subset selec-
tion that replace the intractable form of the budget in (6.10) with forms
that are much easier to solve. Of course, the lasso is much more closely
related to best subset selection, since the lasso performs feature selection
for s sufficiently small in (6.8), while ridge regression does not.

The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient esti-
mates that are exactly equal to zero? The formulations (6.8) and (6.9) can
be used to shed light on the issue. Figure 6.7 illustrates the situation. The
least squares solution is marked as β̂, while the blue diamond and circle
represent the lasso and ridge regression constraints in (6.8) and (6.9), re-
spectively. If s is sufficiently large, then the constraint regions will contain
β̂, and so the ridge regression and lasso estimates will be the same as the
least squares estimates. (Such a large value of s corresponds to λ = 0 in
(6.5) and (6.7).) However, in Figure 6.7 the least squares estimates lie out-
side of the diamond and the circle, and so the least squares estimates are
not the same as the lasso and ridge regression estimates.
Each of the ellipses centered around β̂ represents a contour: this means

contour
that all of the points on a particular ellipse have the same RSS value. As
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FIGURE 6.8. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso on a simulated data set. Right: Comparison of squared bias,
variance, and test MSE between lasso (solid) and ridge (dotted). Both are plotted
against their R2 on the training data, as a common form of indexing. The crosses
in both plots indicate the lasso model for which the MSE is smallest.

the ellipses expand away from the least squares coefficient estimates, the
RSS increases. Equations (6.8) and (6.9) indicate that the lasso and ridge
regression coefficient estimates are given by the first point at which an
ellipse contacts the constraint region. Since ridge regression has a circular
constraint with no sharp points, this intersection will not generally occur on
an axis, and so the ridge regression coefficient estimates will be exclusively
non-zero. However, the lasso constraint has corners at each of the axes, and
so the ellipse will often intersect the constraint region at an axis. When this
occurs, one of the coefficients will equal zero. In higher dimensions, many of
the coefficient estimates may equal zero simultaneously. In Figure 6.7, the
intersection occurs at β1 = 0, and so the resulting model will only include
β2.
In Figure 6.7, we considered the simple case of p = 2. When p = 3,

then the constraint region for ridge regression becomes a sphere, and the
constraint region for the lasso becomes a polyhedron. When p > 3, the
constraint for ridge regression becomes a hypersphere, and the constraint
for the lasso becomes a polytope. However, the key ideas depicted in Fig-
ure 6.7 still hold. In particular, the lasso leads to feature selection when
p > 2 due to the sharp corners of the polyhedron or polytope.

Comparing the Lasso and Ridge Regression

It is clear that the lasso has a major advantage over ridge regression, in
that it produces simpler and more interpretable models that involve only a
subset of the predictors. However, which method leads to better prediction
accuracy? Figure 6.8 displays the variance, squared bias, and test MSE of
the lasso applied to the same simulated data as in Figure 6.5. Clearly the
lasso leads to qualitatively similar behavior to ridge regression, in that as λ
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FIGURE 6.9. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso. The simulated data is similar to that in Figure 6.8, except
that now only two predictors are related to the response. Right: Comparison of
squared bias, variance, and test MSE between lasso (solid) and ridge (dotted).
Both are plotted against their R2 on the training data, as a common form of
indexing. The crosses in both plots indicate the lasso model for which the MSE is
smallest.

increases, the variance decreases and the bias increases. In the right-hand
panel of Figure 6.8, the dotted lines represent the ridge regression fits.
Here we plot both against their R2 on the training data. This is another
useful way to index models, and can be used to compare models with
different types of regularization, as is the case here. In this example, the
lasso and ridge regression result in almost identical biases. However, the
variance of ridge regression is slightly lower than the variance of the lasso.
Consequently, the minimumMSE of ridge regression is slightly smaller than
that of the lasso.
However, the data in Figure 6.8 were generated in such a way that all 45

predictors were related to the response—that is, none of the true coefficients
β1, . . . ,β45 equaled zero. The lasso implicitly assumes that a number of the
coefficients truly equal zero. Consequently, it is not surprising that ridge
regression outperforms the lasso in terms of prediction error in this setting.
Figure 6.9 illustrates a similar situation, except that now the response is a
function of only 2 out of 45 predictors. Now the lasso tends to outperform
ridge regression in terms of bias, variance, and MSE.
These two examples illustrate that neither ridge regression nor the lasso

will universally dominate the other. In general, one might expect the lasso
to perform better in a setting where a relatively small number of predictors
have substantial coefficients, and the remaining predictors have coefficients
that are very small or that equal zero. Ridge regression will perform better
when the response is a function of many predictors, all with coefficients of
roughly equal size. However, the number of predictors that is related to the
response is never known a priori for real data sets. A technique such as
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cross-validation can be used in order to determine which approach is better
on a particular data set.
As with ridge regression, when the least squares estimates have exces-

sively high variance, the lasso solution can yield a reduction in variance
at the expense of a small increase in bias, and consequently can gener-
ate more accurate predictions. Unlike ridge regression, the lasso performs
variable selection, and hence results in models that are easier to interpret.
There are very efficient algorithms for fitting both ridge and lasso models;

in both cases the entire coefficient paths can be computed with about the
same amount of work as a single least squares fit. We will explore this
further in the lab at the end of this chapter.

A Simple Special Case for Ridge Regression and the Lasso

In order to obtain a better intuition about the behavior of ridge regression
and the lasso, consider a simple special case with n = p, and X a diag-
onal matrix with 1’s on the diagonal and 0’s in all off-diagonal elements.
To simplify the problem further, assume also that we are performing regres-
sion without an intercept. With these assumptions, the usual least squares
problem simplifies to finding β1, . . . ,βp that minimize

p∑

j=1

(yj − βj)
2. (6.11)

In this case, the least squares solution is given by

β̂j = yj .

And in this setting, ridge regression amounts to finding β1, . . . ,βp such that

p∑

j=1

(yj − βj)
2 + λ

p∑

j=1

β2
j (6.12)

is minimized, and the lasso amounts to finding the coefficients such that

p∑

j=1

(yj − βj)
2 + λ

p∑

j=1

|βj | (6.13)

is minimized. One can show that in this setting, the ridge regression esti-
mates take the form

β̂R
j = yj/(1 + λ), (6.14)

and the lasso estimates take the form

β̂L
j =

⎧
⎪⎨

⎪⎩

yj − λ/2 if yj > λ/2;

yj + λ/2 if yj < −λ/2;
0 if |yj | ≤ λ/2.

(6.15)
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FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple
setting with n = p and X a diagonal matrix with 1’s on the diagonal. Left: The
ridge regression coefficient estimates are shrunken proportionally towards zero,
relative to the least squares estimates. Right: The lasso coefficient estimates are
soft-thresholded towards zero.

Figure 6.10 displays the situation. We can see that ridge regression and
the lasso perform two very different types of shrinkage. In ridge regression,
each least squares coefficient estimate is shrunken by the same proportion.
In contrast, the lasso shrinks each least squares coefficient towards zero by
a constant amount, λ/2; the least squares coefficients that are less than
λ/2 in absolute value are shrunken entirely to zero. The type of shrink-
age performed by the lasso in this simple setting (6.15) is known as soft-
thresholding. The fact that some lasso coefficients are shrunken entirely to

soft-
thresholdingzero explains why the lasso performs feature selection.

In the case of a more general data matrix X, the story is a little more
complicated than what is depicted in Figure 6.10, but the main ideas still
hold approximately: ridge regression more or less shrinks every dimension
of the data by the same proportion, whereas the lasso more or less shrinks
all coefficients toward zero by a similar amount, and sufficiently small co-
efficients are shrunken all the way to zero.

Bayesian Interpretation for Ridge Regression and the Lasso

We now show that one can view ridge regression and the lasso through
a Bayesian lens. A Bayesian viewpoint for regression assumes that the
coefficient vector β has some prior distribution, say p(β), where β =
(β0,β1, . . . ,βp)T . The likelihood of the data can be written as f(Y |X,β),
where X = (X1, . . . , Xp). Multiplying the prior distribution by the likeli-
hood gives us (up to a proportionality constant) the posterior distribution,

posterior
distributionwhich takes the form

p(β|X,Y ) ∝ f(Y |X,β)p(β|X) = f(Y |X,β)p(β),
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FIGURE 6.11. Left: Ridge regression is the posterior mode for β under a Gaus-
sian prior. Right: The lasso is the posterior mode for β under a double-exponential
prior.

where the proportionality above follows from Bayes’ theorem, and the
equality above follows from the assumption that X is fixed.
We assume the usual linear model,

Y = β0 +X1β1 + · · ·+Xpβp + ϵ,

and suppose that the errors are independent and drawn from a normal dis-
tribution. Furthermore, assume that p(β) =

∏p
j=1 g(βj), for some density

function g. It turns out that ridge regression and the lasso follow naturally
from two special cases of g:

• If g is a Gaussian distribution with mean zero and standard deviation
a function of λ, then it follows that the posterior mode for β—that

posterior
modeis, the most likely value for β, given the data—is given by the ridge

regression solution. (In fact, the ridge regression solution is also the
posterior mean.)

• If g is a double-exponential (Laplace) distribution with mean zero
and scale parameter a function of λ, then it follows that the posterior
mode for β is the lasso solution. (However, the lasso solution is not
the posterior mean, and in fact, the posterior mean does not yield a
sparse coefficient vector.)

The Gaussian and double-exponential priors are displayed in Figure 6.11.
Therefore, from a Bayesian viewpoint, ridge regression and the lasso follow
directly from assuming the usual linear model with normal errors, together
with a simple prior distribution for β. Notice that the lasso prior is steeply
peaked at zero, while the Gaussian is flatter and fatter at zero. Hence, the
lasso expects a priori that many of the coefficients are (exactly) zero, while
ridge assumes the coefficients are randomly distributed about zero.
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FIGURE 6.12. Left: Cross-validation errors that result from applying ridge
regression to the Credit data set with various values of λ. Right: The coefficient
estimates as a function of λ. The vertical dashed lines indicate the value of λ
selected by cross-validation.

6.2.3 Selecting the Tuning Parameter

Just as the subset selection approaches considered in Section 6.1 require
a method to determine which of the models under consideration is best,
implementing ridge regression and the lasso requires a method for selecting
a value for the tuning parameter λ in (6.5) and (6.7), or equivalently, the
value of the constraint s in (6.9) and (6.8). Cross-validation provides a sim-
ple way to tackle this problem. We choose a grid of λ values, and compute
the cross-validation error for each value of λ, as described in Chapter 5. We
then select the tuning parameter value for which the cross-validation error
is smallest. Finally, the model is re-fit using all of the available observations
and the selected value of the tuning parameter.
Figure 6.12 displays the choice of λ that results from performing leave-

one-out cross-validation on the ridge regression fits from the Credit data
set. The dashed vertical lines indicate the selected value of λ. In this case
the value is relatively small, indicating that the optimal fit only involves a
small amount of shrinkage relative to the least squares solution. In addition,
the dip is not very pronounced, so there is rather a wide range of values
that would give a very similar error. In a case like this we might simply use
the least squares solution.
Figure 6.13 provides an illustration of ten-fold cross-validation applied to

the lasso fits on the sparse simulated data from Figure 6.9. The left-hand
panel of Figure 6.13 displays the cross-validation error, while the right-hand
panel displays the coefficient estimates. The vertical dashed lines indicate
the point at which the cross-validation error is smallest. The two colored
lines in the right-hand panel of Figure 6.13 represent the two predictors
that are related to the response, while the grey lines represent the unre-
lated predictors; these are often referred to as signal and noise variables,

signal
respectively. Not only has the lasso correctly given much larger coeffi-
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FIGURE 6.13. Left: Ten-fold cross-validation MSE for the lasso, applied to
the sparse simulated data set from Figure 6.9. Right: The corresponding lasso
coefficient estimates are displayed. The two signal variables are shown in color,
and the noise variables are in gray. The vertical dashed lines indicate the lasso
fit for which the cross-validation error is smallest.

cient estimates to the two signal predictors, but also the minimum cross-
validation error corresponds to a set of coefficient estimates for which only
the signal variables are non-zero. Hence cross-validation together with the
lasso has correctly identified the two signal variables in the model, even
though this is a challenging setting, with p = 45 variables and only n = 50
observations. In contrast, the least squares solution—displayed on the far
right of the right-hand panel of Figure 6.13—assigns a large coefficient
estimate to only one of the two signal variables.

6.3 Dimension Reduction Methods

The methods that we have discussed so far in this chapter have controlled
variance in two different ways, either by using a subset of the original vari-
ables, or by shrinking their coefficients toward zero. All of these methods
are defined using the original predictors, X1, X2, . . . , Xp. We now explore
a class of approaches that transform the predictors and then fit a least
squares model using the transformed variables. We will refer to these tech-
niques as dimension reduction methods.

dimension
reductionLet Z1, Z2, . . . , ZM represent M < p linear combinations of our original

linear
combination

p predictors. That is,

Zm =
p∑

j=1

φjmXj (6.16)
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for some constants φ1m,φ2m . . . ,φpm, m = 1, . . . ,M . We can then fit the
linear regression model

yi = θ0 +
M∑

m=1

θmzim + ϵi, i = 1, . . . , n, (6.17)

using least squares. Note that in (6.17), the regression coefficients are given
by θ0, θ1, . . . , θM . If the constants φ1m,φ2m, . . . ,φpm are chosen wisely, then
such dimension reduction approaches can often outperform least squares
regression. In other words, fitting (6.17) using least squares can lead to
better results than fitting (6.1) using least squares.
The term dimension reduction comes from the fact that this approach

reduces the problem of estimating the p+1 coefficients β0,β1, . . . ,βp to the
simpler problem of estimating the M + 1 coefficients θ0, θ1, . . . , θM , where
M < p. In other words, the dimension of the problem has been reduced
from p+ 1 to M + 1.
Notice that from (6.16),

M∑

m=1

θmzim =
M∑

m=1

θm

p∑

j=1

φjmxij =
p∑

j=1

M∑

m=1

θmφjmxij =
p∑

j=1

βjxij ,

where

βj =
M∑

m=1

θmφjm. (6.18)

Hence (6.17) can be thought of as a special case of the original linear
regression model given by (6.1). Dimension reduction serves to constrain
the estimated βj coefficients, since now they must take the form (6.18).
This constraint on the form of the coefficients has the potential to bias the
coefficient estimates. However, in situations where p is large relative to n,
selecting a value of M ≪ p can significantly reduce the variance of the fitted
coefficients. If M = p, and all the Zm are linearly independent, then (6.18)
poses no constraints. In this case, no dimension reduction occurs, and so
fitting (6.17) is equivalent to performing least squares on the original p
predictors.
All dimension reduction methods work in two steps. First, the trans-

formed predictors Z1, Z2, . . . , ZM are obtained. Second, the model is fit
using these M predictors. However, the choice of Z1, Z2, . . . , ZM , or equiv-
alently, the selection of the φjm’s, can be achieved in different ways. In this
chapter, we will consider two approaches for this task: principal components
and partial least squares.

6.3.1 Principal Components Regression

Principal components analysis (PCA) is a popular approach for deriving
principal
components
analysis
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FIGURE 6.14. The population size (pop) and ad spending (ad) for 100 different
cities are shown as purple circles. The green solid line indicates the first principal
component, and the blue dashed line indicates the second principal component.

a low-dimensional set of features from a large set of variables. PCA is
discussed in greater detail as a tool for unsupervised learning in Chapter 12.
Here we describe its use as a dimension reduction technique for regression.

An Overview of Principal Components Analysis

PCA is a technique for reducing the dimension of an n× p data matrix X.
The first principal component direction of the data is that along which the
observations vary the most. For instance, consider Figure 6.14, which shows
population size (pop) in tens of thousands of people, and ad spending for a
particular company (ad) in thousands of dollars, for 100 cities5. The green
solid line represents the first principal component direction of the data. We
can see by eye that this is the direction along which there is the greatest
variability in the data. That is, if we projected the 100 observations onto
this line (as shown in the left-hand panel of Figure 6.15), then the resulting
projected observations would have the largest possible variance; projecting
the observations onto any other line would yield projected observations
with lower variance. Projecting a point onto a line simply involves finding
the location on the line which is closest to the point.
The first principal component is displayed graphically in Figure 6.14, but

how can it be summarized mathematically? It is given by the formula

Z1 = 0.839× (pop− pop) + 0.544× (ad− ad). (6.19)

5This dataset is distinct from the Advertising data discussed in Chapter 3.
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FIGURE 6.15. A subset of the advertising data. The mean pop and ad budgets
are indicated with a blue circle. Left: The first principal component direction is
shown in green. It is the dimension along which the data vary the most, and it also
defines the line that is closest to all n of the observations. The distances from each
observation to the principal component are represented using the black dashed line
segments. The blue dot represents (pop, ad). Right: The left-hand panel has been
rotated so that the first principal component direction coincides with the x-axis.

Here φ11 = 0.839 and φ21 = 0.544 are the principal component loadings,
which define the direction referred to above. In (6.19), pop indicates the
mean of all pop values in this data set, and ad indicates the mean of all ad-
vertising spending. The idea is that out of every possible linear combination
of pop and ad such that φ2

11 + φ2
21 = 1, this particular linear combination

yields the highest variance: i.e. this is the linear combination for which
Var(φ11 × (pop − pop) + φ21 × (ad − ad)) is maximized. It is necessary to
consider only linear combinations of the form φ2

11+φ2
21 = 1, since otherwise

we could increase φ11 and φ21 arbitrarily in order to blow up the variance.
In (6.19), the two loadings are both positive and have similar size, and so
Z1 is almost an average of the two variables.
Since n = 100, pop and ad are vectors of length 100, and so is Z1 in

(6.19). For instance,

zi1 = 0.839× (popi − pop) + 0.544× (adi − ad). (6.20)

The values of z11, . . . , zn1 are known as the principal component scores, and
can be seen in the right-hand panel of Figure 6.15.
There is also another interpretation for PCA: the first principal compo-

nent vector defines the line that is as close as possible to the data. For
instance, in Figure 6.14, the first principal component line minimizes the
sum of the squared perpendicular distances between each point and the
line. These distances are plotted as dashed line segments in the left-hand
panel of Figure 6.15, in which the crosses represent the projection of each
point onto the first principal component line. The first principal component
has been chosen so that the projected observations are as close as possible
to the original observations.
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FIGURE 6.16. Plots of the first principal component scores zi1 versus pop and
ad. The relationships are strong.

In the right-hand panel of Figure 6.15, the left-hand panel has been
rotated so that the first principal component direction coincides with the
x-axis. It is possible to show that the first principal component score for
the ith observation, given in (6.20), is the distance in the x-direction of the
ith cross from zero. So for example, the point in the bottom-left corner of
the left-hand panel of Figure 6.15 has a large negative principal component
score, zi1 = −26.1, while the point in the top-right corner has a large
positive score, zi1 = 18.7. These scores can be computed directly using
(6.20).
We can think of the values of the principal component Z1 as single-

number summaries of the joint pop and ad budgets for each location. In
this example, if zi1 = 0.839 × (popi − pop) + 0.544 × (adi − ad) < 0,
then this indicates a city with below-average population size and below-
average ad spending. A positive score suggests the opposite. How well can a
single number represent both pop and ad? In this case, Figure 6.14 indicates
that pop and ad have approximately a linear relationship, and so we might
expect that a single-number summary will work well. Figure 6.16 displays
zi1 versus both pop and ad.6 The plots show a strong relationship between
the first principal component and the two features. In other words, the first
principal component appears to capture most of the information contained
in the pop and ad predictors.
So far we have concentrated on the first principal component. In gen-

eral, one can construct up to p distinct principal components. The second
principal component Z2 is a linear combination of the variables that is un-
correlated with Z1, and has largest variance subject to this constraint. The
second principal component direction is illustrated as a dashed blue line in

6The principal components were calculated after first standardizing both pop and
ad, a common approach. Hence, the x-axes on Figures 6.15 and 6.16 are not on the same
scale.
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FIGURE 6.17. Plots of the second principal component scores zi2 versus pop
and ad. The relationships are weak.

Figure 6.14. It turns out that the zero correlation condition of Z1 with Z2

is equivalent to the condition that the direction must be perpendicular, or perpen-
dicularorthogonal, to the first principal component direction. The second principal
orthogonalcomponent is given by the formula

Z2 = 0.544× (pop− pop)− 0.839× (ad− ad).

Since the advertising data has two predictors, the first two principal com-
ponents contain all of the information that is in pop and ad. However, by
construction, the first component will contain the most information. Con-
sider, for example, the much larger variability of zi1 (the x-axis) versus
zi2 (the y-axis) in the right-hand panel of Figure 6.15. The fact that the
second principal component scores are much closer to zero indicates that
this component captures far less information. As another illustration, Fig-
ure 6.17 displays zi2 versus pop and ad. There is little relationship between
the second principal component and these two predictors, again suggesting
that in this case, one only needs the first principal component in order to
accurately represent the pop and ad budgets.
With two-dimensional data, such as in our advertising example, we can

construct at most two principal components. However, if we had other
predictors, such as population age, income level, education, and so forth,
then additional components could be constructed. They would successively
maximize variance, subject to the constraint of being uncorrelated with the
preceding components.

The Principal Components Regression Approach

The principal components regression (PCR) approach involves construct-
principal
components
regression

ing the first M principal components, Z1, . . . , ZM , and then using these
components as the predictors in a linear regression model that is fit us-
ing least squares. The key idea is that often a small number of principal
components suffice to explain most of the variability in the data, as well
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FIGURE 6.18. PCR was applied to two simulated data sets. In each panel, the
horizontal dashed line represents the irreducible error. Left: Simulated data from
Figure 6.8. Right: Simulated data from Figure 6.9.

as the relationship with the response. In other words, we assume that the
directions in which X1, . . . , Xp show the most variation are the directions
that are associated with Y . While this assumption is not guaranteed to be
true, it often turns out to be a reasonable enough approximation to give
good results.
If the assumption underlying PCR holds, then fitting a least squares

model to Z1, . . . , ZM will lead to better results than fitting a least squares
model to X1, . . . , Xp, since most or all of the information in the data that
relates to the response is contained in Z1, . . . , ZM , and by estimating only
M ≪ p coefficients we can mitigate overfitting. In the advertising data, the
first principal component explains most of the variance in both pop and ad,
so a principal component regression that uses this single variable to predict
some response of interest, such as sales, will likely perform quite well.
Figure 6.18 displays the PCR fits on the simulated data sets from Fig-

ures 6.8 and 6.9. Recall that both data sets were generated using n = 50
observations and p = 45 predictors. However, while the response in the
first data set was a function of all the predictors, the response in the sec-
ond data set was generated using only two of the predictors. The curves are
plotted as a function of M , the number of principal components used as
predictors in the regression model. As more principal components are used
in the regression model, the bias decreases, but the variance increases. This
results in a typical U-shape for the mean squared error. When M = p = 45,
then PCR amounts simply to a least squares fit using all of the original
predictors. The figure indicates that performing PCR with an appropriate
choice of M can result in a substantial improvement over least squares, es-
pecially in the left-hand panel. However, by examining the ridge regression
and lasso results in Figures 6.5, 6.8, and 6.9, we see that PCR does not
perform as well as the two shrinkage methods in this example.



258 6. Linear Model Selection and Regularization

0 10 20 30 40

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

PCR

Number of Components

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Squared Bias
Test MSE
Variance

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Ridge Regression and Lasso

Shrinkage Factor

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

FIGURE 6.19. PCR, ridge regression, and the lasso were applied to a simulated
data set in which the first five principal components of X contain all the informa-
tion about the response Y . In each panel, the irreducible error Var(ϵ) is shown as
a horizontal dashed line. Left: Results for PCR. Right: Results for lasso (solid)
and ridge regression (dotted). The x-axis displays the shrinkage factor of the co-
efficient estimates, defined as the ℓ2 norm of the shrunken coefficient estimates
divided by the ℓ2 norm of the least squares estimate.

The relatively worse performance of PCR in Figure 6.18 is a consequence
of the fact that the data were generated in such a way that many princi-
pal components are required in order to adequately model the response.
In contrast, PCR will tend to do well in cases when the first few principal
components are sufficient to capture most of the variation in the predictors
as well as the relationship with the response. The left-hand panel of Fig-
ure 6.19 illustrates the results from another simulated data set designed to
be more favorable to PCR. Here the response was generated in such a way
that it depends exclusively on the first five principal components. Now the
bias drops to zero rapidly as M , the number of principal components used
in PCR, increases. The mean squared error displays a clear minimum at
M = 5. The right-hand panel of Figure 6.19 displays the results on these
data using ridge regression and the lasso. All three methods offer a signif-
icant improvement over least squares. However, PCR and ridge regression
slightly outperform the lasso.
We note that even though PCR provides a simple way to perform re-

gression using M < p predictors, it is not a feature selection method. This
is because each of the M principal components used in the regression is a
linear combination of all p of the original features. For instance, in (6.19),
Z1 was a linear combination of both pop and ad. Therefore, while PCR of-
ten performs quite well in many practical settings, it does not result in the
development of a model that relies upon a small set of the original features.
In this sense, PCR is more closely related to ridge regression than to the
lasso. In fact, one can show that PCR and ridge regression are very closely
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FIGURE 6.20. Left: PCR standardized coefficient estimates on the Credit data
set for different values of M . Right: The ten-fold cross-validation MSE obtained
using PCR, as a function of M .

related. One can even think of ridge regression as a continuous version of
PCR!7

In PCR, the number of principal components, M , is typically chosen by
cross-validation. The results of applying PCR to the Credit data set are
shown in Figure 6.20; the right-hand panel displays the cross-validation er-
rors obtained, as a function of M . On these data, the lowest cross-validation
error occurs when there are M = 10 components; this corresponds to al-
most no dimension reduction at all, since PCR with M = 11 is equivalent
to simply performing least squares.
When performing PCR, we generally recommend standardizing each pre-

dictor, using (6.6), prior to generating the principal components. This stan-
dardization ensures that all variables are on the same scale. In the absence
of standardization, the high-variance variables will tend to play a larger
role in the principal components obtained, and the scale on which the vari-
ables are measured will ultimately have an effect on the final PCR model.
However, if the variables are all measured in the same units (say, kilograms,
or inches), then one might choose not to standardize them.

6.3.2 Partial Least Squares

The PCR approach that we just described involves identifying linear combi-
nations, or directions, that best represent the predictors X1, . . . , Xp. These
directions are identified in an unsupervised way, since the response Y is not
used to help determine the principal component directions. That is, the
response does not supervise the identification of the principal components.

7More details can be found in Section 3.5 of The Elements of Statistical Learning by
Hastie, Tibshirani, and Friedman.
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FIGURE 6.21. For the advertising data, the first PLS direction (solid line) and
first PCR direction (dotted line) are shown.

Consequently, PCR suffers from a drawback: there is no guarantee that the
directions that best explain the predictors will also be the best directions
to use for predicting the response. Unsupervised methods are discussed
further in Chapter 12.
We now present partial least squares (PLS), a supervised alternative to

partial least
squaresPCR. Like PCR, PLS is a dimension reduction method, which first identifies

a new set of features Z1, . . . , ZM that are linear combinations of the original
features, and then fits a linear model via least squares using these M new
features. But unlike PCR, PLS identifies these new features in a supervised
way—that is, it makes use of the response Y in order to identify new
features that not only approximate the old features well, but also that are
related to the response. Roughly speaking, the PLS approach attempts to
find directions that help explain both the response and the predictors.
We now describe how the first PLS direction is computed. After stan-

dardizing the p predictors, PLS computes the first direction Z1 by setting
each φj1 in (6.16) equal to the coefficient from the simple linear regression
of Y onto Xj . One can show that this coefficient is proportional to the cor-
relation between Y and Xj . Hence, in computing Z1 =

∑p
j=1 φj1Xj , PLS

places the highest weight on the variables that are most strongly related
to the response.
Figure 6.21 displays an example of PLS on a synthetic dataset with Sales

in each of 100 regions as the response, and two predictors; Population Size
and Advertising Spending. The solid green line indicates the first PLS di-
rection, while the dotted line shows the first principal component direction.
PLS has chosen a direction that has less change in the ad dimension per
unit change in the pop dimension, relative to PCA. This suggests that pop

is more highly correlated with the response than is ad. The PLS direction
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does not fit the predictors as closely as does PCA, but it does a better job
explaining the response.
To identify the second PLS direction we first adjust each of the variables

for Z1, by regressing each variable on Z1 and taking residuals. These resid-
uals can be interpreted as the remaining information that has not been
explained by the first PLS direction. We then compute Z2 using this or-
thogonalized data in exactly the same fashion as Z1 was computed based
on the original data. This iterative approach can be repeated M times to
identify multiple PLS components Z1, . . . , ZM . Finally, at the end of this
procedure, we use least squares to fit a linear model to predict Y using
Z1, . . . , ZM in exactly the same fashion as for PCR.
As with PCR, the number M of partial least squares directions used in

PLS is a tuning parameter that is typically chosen by cross-validation. We
generally standardize the predictors and response before performing PLS.
PLS is popular in the field of chemometrics, where many variables arise

from digitized spectrometry signals. In practice it often performs no better
than ridge regression or PCR. While the supervised dimension reduction
of PLS can reduce bias, it also has the potential to increase variance, so
that the overall benefit of PLS relative to PCR is a wash.

6.4 Considerations in High Dimensions

6.4.1 High-Dimensional Data

Most traditional statistical techniques for regression and classification are
intended for the low-dimensional setting in which n, the number of ob-

low-
dimensionalservations, is much greater than p, the number of features. This is due in

part to the fact that throughout most of the field’s history, the bulk of sci-
entific problems requiring the use of statistics have been low-dimensional.
For instance, consider the task of developing a model to predict a patient’s
blood pressure on the basis of his or her age, sex, and body mass index
(BMI). There are three predictors, or four if an intercept is included in
the model, and perhaps several thousand patients for whom blood pressure
and age, sex, and BMI are available. Hence n ≫ p, and so the problem is
low-dimensional. (By dimension here we are referring to the size of p.)
In the past 20 years, new technologies have changed the way that data

are collected in fields as diverse as finance, marketing, and medicine. It is
now commonplace to collect an almost unlimited number of feature mea-
surements (p very large). While p can be extremely large, the number of
observations n is often limited due to cost, sample availability, or other
considerations. Two examples are as follows:

1. Rather than predicting blood pressure on the basis of just age, sex,
and BMI, one might also collect measurements for half a million sin-
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gle nucleotide polymorphisms (SNPs; these are individual DNA mu-
tations that are relatively common in the population) for inclusion in
the predictive model. Then n ≈ 200 and p ≈ 500,000.

2. A marketing analyst interested in understanding people’s online shop-
ping patterns could treat as features all of the search terms entered
by users of a search engine. This is sometimes known as the “bag-of-
words” model. The same researcher might have access to the search
histories of only a few hundred or a few thousand search engine users
who have consented to share their information with the researcher.
For a given user, each of the p search terms is scored present (0) or
absent (1), creating a large binary feature vector. Then n ≈ 1,000
and p is much larger.

Data sets containing more features than observations are often referred
to as high-dimensional. Classical approaches such as least squares linear

high-
dimensionalregression are not appropriate in this setting. Many of the issues that arise

in the analysis of high-dimensional data were discussed earlier in this book,
since they apply also when n > p: these include the role of the bias-variance
trade-off and the danger of overfitting. Though these issues are always rele-
vant, they can become particularly important when the number of features
is very large relative to the number of observations.
We have defined the high-dimensional setting as the case where the num-

ber of features p is larger than the number of observations n. But the con-
siderations that we will now discuss certainly also apply if p is slightly
smaller than n, and are best always kept in mind when performing super-
vised learning.

6.4.2 What Goes Wrong in High Dimensions?

In order to illustrate the need for extra care and specialized techniques
for regression and classification when p > n, we begin by examining what
can go wrong if we apply a statistical technique not intended for the high-
dimensional setting. For this purpose, we examine least squares regression.
But the same concepts apply to logistic regression, linear discriminant anal-
ysis, and other classical statistical approaches.
When the number of features p is as large as, or larger than, the number

of observations n, least squares as described in Chapter 3 cannot (or rather,
should not) be performed. The reason is simple: regardless of whether or
not there truly is a relationship between the features and the response,
least squares will yield a set of coefficient estimates that result in a perfect
fit to the data, such that the residuals are zero.
An example is shown in Figure 6.22 with p = 1 feature (plus an intercept)

in two cases: when there are 20 observations, and when there are only
two observations. When there are 20 observations, n > p and the least
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FIGURE 6.22. Left: Least squares regression in the low-dimensional setting.
Right: Least squares regression with n = 2 observations and two parameters to be
estimated (an intercept and a coefficient).

squares regression line does not perfectly fit the data; instead, the regression
line seeks to approximate the 20 observations as well as possible. On the
other hand, when there are only two observations, then regardless of the
values of those observations, the regression line will fit the data exactly.
This is problematic because this perfect fit will almost certainly lead to
overfitting of the data. In other words, though it is possible to perfectly fit
the training data in the high-dimensional setting, the resulting linear model
will perform extremely poorly on an independent test set, and therefore
does not constitute a useful model. In fact, we can see that this happened
in Figure 6.22: the least squares line obtained in the right-hand panel will
perform very poorly on a test set comprised of the observations in the left-
hand panel. The problem is simple: when p > n or p ≈ n, a simple least
squares regression line is too flexible and hence overfits the data.
Figure 6.23 further illustrates the risk of carelessly applying least squares

when the number of features p is large. Data were simulated with n = 20
observations, and regression was performed with between 1 and 20 features,
each of which was completely unrelated to the response. As shown in the
figure, the model R2 increases to 1 as the number of features included in the
model increases, and correspondingly the training set MSE decreases to 0
as the number of features increases, even though the features are completely
unrelated to the response. On the other hand, the MSE on an independent
test set becomes extremely large as the number of features included in the
model increases, because including the additional predictors leads to a vast
increase in the variance of the coefficient estimates. Looking at the test
set MSE, it is clear that the best model contains at most a few variables.
However, someone who carelessly examines only the R2 or the training set
MSE might erroneously conclude that the model with the greatest number
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FIGURE 6.23. On a simulated example with n = 20 training observations,
features that are completely unrelated to the outcome are added to the model.
Left: The R2 increases to 1 as more features are included. Center: The training
set MSE decreases to 0 as more features are included. Right: The test set MSE
increases as more features are included.

of variables is best. This indicates the importance of applying extra care
when analyzing data sets with a large number of variables, and of always
evaluating model performance on an independent test set.
In Section 6.1.3, we saw a number of approaches for adjusting the training

set RSS or R2 in order to account for the number of variables used to fit
a least squares model. Unfortunately, the Cp, AIC, and BIC approaches
are not appropriate in the high-dimensional setting, because estimating σ̂2

is problematic. (For instance, the formula for σ̂2 from Chapter 3 yields an
estimate σ̂2 = 0 in this setting.) Similarly, problems arise in the application
of adjusted R2 in the high-dimensional setting, since one can easily obtain
a model with an adjusted R2 value of 1. Clearly, alternative approaches
that are better-suited to the high-dimensional setting are required.

6.4.3 Regression in High Dimensions

It turns out that many of the methods seen in this chapter for fitting
less flexible least squares models, such as forward stepwise selection, ridge
regression, the lasso, and principal components regression, are particularly
useful for performing regression in the high-dimensional setting. Essentially,
these approaches avoid overfitting by using a less flexible fitting approach
than least squares.
Figure 6.24 illustrates the performance of the lasso in a simple simulated

example. There are p = 20, 50, or 2,000 features, of which 20 are truly
associated with the outcome. The lasso was performed on n = 100 training
observations, and the mean squared error was evaluated on an independent
test set. As the number of features increases, the test set error increases.
When p = 20, the lowest validation set error was achieved when λ in
(6.7) was small; however, when p was larger then the lowest validation
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FIGURE 6.24. The lasso was performed with n = 100 observations and three
values of p, the number of features. Of the p features, 20 were associated with
the response. The boxplots show the test MSEs that result using three different
values of the tuning parameter λ in (6.7). For ease of interpretation, rather than
reporting λ, the degrees of freedom are reported; for the lasso this turns out
to be simply the number of estimated non-zero coefficients. When p = 20, the
lowest test MSE was obtained with the smallest amount of regularization. When
p = 50, the lowest test MSE was achieved when there is a substantial amount
of regularization. When p = 2,000 the lasso performed poorly regardless of the
amount of regularization, due to the fact that only 20 of the 2,000 features truly
are associated with the outcome.

set error was achieved using a larger value of λ. In each boxplot, rather
than reporting the values of λ used, the degrees of freedom of the resulting
lasso solution is displayed; this is simply the number of non-zero coefficient
estimates in the lasso solution, and is a measure of the flexibility of the
lasso fit. Figure 6.24 highlights three important points: (1) regularization
or shrinkage plays a key role in high-dimensional problems, (2) appropriate
tuning parameter selection is crucial for good predictive performance, and
(3) the test error tends to increase as the dimensionality of the problem
(i.e. the number of features or predictors) increases, unless the additional
features are truly associated with the response.
The third point above is in fact a key principle in the analysis of high-

dimensional data, which is known as the curse of dimensionality. One might
curse of di-
mensionalitythink that as the number of features used to fit a model increases, the

quality of the fitted model will increase as well. However, comparing the
left-hand and right-hand panels in Figure 6.24, we see that this is not
necessarily the case: in this example, the test set MSE almost doubles as
p increases from 20 to 2,000. In general, adding additional signal features
that are truly associated with the response will improve the fitted model,
in the sense of leading to a reduction in test set error. However, adding
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noise features that are not truly associated with the response will lead
to a deterioration in the fitted model, and consequently an increased test
set error. This is because noise features increase the dimensionality of the
problem, exacerbating the risk of overfitting (since noise features may be
assigned nonzero coefficients due to chance associations with the response
on the training set) without any potential upside in terms of improved test
set error. Thus, we see that new technologies that allow for the collection
of measurements for thousands or millions of features are a double-edged
sword: they can lead to improved predictive models if these features are in
fact relevant to the problem at hand, but will lead to worse results if the
features are not relevant. Even if they are relevant, the variance incurred
in fitting their coefficients may outweigh the reduction in bias that they
bring.

6.4.4 Interpreting Results in High Dimensions

When we perform the lasso, ridge regression, or other regression proce-
dures in the high-dimensional setting, we must be quite cautious in the way
that we report the results obtained. In Chapter 3, we learned about multi-
collinearity, the concept that the variables in a regression might be corre-
lated with each other. In the high-dimensional setting, the multicollinearity
problem is extreme: any variable in the model can be written as a linear
combination of all of the other variables in the model. Essentially, this
means that we can never know exactly which variables (if any) truly are
predictive of the outcome, and we can never identify the best coefficients
for use in the regression. At most, we can hope to assign large regression
coefficients to variables that are correlated with the variables that truly are
predictive of the outcome.
For instance, suppose that we are trying to predict blood pressure on the

basis of half a million SNPs, and that forward stepwise selection indicates
that 17 of those SNPs lead to a good predictive model on the training data.
It would be incorrect to conclude that these 17 SNPs predict blood pressure
more effectively than the other SNPs not included in the model. There are
likely to be many sets of 17 SNPs that would predict blood pressure just
as well as the selected model. If we were to obtain an independent data set
and perform forward stepwise selection on that data set, we would likely
obtain a model containing a different, and perhaps even non-overlapping,
set of SNPs. This does not detract from the value of the model obtained—
for instance, the model might turn out to be very effective in predicting
blood pressure on an independent set of patients, and might be clinically
useful for physicians. But we must be careful not to overstate the results
obtained, and to make it clear that what we have identified is simply one
of many possible models for predicting blood pressure, and that it must be
further validated on independent data sets.
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It is also important to be particularly careful in reporting errors and
measures of model fit in the high-dimensional setting. We have seen that
when p > n, it is easy to obtain a useless model that has zero residu-
als. Therefore, one should never use sum of squared errors, p-values, R2

statistics, or other traditional measures of model fit on the training data as
evidence of a good model fit in the high-dimensional setting. For instance,
as we saw in Figure 6.23, one can easily obtain a model with R2 = 1 when
p > n. Reporting this fact might mislead others into thinking that a sta-
tistically valid and useful model has been obtained, whereas in fact this
provides absolutely no evidence of a compelling model. It is important to
instead report results on an independent test set, or cross-validation errors.
For instance, the MSE or R2 on an independent test set is a valid measure
of model fit, but the MSE on the training set certainly is not.

6.5 Lab: Linear Models and Regularization
Methods

6.5.1 Subset Selection Methods

Best Subset Selection

Here we apply the best subset selection approach to the Hitters data. We
wish to predict a baseball player’s Salary on the basis of various statistics
associated with performance in the previous year.
First of all, we note that the Salary variable is missing for some of the

players. The is.na() function can be used to identify the missing observa-
is.na()

tions. It returns a vector of the same length as the input vector, with a TRUE

for any elements that are missing, and a FALSE for non-missing elements.
The sum() function can then be used to count all of the missing elements.

sum()

> library(ISLR2)

> View(Hitters)

> names(Hitters)

[1] "AtBat" "Hits" "HmRun" "Runs" "RBI"

[6] "Walks" "Years" "CAtBat" "CHits" "CHmRun"

[11] "CRuns" "CRBI" "CWalks" "League" "Division"

[16] "PutOuts" "Assists" "Errors" "Salary" "NewLeague"

> dim(Hitters)

[1] 322 20

> sum(is.na(Hitters$Salary))

[1] 59

Hence we see that Salary is missing for 59 players. The na.omit() function
removes all of the rows that have missing values in any variable.

> Hitters <- na.omit(Hitters)

> dim(Hitters)

[1] 263 20
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> sum(is.na(Hitters))

[1] 0

The regsubsets() function (part of the leaps library) performs best sub-
regsubsets()

set selection by identifying the best model that contains a given number
of predictors, where best is quantified using RSS. The syntax is the same
as for lm(). The summary() command outputs the best set of variables for
each model size.

> library(leaps)

> regfit.full <- regsubsets(Salary ∼ ., Hitters)

> summary(regfit.full)

Subset selection object

Call: regsubsets.formula(Salary ∼ ., Hitters)

19 Variables (and intercept)

...

1 subsets of each size up to 8

Selection Algorithm: exhaustive

AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits

1 ( 1 ) " " " " " " " " " " " " " " " " " "

2 ( 1 ) " " "*" " " " " " " " " " " " " " "

3 ( 1 ) " " "*" " " " " " " " " " " " " " "

4 ( 1 ) " " "*" " " " " " " " " " " " " " "

5 ( 1 ) "*" "*" " " " " " " " " " " " " " "

6 ( 1 ) "*" "*" " " " " " " "*" " " " " " "

7 ( 1 ) " " "*" " " " " " " "*" " " "*" "*"

8 ( 1 ) "*" "*" " " " " " " "*" " " " " " "

CHmRun CRuns CRBI CWalks LeagueN DivisionW PutOuts

1 ( 1 ) " " " " "*" " " " " " " " "

2 ( 1 ) " " " " "*" " " " " " " " "

3 ( 1 ) " " " " "*" " " " " " " "*"

4 ( 1 ) " " " " "*" " " " " "*" "*"

5 ( 1 ) " " " " "*" " " " " "*" "*"

6 ( 1 ) " " " " "*" " " " " "*" "*"

7 ( 1 ) "*" " " " " " " " " "*" "*"

8 ( 1 ) "*" "*" " " "*" " " "*" "*"

Assists Errors NewLeagueN

1 ( 1 ) " " " " " "

2 ( 1 ) " " " " " "

3 ( 1 ) " " " " " "

4 ( 1 ) " " " " " "

5 ( 1 ) " " " " " "

6 ( 1 ) " " " " " "

7 ( 1 ) " " " " " "

8 ( 1 ) " " " " " "

An asterisk indicates that a given variable is included in the corresponding
model. For instance, this output indicates that the best two-variable model
contains only Hits and CRBI. By default, regsubsets() only reports results
up to the best eight-variable model. But the nvmax option can be used
in order to return as many variables as are desired. Here we fit up to a
19-variable model.
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> regfit.full <- regsubsets(Salary ∼ ., data = Hitters ,

nvmax = 19)

> reg.summary <- summary(regfit.full)

The summary() function also returns R2, RSS, adjusted R2, Cp, and BIC.
We can examine these to try to select the best overall model.

> names(reg.summary)

[1] "which" "rsq" "rss" "adjr2" "cp" "bic"

[7] "outmat" "obj"

For instance, we see that the R2 statistic increases from 32%, when only
one variable is included in the model, to almost 55%, when all variables
are included. As expected, the R2 statistic increases monotonically as more
variables are included.

> reg.summary$rsq

[1] 0.321 0.425 0.451 0.475 0.491 0.509 0.514 0.529 0.535

[10] 0.540 0.543 0.544 0.544 0.545 0.545 0.546 0.546 0.546

[19] 0.546

Plotting RSS, adjusted R2, Cp, and BIC for all of the models at once will
help us decide which model to select. Note the type = "l" option tells R to
connect the plotted points with lines.

> par(mfrow = c(2, 2))

> plot(reg.summary$rss , xlab = "Number of Variables",

ylab = "RSS", type = "l")

> plot(reg.summary$adjr2 , xlab = "Number of Variables",

ylab = "Adjusted RSq", type = "l")

The points() command works like the plot() command, except that it
points()

puts points on a plot that has already been created, instead of creating a
new plot. The which.max() function can be used to identify the location of
the maximum point of a vector. We will now plot a red dot to indicate the
model with the largest adjusted R2 statistic.

> which.max(reg.summary$adjr2)

[1] 11

> points (11, reg.summary$adjr2 [11], col = "red", cex = 2,

pch = 20)

In a similar fashion we can plot the Cp and BIC statistics, and indicate the
models with the smallest statistic using which.min().

which.min()

> plot(reg.summary$cp, xlab = "Number of Variables",

ylab = "Cp", type = "l")

> which.min(reg.summary$cp)

[1] 10

> points (10, reg.summary$cp[10], col = "red", cex = 2,

pch = 20)

> which.min(reg.summary$bic)

[1] 6

> plot(reg.summary$bic , xlab = "Number of Variables",

ylab = "BIC", type = "l")
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> points(6, reg.summary$bic[6], col = "red", cex = 2,

pch = 20)

The regsubsets() function has a built-in plot() command which can
be used to display the selected variables for the best model with a given
number of predictors, ranked according to the BIC, Cp, adjusted R2, or
AIC. To find out more about this function, type ?plot.regsubsets.

> plot(regfit.full , scale = "r2")

> plot(regfit.full , scale = "adjr2")

> plot(regfit.full , scale = "Cp")

> plot(regfit.full , scale = "bic")

The top row of each plot contains a black square for each variable selected
according to the optimal model associated with that statistic. For instance,
we see that several models share a BIC close to −150. However, the model
with the lowest BIC is the six-variable model that contains only AtBat,
Hits, Walks, CRBI, DivisionW, and PutOuts. We can use the coef() function
to see the coefficient estimates associated with this model.

> coef(regfit.full , 6)

(Intercept) AtBat Hits Walks CRBI

91.512 -1.869 7.604 3.698 0.643

DivisionW PutOuts

-122.952 0.264

Forward and Backward Stepwise Selection

We can also use the regsubsets() function to perform forward stepwise
or backward stepwise selection, using the argument method = "forward" or
method = "backward".

> regfit.fwd <- regsubsets(Salary ∼ ., data = Hitters ,

nvmax = 19, method = "forward")

> summary(regfit.fwd)

> regfit.bwd <- regsubsets(Salary ∼ ., data = Hitters ,

nvmax = 19, method = "backward")

> summary(regfit.bwd)

For instance, we see that using forward stepwise selection, the best one-
variable model contains only CRBI, and the best two-variable model ad-
ditionally includes Hits. For this data, the best one-variable through six-
variable models are each identical for best subset and forward selection.
However, the best seven-variable models identified by forward stepwise se-
lection, backward stepwise selection, and best subset selection are different.

> coef(regfit.full , 7)

(Intercept) Hits Walks CAtBat CHits

79.451 1.283 3.227 -0.375 1.496

CHmRun DivisionW PutOuts

1.442 -129.987 0.237

> coef(regfit.fwd , 7)
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(Intercept) AtBat Hits Walks CRBI

109.787 -1.959 7.450 4.913 0.854

CWalks DivisionW PutOuts

-0.305 -127.122 0.253

> coef(regfit.bwd , 7)

(Intercept) AtBat Hits Walks CRuns

105.649 -1.976 6.757 6.056 1.129

CWalks DivisionW PutOuts

-0.716 -116.169 0.303

Choosing Among Models Using the Validation-Set Approach and
Cross-Validation

We just saw that it is possible to choose among a set of models of different
sizes using Cp, BIC, and adjusted R2. We will now consider how to do this
using the validation set and cross-validation approaches.
In order for these approaches to yield accurate estimates of the test

error, we must use only the training observations to perform all aspects of
model-fitting—including variable selection. Therefore, the determination of
which model of a given size is best must be made using only the training
observations. This point is subtle but important. If the full data set is used
to perform the best subset selection step, the validation set errors and
cross-validation errors that we obtain will not be accurate estimates of the
test error.
In order to use the validation set approach, we begin by splitting the

observations into a training set and a test set. We do this by creating
a random vector, train, of elements equal to TRUE if the corresponding
observation is in the training set, and FALSE otherwise. The vector test has
a TRUE if the observation is in the test set, and a FALSE otherwise. Note the
! in the command to create test causes TRUEs to be switched to FALSEs and
vice versa. We also set a random seed so that the user will obtain the same
training set/test set split.

> set.seed (1)

> train <- sample(c(TRUE , FALSE), nrow(Hitters),

replace = TRUE)

> test <- (!train)

Now, we apply regsubsets() to the training set in order to perform best
subset selection.

> regfit.best <- regsubsets(Salary ∼ .,

data = Hitters[train , ], nvmax = 19)

Notice that we subset the Hitters data frame directly in the call in or-
der to access only the training subset of the data, using the expression
Hitters[train, ]. We now compute the validation set error for the best
model of each model size. We first make a model matrix from the test
data.
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> test.mat <- model.matrix(Salary ∼ ., data = Hitters[test , ])

The model.matrix() function is used in many regression packages for build-
model.matrix()

ing an “X” matrix from data. Now we run a loop, and for each size i, we
extract the coefficients from regfit.best for the best model of that size,
multiply them into the appropriate columns of the test model matrix to
form the predictions, and compute the test MSE.

> val.errors <- rep(NA, 19)

> for (i in 1:19) {

+ coefi <- coef(regfit.best , id = i)

+ pred <- test.mat[, names(coefi)] %*% coefi

+ val.errors[i] <- mean(( Hitters$Salary[test] - pred)^2)

}

We find that the best model is the one that contains seven variables.

> val.errors

[1] 164377 144405 152176 145198 137902 139176 126849 136191

[9] 132890 135435 136963 140695 140691 141951 141508 142164

[17] 141767 142340 142238

> which.min(val.errors)

[1] 7

> coef(regfit.best , 7)

(Intercept) AtBat Hits Walks CRuns

67.109 -2.146 7.015 8.072 1.243

CWalks DivisionW PutOuts

-0.834 -118.436 0.253

This was a little tedious, partly because there is no predict() method
for regsubsets(). Since we will be using this function again, we can capture
our steps above and write our own predict method.

> predict.regsubsets <- function(object , newdata , id, ...) {

+ form <- as.formula(object$call [[2]])

+ mat <- model.matrix(form , newdata)

+ coefi <- coef(object , id = id)

+ xvars <- names(coefi)

+ mat[, xvars] %*% coefi

+ }

Our function pretty much mimics what we did above. The only complex
part is how we extracted the formula used in the call to regsubsets(). We
demonstrate how we use this function below, when we do cross-validation.
Finally, we perform best subset selection on the full data set, and select

the best seven-variable model. It is important that we make use of the
full data set in order to obtain more accurate coefficient estimates. Note
that we perform best subset selection on the full data set and select the
best seven-variable model, rather than simply using the variables that were
obtained from the training set, because the best seven-variable model on
the full data set may differ from the corresponding model on the training
set.
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> regfit.best <- regsubsets(Salary ∼ ., data = Hitters ,

nvmax = 19)

> coef(regfit.best , 7)

(Intercept) Hits Walks CAtBat CHits

79.451 1.283 3.227 -0.375 1.496

CHmRun DivisionW PutOuts

1.442 -129.987 0.237

In fact, we see that the best seven-variable model on the full data set has a
different set of variables than the best seven-variable model on the training
set.
We now try to choose among the models of different sizes using cross-

validation. This approach is somewhat involved, as we must perform best
subset selection within each of the k training sets. Despite this, we see that
with its clever subsetting syntax, R makes this job quite easy. First, we
create a vector that allocates each observation to one of k = 10 folds, and
we create a matrix in which we will store the results.

> k <- 10

> n <- nrow(Hitters)

> set.seed (1)

> folds <- sample(rep (1:k, length = n))

> cv.errors <- matrix(NA, k, 19,

dimnames = list(NULL , paste (1:19)))

Now we write a for loop that performs cross-validation. In the jth fold, the
elements of folds that equal j are in the test set, and the remainder are in
the training set. We make our predictions for each model size (using our new
predict() method), compute the test errors on the appropriate subset, and
store them in the appropriate slot in the matrix cv.errors. Note that in the
following code R will automatically use our predict.regsubsets() function
when we call predict() because the best.fit object has class regsubsets.

> for (j in 1:k) {

+ best.fit <- regsubsets(Salary ∼ .,

data = Hitters[folds != j, ],

nvmax = 19)

+ for (i in 1:19) {

+ pred <- predict(best.fit , Hitters[folds == j, ], id = i)

+ cv.errors[j, i] <-

mean(( Hitters$Salary[folds == j] - pred)^2)

+ }

+ }

This has given us a 10×19 matrix, of which the (j, i)th element corresponds
to the test MSE for the jth cross-validation fold for the best i-variable
model. We use the apply() function to average over the columns of this

apply()
matrix in order to obtain a vector for which the ith element is the cross-
validation error for the i-variable model.

> mean.cv.errors <- apply(cv.errors , 2, mean)

> mean.cv.errors
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1 2 3 4 5 6 7 8

143440 126817 134214 131783 130766 120383 121443 114364

9 10 11 12 13 14 15 16

115163 109366 112738 113617 115558 115853 115631 116050

17 18 19

116117 116419 116299

> par(mfrow = c(1, 1))

> plot(mean.cv.errors , type = "b")

We see that cross-validation selects a 10-variable model. We now perform
best subset selection on the full data set in order to obtain the 10-variable
model.

> reg.best <- regsubsets(Salary ∼ ., data = Hitters ,

nvmax = 19)

> coef(reg.best , 10)

(Intercept) AtBat Hits Walks CAtBat

162.535 -2.169 6.918 5.773 -0.130

CRuns CRBI CWalks DivisionW PutOuts

1.408 0.774 -0.831 -112.380 0.297

Assists

0.283

6.5.2 Ridge Regression and the Lasso

We will use the glmnet package in order to perform ridge regression and
the lasso. The main function in this package is glmnet(), which can be used

glmnet()
to fit ridge regression models, lasso models, and more. This function has
slightly different syntax from other model-fitting functions that we have
encountered thus far in this book. In particular, we must pass in an x

matrix as well as a y vector, and we do not use the y ∼ x syntax. We will
now perform ridge regression and the lasso in order to predict Salary on
the Hitters data. Before proceeding ensure that the missing values have
been removed from the data, as described in Section 6.5.1.

> x <- model.matrix(Salary ∼ ., Hitters)[, -1]

> y <- Hitters$Salary

The model.matrix() function is particularly useful for creating x; not only
does it produce a matrix corresponding to the 19 predictors but it also
automatically transforms any qualitative variables into dummy variables.
The latter property is important because glmnet() can only take numerical,
quantitative inputs.

Ridge Regression

The glmnet() function has an alpha argument that determines what type
of model is fit. If alpha=0 then a ridge regression model is fit, and if alpha=1
then a lasso model is fit. We first fit a ridge regression model.
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> library(glmnet)

> grid <- 10^ seq(10, -2, length = 100)

> ridge.mod <- glmnet(x, y, alpha = 0, lambda = grid)

By default the glmnet() function performs ridge regression for an automati-
cally selected range of λ values. However, here we have chosen to implement
the function over a grid of values ranging from λ = 1010 to λ = 10−2, es-
sentially covering the full range of scenarios from the null model containing
only the intercept, to the least squares fit. As we will see, we can also com-
pute model fits for a particular value of λ that is not one of the original
grid values. Note that by default, the glmnet() function standardizes the
variables so that they are on the same scale. To turn off this default setting,
use the argument standardize = FALSE.
Associated with each value of λ is a vector of ridge regression coefficients,

stored in a matrix that can be accessed by coef(). In this case, it is a 20×100
matrix, with 20 rows (one for each predictor, plus an intercept) and 100
columns (one for each value of λ).

> dim(coef(ridge.mod))

[1] 20 100

We expect the coefficient estimates to be much smaller, in terms of ℓ2 norm,
when a large value of λ is used, as compared to when a small value of λ is
used. These are the coefficients when λ = 11,498, along with their ℓ2 norm:

> ridge.mod$lambda [50]

[1] 11498

> coef(ridge.mod)[, 50]

(Intercept) AtBat Hits HmRun Runs

407.356 0.037 0.138 0.525 0.231

RBI Walks Years CAtBat CHits

0.240 0.290 1.108 0.003 0.012

CHmRun CRuns CRBI CWalks LeagueN

0.088 0.023 0.024 0.025 0.085

DivisionW PutOuts Assists Errors NewLeagueN

-6.215 0.016 0.003 -0.021 0.301

> sqrt(sum(coef(ridge.mod)[-1, 50]^2))

[1] 6.36

In contrast, here are the coefficients when λ = 705, along with their ℓ2
norm. Note the much larger ℓ2 norm of the coefficients associated with this
smaller value of λ.

> ridge.mod$lambda [60]

[1] 705

> coef(ridge.mod)[, 60]

(Intercept) AtBat Hits HmRun Runs

54.325 0.112 0.656 1.180 0.938

RBI Walks Years CAtBat CHits

0.847 1.320 2.596 0.011 0.047

CHmRun CRuns CRBI CWalks LeagueN

0.338 0.094 0.098 0.072 13.684
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DivisionW PutOuts Assists Errors NewLeagueN

-54.659 0.119 0.016 -0.704 8.612

> sqrt(sum(coef(ridge.mod)[-1, 60]^2))

[1] 57.1

We can use the predict() function for a number of purposes. For instance,
we can obtain the ridge regression coefficients for a new value of λ, say 50:

> predict(ridge.mod , s = 50, type = "coefficients")[1:20 , ]

(Intercept) AtBat Hits HmRun Runs

48.766 -0.358 1.969 -1.278 1.146

RBI Walks Years CAtBat CHits

0.804 2.716 -6.218 0.005 0.106

CHmRun CRuns CRBI CWalks LeagueN

0.624 0.221 0.219 -0.150 45.926

DivisionW PutOuts Assists Errors NewLeagueN

-118.201 0.250 0.122 -3.279 -9.497

We now split the samples into a training set and a test set in order
to estimate the test error of ridge regression and the lasso. There are two
common ways to randomly split a data set. The first is to produce a random
vector of TRUE, FALSE elements and select the observations corresponding to
TRUE for the training data. The second is to randomly choose a subset of
numbers between 1 and n; these can then be used as the indices for the
training observations. The two approaches work equally well. We used the
former method in Section 6.5.1. Here we demonstrate the latter approach.
We first set a random seed so that the results obtained will be repro-

ducible.

> set.seed (1)

> train <- sample (1: nrow(x), nrow(x) / 2)

> test <- (-train)

> y.test <- y[test]

Next we fit a ridge regression model on the training set, and evaluate
its MSE on the test set, using λ = 4. Note the use of the predict()

function again. This time we get predictions for a test set, by replacing
type="coefficients" with the newx argument.

> ridge.mod <- glmnet(x[train , ], y[train], alpha = 0,

lambda = grid, thresh = 1e-12)

> ridge.pred <- predict(ridge.mod , s = 4, newx = x[test , ])

> mean(( ridge.pred - y.test)^2)

[1] 142199

The test MSE is 142,199. Note that if we had instead simply fit a model
with just an intercept, we would have predicted each test observation using
the mean of the training observations. In that case, we could compute the
test set MSE like this:

> mean((mean(y[train ]) - y.test)^2)

[1] 224670
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We could also get the same result by fitting a ridge regression model with
a very large value of λ. Note that 1e10 means 1010.

> ridge.pred <- predict(ridge.mod , s = 1e10 , newx = x[test , ])

> mean(( ridge.pred - y.test)^2)

[1] 224670

So fitting a ridge regression model with λ = 4 leads to a much lower test
MSE than fitting a model with just an intercept. We now check whether
there is any benefit to performing ridge regression with λ = 4 instead of
just performing least squares regression. Recall that least squares is simply
ridge regression with λ = 0.8

> ridge.pred <- predict(ridge.mod , s = 0, newx = x[test , ],

exact = T, x = x[train , ], y = y[train])

> mean(( ridge.pred - y.test)^2)

[1] 168589

> lm(y ∼ x, subset = train)

> predict(ridge.mod , s = 0, exact = T, type = "coefficients",

x = x[train , ], y = y[train])[1:20 , ]

In general, if we want to fit a (unpenalized) least squares model, then
we should use the lm() function, since that function provides more useful
outputs, such as standard errors and p-values for the coefficients.
In general, instead of arbitrarily choosing λ = 4, it would be better to

use cross-validation to choose the tuning parameter λ. We can do this using
the built-in cross-validation function, cv.glmnet(). By default, the function

cv.glmnet()
performs ten-fold cross-validation, though this can be changed using the
argument nfolds. Note that we set a random seed first so our results will
be reproducible, since the choice of the cross-validation folds is random.

> set.seed (1)

> cv.out <- cv.glmnet(x[train , ], y[train], alpha = 0)

> plot(cv.out)

> bestlam <- cv.out$lambda.min

> bestlam

[1] 326

Therefore, we see that the value of λ that results in the smallest cross-
validation error is 326. What is the test MSE associated with this value of
λ?

> ridge.pred <- predict(ridge.mod , s = bestlam ,

newx = x[test , ])

8In order for glmnet() to yield the exact least squares coefficients when λ = 0,
we use the argument exact = T when calling the predict() function. Otherwise,
the predict() function will interpolate over the grid of λ values used in fitting the
glmnet() model, yielding approximate results. When we use exact = T, there remains
a slight discrepancy in the third decimal place between the output of glmnet() when
λ = 0 and the output of lm(); this is due to numerical approximation on the part of
glmnet().
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> mean(( ridge.pred - y.test)^2)

[1] 139857

This represents a further improvement over the test MSE that we got using
λ = 4. Finally, we refit our ridge regression model on the full data set,
using the value of λ chosen by cross-validation, and examine the coefficient
estimates.

> out <- glmnet(x, y, alpha = 0)

> predict(out , type = "coefficients", s = bestlam)[1:20 , ]

(Intercept) AtBat Hits HmRun Runs

15.44 0.08 0.86 0.60 1.06

RBI Walks Years CAtBat CHits

0.88 1.62 1.35 0.01 0.06

CHmRun CRuns CRBI CWalks LeagueN

0.41 0.11 0.12 0.05 22.09

DivisionW PutOuts Assists Errors NewLeagueN

-79.04 0.17 0.03 -1.36 9.12

As expected, none of the coefficients are zero—ridge regression does not
perform variable selection!

The Lasso

We saw that ridge regression with a wise choice of λ can outperform least
squares as well as the null model on the Hitters data set. We now ask
whether the lasso can yield either a more accurate or a more interpretable
model than ridge regression. In order to fit a lasso model, we once again
use the glmnet() function; however, this time we use the argument alpha=1.
Other than that change, we proceed just as we did in fitting a ridge model.

> lasso.mod <- glmnet(x[train , ], y[train], alpha = 1,

lambda = grid)

> plot(lasso.mod)

We can see from the coefficient plot that depending on the choice of tuning
parameter, some of the coefficients will be exactly equal to zero. We now
perform cross-validation and compute the associated test error.

> set.seed (1)

> cv.out <- cv.glmnet(x[train , ], y[train], alpha = 1)

> plot(cv.out)

> bestlam <- cv.out$lambda.min

> lasso.pred <- predict(lasso.mod , s = bestlam ,

newx = x[test , ])

> mean(( lasso.pred - y.test)^2)

[1] 143674

This is substantially lower than the test set MSE of the null model and of
least squares, and very similar to the test MSE of ridge regression with λ
chosen by cross-validation.
However, the lasso has a substantial advantage over ridge regression in

that the resulting coefficient estimates are sparse. Here we see that 8 of the
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19 coefficient estimates are exactly zero. So the lasso model with λ chosen
by cross-validation contains only eleven variables.

> out <- glmnet(x, y, alpha = 1, lambda = grid)

> lasso.coef <- predict(out , type = "coefficients",

s = bestlam)[1:20 , ]

> lasso.coef

(Intercept) AtBat Hits HmRun Runs

1.27 -0.05 2.18 0.00 0.00

RBI Walks Years CAtBat CHits

0.00 2.29 -0.34 0.00 0.00

CHmRun CRuns CRBI CWalks LeagueN

0.03 0.22 0.42 0.00 20.29

DivisionW PutOuts Assists Errors NewLeagueN

-116.17 0.24 0.00 -0.86 0.00

> lasso.coef[lasso.coef != 0]

(Intercept) AtBat Hits Walks Years

1.27 -0.05 2.18 2.29 -0.34

CHmRun CRuns CRBI LeagueN DivisionW

0.03 0.22 0.42 20.29 -116.17

PutOuts Errors

0.24 -0.86

6.5.3 PCR and PLS Regression

Principal Components Regression

Principal components regression (PCR) can be performed using the pcr()
pcr()

function, which is part of the pls library. We now apply PCR to the Hitters

data, in order to predict Salary. Again, we ensure that the missing values
have been removed from the data, as described in Section 6.5.1.

> library(pls)

> set.seed (2)

> pcr.fit <- pcr(Salary ∼ ., data = Hitters , scale = TRUE ,

validation = "CV")

The syntax for the pcr() function is similar to that for lm(), with a few
additional options. Setting scale = TRUE has the effect of standardizing each
predictor, using (6.6), prior to generating the principal components, so that
the scale on which each variable is measured will not have an effect. Setting
validation = "CV" causes pcr() to compute the ten-fold cross-validation
error for each possible value of M , the number of principal components
used. The resulting fit can be examined using summary().

> summary(pcr.fit)

Data: X dimension: 263 19

Y dimension: 263 1

Fit method: svdpc

Number of components considered: 19

VALIDATION: RMSEP
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Cross -validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps

CV 452 351.9 353.2 355.0 352.8

adjCV 452 351.6 352.7 354.4 352.1

...

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps

X 38.31 60.16 70.84 79.03 84.29

Salary 40.63 41.58 42.17 43.22 44.90

...

The CV score is provided for each possible number of components, ranging
from M = 0 onwards. (We have printed the CV output only up to M = 4.)
Note that pcr() reports the root mean squared error ; in order to obtain
the usual MSE, we must square this quantity. For instance, a root mean
squared error of 352.8 corresponds to an MSE of 352.82 = 124,468.
One can also plot the cross-validation scores using the validationplot()

validationplot()
function. Using val.type = "MSEP" will cause the cross-validation MSE to
be plotted.

> validationplot(pcr.fit , val.type = "MSEP")

We see that the smallest cross-validation error occurs when M = 18 com-
ponents are used. This is barely fewer than M = 19, which amounts to
simply performing least squares, because when all of the components are
used in PCR no dimension reduction occurs. However, from the plot we
also see that the cross-validation error is roughly the same when only one
component is included in the model. This suggests that a model that uses
just a small number of components might suffice.
The summary() function also provides the percentage of variance explained

in the predictors and in the response using different numbers of compo-
nents. This concept is discussed in greater detail in Chapter 12. Briefly,
we can think of this as the amount of information about the predictors or
the response that is captured using M principal components. For example,
setting M = 1 only captures 38.31% of all the variance, or information, in
the predictors. In contrast, using M = 5 increases the value to 84.29%. If
we were to use all M = p = 19 components, this would increase to 100%.
We now perform PCR on the training data and evaluate its test set

performance.

> set.seed (1)

> pcr.fit <- pcr(Salary ∼ ., data = Hitters , subset = train ,

scale = TRUE , validation = "CV")

> validationplot(pcr.fit , val.type = "MSEP")

Now we find that the lowest cross-validation error occurs when M = 5
components are used. We compute the test MSE as follows.

> pcr.pred <- predict(pcr.fit , x[test , ], ncomp = 5)

> mean((pcr.pred - y.test)^2)
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[1] 142812

This test set MSE is competitive with the results obtained using ridge re-
gression and the lasso. However, as a result of the way PCR is implemented,
the final model is more difficult to interpret because it does not perform
any kind of variable selection or even directly produce coefficient estimates.
Finally, we fit PCR on the full data set, using M = 5, the number of

components identified by cross-validation.

> pcr.fit <- pcr(y ∼ x, scale = TRUE , ncomp = 5)

> summary(pcr.fit)

Data: X dimension: 263 19

Y dimension: 263 1

Fit method: svdpc

Number of components considered: 5

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps

X 38.31 60.16 70.84 79.03 84.29

y 40.63 41.58 42.17 43.22 44.90

Partial Least Squares

We implement partial least squares (PLS) using the plsr() function, also
plsr()

in the pls library. The syntax is just like that of the pcr() function.

> set.seed (1)

> pls.fit <- plsr(Salary ∼ ., data = Hitters , subset = train ,

scale = TRUE , validation = "CV")

> summary(pls.fit)

Data: X dimension: 131 19

Y dimension: 131 1

Fit method: kernelpls

Number of components considered: 19

VALIDATION: RMSEP

Cross -validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps

CV 428.3 325.5 329.9 328.8 339.0

adjCV 428.3 325.0 328.2 327.2 336.6

...

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps

X 39.13 48.80 60.09 75.07 78.58

Salary 46.36 50.72 52.23 53.03 54.07

...

> validationplot(pls.fit , val.type = "MSEP")

The lowest cross-validation error occurs when only M = 1 partial least
squares directions are used. We now evaluate the corresponding test set
MSE.

> pls.pred <- predict(pls.fit , x[test , ], ncomp = 1)
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> mean((pls.pred - y.test)^2)

[1] 151995

The test MSE is comparable to, but slightly higher than, the test MSE
obtained using ridge regression, the lasso, and PCR.
Finally, we perform PLS using the full data set, using M = 1, the number

of components identified by cross-validation.

> pls.fit <- plsr(Salary ∼ ., data = Hitters , scale = TRUE ,

ncomp = 1)

> summary(pls.fit)

Data: X dimension: 263 19

Y dimension: 263 1

Fit method: kernelpls

Number of components considered: 1

TRAINING: % variance explained

1 comps

X 38.08

Salary 43.05

Notice that the percentage of variance in Salary that the one-component
PLS fit explains, 43.05%, is almost as much as that explained using the final
five-component model PCR fit, 44.90%. This is because PCR only attempts
to maximize the amount of variance explained in the predictors, while PLS
searches for directions that explain variance in both the predictors and the
response.

6.6 Exercises

Conceptual

1. We perform best subset, forward stepwise, and backward stepwise
selection on a single data set. For each approach, we obtain p + 1
models, containing 0, 1, 2, . . . , p predictors. Explain your answers:

(a) Which of the three models with k predictors has the smallest
training RSS?

(b) Which of the three models with k predictors has the smallest
test RSS?

(c) True or False:

i. The predictors in the k-variable model identified by forward
stepwise are a subset of the predictors in the (k+1)-variable
model identified by forward stepwise selection.

ii. The predictors in the k-variable model identified by back-
ward stepwise are a subset of the predictors in the (k + 1)-
variable model identified by backward stepwise selection.
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iii. The predictors in the k-variable model identified by back-
ward stepwise are a subset of the predictors in the (k + 1)-
variable model identified by forward stepwise selection.

iv. The predictors in the k-variable model identified by forward
stepwise are a subset of the predictors in the (k+1)-variable
model identified by backward stepwise selection.

v. The predictors in the k-variable model identified by best
subset are a subset of the predictors in the (k + 1)-variable
model identified by best subset selection.

2. For parts (a) through (c), indicate which of i. through iv. is correct.
Justify your answer.

(a) The lasso, relative to least squares, is:

i. More flexible and hence will give improved prediction ac-
curacy when its increase in bias is less than its decrease in
variance.

ii. More flexible and hence will give improved prediction accu-
racy when its increase in variance is less than its decrease
in bias.

iii. Less flexible and hence will give improved prediction accu-
racy when its increase in bias is less than its decrease in
variance.

iv. Less flexible and hence will give improved prediction accu-
racy when its increase in variance is less than its decrease
in bias.

(b) Repeat (a) for ridge regression relative to least squares.

(c) Repeat (a) for non-linear methods relative to least squares.

3. Suppose we estimate the regression coefficients in a linear regression
model by minimizing

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

subject to
p∑

j=1

|βj | ≤ s

for a particular value of s. For parts (a) through (e), indicate which
of i. through v. is correct. Justify your answer.

(a) As we increase s from 0, the training RSS will:

i. Increase initially, and then eventually start decreasing in an
inverted U shape.

ii. Decrease initially, and then eventually start increasing in a
U shape.
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iii. Steadily increase.

iv. Steadily decrease.

v. Remain constant.

(b) Repeat (a) for test RSS.

(c) Repeat (a) for variance.

(d) Repeat (a) for (squared) bias.

(e) Repeat (a) for the irreducible error.

4. Suppose we estimate the regression coefficients in a linear regression
model by minimizing

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

+ λ
p∑

j=1

β2
j

for a particular value of λ. For parts (a) through (e), indicate which
of i. through v. is correct. Justify your answer.

(a) As we increase λ from 0, the training RSS will:

i. Increase initially, and then eventually start decreasing in an
inverted U shape.

ii. Decrease initially, and then eventually start increasing in a
U shape.

iii. Steadily increase.

iv. Steadily decrease.

v. Remain constant.

(b) Repeat (a) for test RSS.

(c) Repeat (a) for variance.

(d) Repeat (a) for (squared) bias.

(e) Repeat (a) for the irreducible error.

5. It is well-known that ridge regression tends to give similar coefficient
values to correlated variables, whereas the lasso may give quite dif-
ferent coefficient values to correlated variables. We will now explore
this property in a very simple setting.

Suppose that n = 2, p = 2, x11 = x12, x21 = x22. Furthermore,
suppose that y1+y2 = 0 and x11+x21 = 0 and x12+x22 = 0, so that
the estimate for the intercept in a least squares, ridge regression, or
lasso model is zero: β̂0 = 0.

(a) Write out the ridge regression optimization problem in this set-
ting.
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(b) Argue that in this setting, the ridge coefficient estimates satisfy
β̂1 = β̂2.

(c) Write out the lasso optimization problem in this setting.

(d) Argue that in this setting, the lasso coefficients β̂1 and β̂2 are
not unique—in other words, there are many possible solutions
to the optimization problem in (c). Describe these solutions.

6. We will now explore (6.12) and (6.13) further.

(a) Consider (6.12) with p = 1. For some choice of y1 and λ > 0,
plot (6.12) as a function of β1. Your plot should confirm that
(6.12) is solved by (6.14).

(b) Consider (6.13) with p = 1. For some choice of y1 and λ > 0,
plot (6.13) as a function of β1. Your plot should confirm that
(6.13) is solved by (6.15).

7. We will now derive the Bayesian connection to the lasso and ridge
regression discussed in Section 6.2.2.

(a) Suppose that yi = β0+
∑p

j=1 xijβj+ϵi where ϵ1, . . . , ϵn are inde-

pendent and identically distributed from a N(0,σ2) distribution.
Write out the likelihood for the data.

(b) Assume the following prior for β: β1, . . . ,βp are independent
and identically distributed according to a double-exponential
distribution with mean 0 and common scale parameter b: i.e.
p(β) = 1

2b exp(−|β|/b). Write out the posterior for β in this
setting.

(c) Argue that the lasso estimate is the mode for β under this pos-
terior distribution.

(d) Now assume the following prior for β: β1, . . . ,βp are independent
and identically distributed according to a normal distribution
with mean zero and variance c. Write out the posterior for β in
this setting.

(e) Argue that the ridge regression estimate is both the mode and
the mean for β under this posterior distribution.

Applied

8. In this exercise, we will generate simulated data, and will then use
this data to perform best subset selection.

(a) Use the rnorm() function to generate a predictor X of length
n = 100, as well as a noise vector ϵ of length n = 100.
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(b) Generate a response vector Y of length n = 100 according to
the model

Y = β0 + β1X + β2X
2 + β3X

3 + ϵ,

where β0, β1, β2, and β3 are constants of your choice.

(c) Use the regsubsets() function to perform best subset selection
in order to choose the best model containing the predictors
X,X2, . . . , X10. What is the best model obtained according to
Cp, BIC, and adjusted R2? Show some plots to provide evidence
for your answer, and report the coefficients of the best model ob-
tained. Note you will need to use the data.frame() function to
create a single data set containing both X and Y .

(d) Repeat (c), using forward stepwise selection and also using back-
wards stepwise selection. How does your answer compare to the
results in (c)?

(e) Now fit a lasso model to the simulated data, again using X,X2,
. . . , X10 as predictors. Use cross-validation to select the optimal
value of λ. Create plots of the cross-validation error as a function
of λ. Report the resulting coefficient estimates, and discuss the
results obtained.

(f) Now generate a response vector Y according to the model

Y = β0 + β7X
7 + ϵ,

and perform best subset selection and the lasso. Discuss the
results obtained.

9. In this exercise, we will predict the number of applications received
using the other variables in the College data set.

(a) Split the data set into a training set and a test set.

(b) Fit a linear model using least squares on the training set, and
report the test error obtained.

(c) Fit a ridge regression model on the training set, with λ chosen
by cross-validation. Report the test error obtained.

(d) Fit a lasso model on the training set, with λ chosen by cross-
validation. Report the test error obtained, along with the num-
ber of non-zero coefficient estimates.

(e) Fit a PCR model on the training set, with M chosen by cross-
validation. Report the test error obtained, along with the value
of M selected by cross-validation.

(f) Fit a PLS model on the training set, with M chosen by cross-
validation. Report the test error obtained, along with the value
of M selected by cross-validation.
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(g) Comment on the results obtained. How accurately can we pre-
dict the number of college applications received? Is there much
difference among the test errors resulting from these five ap-
proaches?

10. We have seen that as the number of features used in a model increases,
the training error will necessarily decrease, but the test error may not.
We will now explore this in a simulated data set.

(a) Generate a data set with p = 20 features, n = 1,000 observa-
tions, and an associated quantitative response vector generated
according to the model

Y = Xβ + ϵ,

where β has some elements that are exactly equal to zero.

(b) Split your data set into a training set containing 100 observations
and a test set containing 900 observations.

(c) Perform best subset selection on the training set, and plot the
training set MSE associated with the best model of each size.

(d) Plot the test set MSE associated with the best model of each
size.

(e) For which model size does the test set MSE take on its minimum
value? Comment on your results. If it takes on its minimum value
for a model containing only an intercept or a model containing
all of the features, then play around with the way that you are
generating the data in (a) until you come up with a scenario in
which the test set MSE is minimized for an intermediate model
size.

(f) How does the model at which the test set MSE is minimized
compare to the true model used to generate the data? Comment
on the coefficient values.

(g) Create a plot displaying
√∑p

j=1(βj − β̂r
j )

2 for a range of values

of r, where β̂r
j is the jth coefficient estimate for the best model

containing r coefficients. Comment on what you observe. How
does this compare to the test MSE plot from (d)?

11. We will now try to predict per capita crime rate in the Boston data
set.

(a) Try out some of the regression methods explored in this chapter,
such as best subset selection, the lasso, ridge regression, and
PCR. Present and discuss results for the approaches that you
consider.
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(b) Propose a model (or set of models) that seem to perform well on
this data set, and justify your answer. Make sure that you are
evaluating model performance using validation set error, cross-
validation, or some other reasonable alternative, as opposed to
using training error.

(c) Does your chosen model involve all of the features in the data
set? Why or why not?



7
Moving Beyond Linearity

So far in this book, we have mostly focused on linear models. Linear models
are relatively simple to describe and implement, and have advantages over
other approaches in terms of interpretation and inference. However, stan-
dard linear regression can have significant limitations in terms of predic-
tive power. This is because the linearity assumption is almost always an
approximation, and sometimes a poor one. In Chapter 6 we see that we can
improve upon least squares using ridge regression, the lasso, principal com-
ponents regression, and other techniques. In that setting, the improvement
is obtained by reducing the complexity of the linear model, and hence the
variance of the estimates. But we are still using a linear model, which can
only be improved so far! In this chapter we relax the linearity assumption
while still attempting to maintain as much interpretability as possible. We
do this by examining very simple extensions of linear models like polyno-
mial regression and step functions, as well as more sophisticated approaches
such as splines, local regression, and generalized additive models.

• Polynomial regression extends the linear model by adding extra pre-
dictors, obtained by raising each of the original predictors to a power.
For example, a cubic regression uses three variables, X, X2, and X3,
as predictors. This approach provides a simple way to provide a non-
linear fit to data.

• Step functions cut the range of a variable into K distinct regions in
order to produce a qualitative variable. This has the effect of fitting
a piecewise constant function.

© Springer Science+Business Media, LLC, part of Springer Nature 2021
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• Regression splines are more flexible than polynomials and step func-
tions, and in fact are an extension of the two. They involve dividing
the range of X into K distinct regions. Within each region, a poly-
nomial function is fit to the data. However, these polynomials are
constrained so that they join smoothly at the region boundaries, or
knots . Provided that the interval is divided into enough regions, this
can produce an extremely flexible fit.

• Smoothing splines are similar to regression splines, but arise in a
slightly different situation. Smoothing splines result from minimizing
a residual sum of squares criterion subject to a smoothness penalty.

• Local regression is similar to splines, but differs in an important way.
The regions are allowed to overlap, and indeed they do so in a very
smooth way.

• Generalized additive models allow us to extend the methods above to
deal with multiple predictors.

In Sections 7.1–7.6, we present a number of approaches for modeling the
relationship between a response Y and a single predictor X in a flexible
way. In Section 7.7, we show that these approaches can be seamlessly inte-
grated in order to model a response Y as a function of several predictors
X1, . . . , Xp.

7.1 Polynomial Regression

Historically, the standard way to extend linear regression to settings in
which the relationship between the predictors and the response is non-
linear has been to replace the standard linear model

yi = β0 + β1xi + ϵi

with a polynomial function

yi = β0 + β1xi + β2x
2
i + β3x

3
i + · · ·+ βdx

d
i + ϵi, (7.1)

where ϵi is the error term. This approach is known as polynomial regression,
polynomial
regressionand in fact we saw an example of this method in Section 3.3.2. For large

enough degree d, a polynomial regression allows us to produce an extremely
non-linear curve. Notice that the coefficients in (7.1) can be easily estimated
using least squares linear regression because this is just a standard linear
model with predictors xi, x2

i , x
3
i , . . . , x

d
i . Generally speaking, it is unusual

to use d greater than 3 or 4 because for large values of d, the polynomial
curve can become overly flexible and can take on some very strange shapes.
This is especially true near the boundary of the X variable.
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FIGURE 7.1. The Wage data. Left: The solid blue curve is a degree-4 polynomial
of wage (in thousands of dollars) as a function of age, fit by least squares. The
dashed curves indicate an estimated 95% confidence interval. Right: We model the
binary event wage>250 using logistic regression, again with a degree-4 polynomial.
The fitted posterior probability of wage exceeding $250,000 is shown in blue, along
with an estimated 95% confidence interval.

The left-hand panel in Figure 7.1 is a plot of wage against age for the
Wage data set, which contains income and demographic information for
males who reside in the central Atlantic region of the United States. We
see the results of fitting a degree-4 polynomial using least squares (solid
blue curve). Even though this is a linear regression model like any other,
the individual coefficients are not of particular interest. Instead, we look at
the entire fitted function across a grid of 63 values for age from 18 to 80 in
order to understand the relationship between age and wage.
In Figure 7.1, a pair of dashed curves accompanies the fit; these are (2×)

standard error curves. Let’s see how these arise. Suppose we have computed
the fit at a particular value of age, x0:

f̂(x0) = β̂0 + β̂1x0 + β̂2x
2
0 + β̂3x

3
0 + β̂4x

4
0. (7.2)

What is the variance of the fit, i.e. Varf̂(x0)? Least squares returns variance
estimates for each of the fitted coefficients β̂j , as well as the covariances
between pairs of coefficient estimates. We can use these to compute the
estimated variance of f̂(x0).1 The estimated pointwise standard error of

1If Ĉ is the 5 × 5 covariance matrix of the β̂j , and if ℓT0 = (1, x0, x2
0, x

3
0, x

4
0), then

Var[f̂(x0)] = ℓT0 Ĉℓ0.
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f̂(x0) is the square-root of this variance. This computation is repeated
at each reference point x0, and we plot the fitted curve, as well as twice
the standard error on either side of the fitted curve. We plot twice the
standard error because, for normally distributed error terms, this quantity
corresponds to an approximate 95% confidence interval.
It seems like the wages in Figure 7.1 are from two distinct populations:

there appears to be a high earners group earning more than $250,000 per
annum, as well as a low earners group. We can treat wage as a binary
variable by splitting it into these two groups. Logistic regression can then
be used to predict this binary response, using polynomial functions of age
as predictors. In other words, we fit the model

Pr(yi > 250|xi) =
exp(β0 + β1xi + β2x2

i + · · ·+ βdxd
i )

1 + exp(β0 + β1xi + β2x2
i + · · ·+ βdxd

i )
. (7.3)

The result is shown in the right-hand panel of Figure 7.1. The gray marks
on the top and bottom of the panel indicate the ages of the high earners
and the low earners. The solid blue curve indicates the fitted probabilities
of being a high earner, as a function of age. The estimated 95% confidence
interval is shown as well. We see that here the confidence intervals are fairly
wide, especially on the right-hand side. Although the sample size for this
data set is substantial (n = 3,000), there are only 79 high earners, which
results in a high variance in the estimated coefficients and consequently
wide confidence intervals.

7.2 Step Functions

Using polynomial functions of the features as predictors in a linear model
imposes a global structure on the non-linear function of X. We can instead
use step functions in order to avoid imposing such a global structure. Here

step
functionwe break the range of X into bins, and fit a different constant in each bin.

This amounts to converting a continuous variable into an ordered categorical
variable.

ordered
categorical
variable

In greater detail, we create cutpoints c1, c2, . . . , cK in the range of X,
and then construct K + 1 new variables

C0(X) = I(X < c1),
C1(X) = I(c1 ≤ X < c2),
C2(X) = I(c2 ≤ X < c3),

...
CK−1(X) = I(cK−1 ≤ X < cK),
CK(X) = I(cK ≤ X),

(7.4)

where I(·) is an indicator function that returns a 1 if the condition is true,
indicator
function
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FIGURE 7.2. The Wage data. Left: The solid curve displays the fitted value from
a least squares regression of wage (in thousands of dollars) using step functions
of age. The dashed curves indicate an estimated 95% confidence interval. Right:
We model the binary event wage>250 using logistic regression, again using step
functions of age. The fitted posterior probability of wage exceeding $250,000 is
shown, along with an estimated 95% confidence interval.

and returns a 0 otherwise. For example, I(cK ≤ X) equals 1 if cK ≤ X, and
equals 0 otherwise. These are sometimes called dummy variables. Notice
that for any value of X, C0(X) +C1(X) + · · ·+CK(X) = 1, since X must
be in exactly one of the K + 1 intervals. We then use least squares to fit a
linear model using C1(X), C2(X), . . . , CK(X) as predictors2:

yi = β0 + β1C1(xi) + β2C2(xi) + · · ·+ βKCK(xi) + ϵi. (7.5)

For a given value of X, at most one of C1, C2, . . . , CK can be non-zero.
Note that when X < c1, all of the predictors in (7.5) are zero, so β0 can
be interpreted as the mean value of Y for X < c1. By comparison, (7.5)
predicts a response of β0+βj for cj ≤ X < cj+1, so βj represents the average
increase in the response for X in cj ≤ X < cj+1 relative to X < c1.
An example of fitting step functions to the Wage data from Figure 7.1 is

shown in the left-hand panel of Figure 7.2. We also fit the logistic regression
model

2We exclude C0(X) as a predictor in (7.5) because it is redundant with the intercept.
This is similar to the fact that we need only two dummy variables to code a qualitative
variable with three levels, provided that the model will contain an intercept. The decision
to exclude C0(X) instead of some other Ck(X) in (7.5) is arbitrary. Alternatively, we
could include C0(X), C1(X), . . . , CK(X), and exclude the intercept.
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Pr(yi > 250|xi) =
exp(β0 + β1C1(xi) + · · ·+ βKCK(xi))

1 + exp(β0 + β1C1(xi) + · · ·+ βKCK(xi))
(7.6)

in order to predict the probability that an individual is a high earner on the
basis of age. The right-hand panel of Figure 7.2 displays the fitted posterior
probabilities obtained using this approach.
Unfortunately, unless there are natural breakpoints in the predictors,

piecewise-constant functions can miss the action. For example, in the left-
hand panel of Figure 7.2, the first bin clearly misses the increasing trend
of wage with age. Nevertheless, step function approaches are very popular
in biostatistics and epidemiology, among other disciplines. For example,
5-year age groups are often used to define the bins.

7.3 Basis Functions

Polynomial and piecewise-constant regression models are in fact special
cases of a basis function approach. The idea is to have at hand a fam-

basis
functionily of functions or transformations that can be applied to a variable X:

b1(X), b2(X), . . . , bK(X). Instead of fitting a linear model in X, we fit the
model

yi = β0 + β1b1(xi) + β2b2(xi) + β3b3(xi) + · · ·+ βKbK(xi) + ϵi. (7.7)

Note that the basis functions b1(·), b2(·), . . . , bK(·) are fixed and known.
(In other words, we choose the functions ahead of time.) For polynomial
regression, the basis functions are bj(xi) = xj

i , and for piecewise constant
functions they are bj(xi) = I(cj ≤ xi < cj+1). We can think of (7.7) as
a standard linear model with predictors b1(xi), b2(xi), . . . , bK(xi). Hence,
we can use least squares to estimate the unknown regression coefficients
in (7.7). Importantly, this means that all of the inference tools for linear
models that are discussed in Chapter 3, such as standard errors for the
coefficient estimates and F-statistics for the model’s overall significance,
are available in this setting.
Thus far we have considered the use of polynomial functions and piece-

wise constant functions for our basis functions; however, many alternatives
are possible. For instance, we can use wavelets or Fourier series to construct
basis functions. In the next section, we investigate a very common choice
for a basis function: regression splines.

regression
spline
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7.4 Regression Splines

Now we discuss a flexible class of basis functions that extends upon the
polynomial regression and piecewise constant regression approaches that
we have just seen.

7.4.1 Piecewise Polynomials

Instead of fitting a high-degree polynomial over the entire range of X, piece-
wise polynomial regression involves fitting separate low-degree polynomials

piecewise
polynomial
regression

over different regions ofX. For example, a piecewise cubic polynomial works
by fitting a cubic regression model of the form

yi = β0 + β1xi + β2x
2
i + β3x

3
i + ϵi, (7.8)

where the coefficients β0, β1, β2, and β3 differ in different parts of the range
of X. The points where the coefficients change are called knots.

knot
For example, a piecewise cubic with no knots is just a standard cubic

polynomial, as in (7.1) with d = 3. A piecewise cubic polynomial with a
single knot at a point c takes the form

yi =

{
β01 + β11xi + β21x2

i + β31x3
i + ϵi if xi < c

β02 + β12xi + β22x2
i + β32x3

i + ϵi if xi ≥ c.

In other words, we fit two different polynomial functions to the data, one
on the subset of the observations with xi < c, and one on the subset of
the observations with xi ≥ c. The first polynomial function has coefficients
β01,β11,β21, and β31, and the second has coefficients β02,β12,β22, and β32.
Each of these polynomial functions can be fit using least squares applied
to simple functions of the original predictor.
Using more knots leads to a more flexible piecewise polynomial. In gen-

eral, if we place K different knots throughout the range of X, then we
will end up fitting K + 1 different cubic polynomials. Note that we do not
need to use a cubic polynomial. For example, we can instead fit piecewise
linear functions. In fact, our piecewise constant functions of Section 7.2 are
piecewise polynomials of degree 0!
The top left panel of Figure 7.3 shows a piecewise cubic polynomial fit to

a subset of the Wage data, with a single knot at age=50. We immediately see
a problem: the function is discontinuous and looks ridiculous! Since each
polynomial has four parameters, we are using a total of eight degrees of
freedom in fitting this piecewise polynomial model.

degrees of
freedom

7.4.2 Constraints and Splines

The top left panel of Figure 7.3 looks wrong because the fitted curve is just
too flexible. To remedy this problem, we can fit a piecewise polynomial
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FIGURE 7.3. Various piecewise polynomials are fit to a subset of the Wage
data, with a knot at age=50. Top Left: The cubic polynomials are unconstrained.
Top Right: The cubic polynomials are constrained to be continuous at age=50.
Bottom Left: The cubic polynomials are constrained to be continuous, and to
have continuous first and second derivatives. Bottom Right: A linear spline is
shown, which is constrained to be continuous.

under the constraint that the fitted curve must be continuous. In other
words, there cannot be a jump when age=50. The top right plot in Figure 7.3
shows the resulting fit. This looks better than the top left plot, but the V-
shaped join looks unnatural.
In the lower left plot, we have added two additional constraints: now both

the first and second derivatives of the piecewise polynomials are continuous
derivative

at age=50. In other words, we are requiring that the piecewise polynomial
be not only continuous when age=50, but also very smooth. Each constraint
that we impose on the piecewise cubic polynomials effectively frees up one
degree of freedom, by reducing the complexity of the resulting piecewise
polynomial fit. So in the top left plot, we are using eight degrees of free-
dom, but in the bottom left plot we imposed three constraints (continuity,
continuity of the first derivative, and continuity of the second derivative)
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and so are left with five degrees of freedom. The curve in the bottom left
plot is called a cubic spline.3 In general, a cubic spline with K knots uses

cubic spline
a total of 4 +K degrees of freedom.
In Figure 7.3, the lower right plot is a linear spline, which is continuous

linear spline
at age=50. The general definition of a degree-d spline is that it is a piecewise
degree-d polynomial, with continuity in derivatives up to degree d − 1 at
each knot. Therefore, a linear spline is obtained by fitting a line in each
region of the predictor space defined by the knots, requiring continuity at
each knot.
In Figure 7.3, there is a single knot at age=50. Of course, we could add

more knots, and impose continuity at each.

7.4.3 The Spline Basis Representation

The regression splines that we just saw in the previous section may have
seemed somewhat complex: how can we fit a piecewise degree-d polynomial
under the constraint that it (and possibly its first d − 1 derivatives) be
continuous? It turns out that we can use the basis model (7.7) to represent
a regression spline. A cubic spline with K knots can be modeled as

yi = β0 + β1b1(xi) + β2b2(xi) + · · ·+ βK+3bK+3(xi) + ϵi, (7.9)

for an appropriate choice of basis functions b1, b2, . . . , bK+3. The model
(7.9) can then be fit using least squares.
Just as there were several ways to represent polynomials, there are also

many equivalent ways to represent cubic splines using different choices of
basis functions in (7.9). The most direct way to represent a cubic spline
using (7.9) is to start off with a basis for a cubic polynomial—namely,
x, x2, and x3—and then add one truncated power basis function per knot.

truncated
power basisA truncated power basis function is defined as

h(x, ξ) = (x− ξ)3+ =

{
(x− ξ)3 if x > ξ

0 otherwise,
(7.10)

where ξ is the knot. One can show that adding a term of the form β4h(x, ξ)
to the model (7.8) for a cubic polynomial will lead to a discontinuity in
only the third derivative at ξ; the function will remain continuous, with
continuous first and second derivatives, at each of the knots.
In other words, in order to fit a cubic spline to a data set with K knots, we

perform least squares regression with an intercept and 3+K predictors, of
the form X,X2, X3, h(X, ξ1), h(X, ξ2), . . . , h(X, ξK), where ξ1, . . . , ξK are
the knots. This amounts to estimating a total of K + 4 regression coeffi-
cients; for this reason, fitting a cubic spline with K knots uses K+4 degrees
of freedom.

3Cubic splines are popular because most human eyes cannot detect the discontinuity
at the knots.
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FIGURE 7.4. A cubic spline and a natural cubic spline, with three knots, fit to
a subset of the Wage data. The dashed lines denote the knot locations.

Unfortunately, splines can have high variance at the outer range of the
predictors—that is, when X takes on either a very small or very large
value. Figure 7.4 shows a fit to the Wage data with three knots. We see that
the confidence bands in the boundary region appear fairly wild. A natu-
ral spline is a regression spline with additional boundary constraints : the

natural
splinefunction is required to be linear at the boundary (in the region where X is

smaller than the smallest knot, or larger than the largest knot). This addi-
tional constraint means that natural splines generally produce more stable
estimates at the boundaries. In Figure 7.4, a natural cubic spline is also
displayed as a red line. Note that the corresponding confidence intervals
are narrower.

7.4.4 Choosing the Number and Locations of the Knots

When we fit a spline, where should we place the knots? The regression
spline is most flexible in regions that contain a lot of knots, because in
those regions the polynomial coefficients can change rapidly. Hence, one
option is to place more knots in places where we feel the function might
vary most rapidly, and to place fewer knots where it seems more stable.
While this option can work well, in practice it is common to place knots in
a uniform fashion. One way to do this is to specify the desired degrees of
freedom, and then have the software automatically place the corresponding
number of knots at uniform quantiles of the data.
Figure 7.5 shows an example on the Wage data. As in Figure 7.4, we

have fit a natural cubic spline with three knots, except this time the knot
locations were chosen automatically as the 25th, 50th, and 75th percentiles
of age. This was specified by requesting four degrees of freedom. The ar-
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FIGURE 7.5. A natural cubic spline function with four degrees of freedom is
fit to the Wage data. Left: A spline is fit to wage (in thousands of dollars) as
a function of age. Right: Logistic regression is used to model the binary event
wage>250 as a function of age. The fitted posterior probability of wage exceeding
$250,000 is shown. The dashed lines denote the knot locations.

gument by which four degrees of freedom leads to three interior knots is
somewhat technical.4

How many knots should we use, or equivalently how many degrees of
freedom should our spline contain? One option is to try out different num-
bers of knots and see which produces the best looking curve. A somewhat
more objective approach is to use cross-validation, as discussed in Chap-
ters 5 and 6. With this method, we remove a portion of the data (say 10%),
fit a spline with a certain number of knots to the remaining data, and then
use the spline to make predictions for the held-out portion. We repeat this
process multiple times until each observation has been left out once, and
then compute the overall cross-validated RSS. This procedure can be re-
peated for different numbers of knots K. Then the value of K giving the
smallest RSS is chosen.
Figure 7.6 shows ten-fold cross-validated mean squared errors for splines

with various degrees of freedom fit to the Wage data. The left-hand panel

4There are actually five knots, including the two boundary knots. A cubic spline with
five knots has nine degrees of freedom. But natural cubic splines have two additional
natural constraints at each boundary to enforce linearity, resulting in 9− 4 = 5 degrees
of freedom. Since this includes a constant, which is absorbed in the intercept, we count
it as four degrees of freedom.
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FIGURE 7.6. Ten-fold cross-validated mean squared errors for selecting the
degrees of freedom when fitting splines to the Wage data. The response is wage
and the predictor age. Left: A natural cubic spline. Right: A cubic spline.

corresponds to a natural cubic spline and the right-hand panel to a cu-
bic spline. The two methods produce almost identical results, with clear
evidence that a one-degree fit (a linear regression) is not adequate. Both
curves flatten out quickly, and it seems that three degrees of freedom for
the natural spline and four degrees of freedom for the cubic spline are quite
adequate.
In Section 7.7 we fit additive spline models simultaneously on several

variables at a time. This could potentially require the selection of degrees
of freedom for each variable. In cases like this we typically adopt a more
pragmatic approach and set the degrees of freedom to a fixed number, say
four, for all terms.

7.4.5 Comparison to Polynomial Regression

Figure 7.7 compares a natural cubic spline with 15 degrees of freedom to a
degree-15 polynomial on the Wage data set. The extra flexibility in the poly-
nomial produces undesirable results at the boundaries, while the natural
cubic spline still provides a reasonable fit to the data. Regression splines
often give superior results to polynomial regression. This is because unlike
polynomials, which must use a high degree (exponent in the highest mono-
mial term, e.g. X15) to produce flexible fits, splines introduce flexibility
by increasing the number of knots but keeping the degree fixed. Generally,
this approach produces more stable estimates. Splines also allow us to place
more knots, and hence flexibility, over regions where the function f seems
to be changing rapidly, and fewer knots where f appears more stable.
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FIGURE 7.7. On the Wage data set, a natural cubic spline with 15 degrees
of freedom is compared to a degree-15 polynomial. Polynomials can show wild
behavior, especially near the tails.

7.5 Smoothing Splines

In the last section we discussed regression splines, which we create by spec-
ifying a set of knots, producing a sequence of basis functions, and then
using least squares to estimate the spline coefficients. We now introduce a
somewhat different approach that also produces a spline.

7.5.1 An Overview of Smoothing Splines

In fitting a smooth curve to a set of data, what we really want to do is
find some function, say g(x), that fits the observed data well: that is, we
want RSS =

∑n
i=1(yi − g(xi))2 to be small. However, there is a problem

with this approach. If we don’t put any constraints on g(xi), then we can
always make RSS zero simply by choosing g such that it interpolates all
of the yi. Such a function would woefully overfit the data—it would be far
too flexible. What we really want is a function g that makes RSS small,
but that is also smooth.
How might we ensure that g is smooth? There are a number of ways to

do this. A natural approach is to find the function g that minimizes
n∑

i=1

(yi − g(xi))
2 + λ

∫
g′′(t)2dt (7.11)

where λ is a nonnegative tuning parameter. The function g that minimizes
(7.11) is known as a smoothing spline.

smoothing
splineWhat does (7.11) mean? Equation 7.11 takes the “Loss+Penalty” for-

mulation that we encounter in the context of ridge regression and the lasso
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in Chapter 6. The term
∑n

i=1(yi − g(xi))2 is a loss function that encour-
loss function

ages g to fit the data well, and the term λ
∫
g′′(t)2dt is a penalty term

that penalizes the variability in g. The notation g′′(t) indicates the second
derivative of the function g. The first derivative g′(t) measures the slope
of a function at t, and the second derivative corresponds to the amount by
which the slope is changing. Hence, broadly speaking, the second derivative
of a function is a measure of its roughness : it is large in absolute value if
g(t) is very wiggly near t, and it is close to zero otherwise. (The second
derivative of a straight line is zero; note that a line is perfectly smooth.)
The

∫
notation is an integral , which we can think of as a summation over

the range of t. In other words,
∫
g′′(t)2dt is simply a measure of the total

change in the function g′(t), over its entire range. If g is very smooth, then
g′(t) will be close to constant and

∫
g′′(t)2dt will take on a small value.

Conversely, if g is jumpy and variable then g′(t) will vary significantly and∫
g′′(t)2dt will take on a large value. Therefore, in (7.11), λ

∫
g′′(t)2dt en-

courages g to be smooth. The larger the value of λ, the smoother g will be.
When λ = 0, then the penalty term in (7.11) has no effect, and so the

function g will be very jumpy and will exactly interpolate the training
observations. When λ → ∞, g will be perfectly smooth—it will just be
a straight line that passes as closely as possible to the training points.
In fact, in this case, g will be the linear least squares line, since the loss
function in (7.11) amounts to minimizing the residual sum of squares. For
an intermediate value of λ, g will approximate the training observations
but will be somewhat smooth. We see that λ controls the bias-variance
trade-off of the smoothing spline.
The function g(x) that minimizes (7.11) can be shown to have some spe-

cial properties: it is a piecewise cubic polynomial with knots at the unique
values of x1, . . . , xn, and continuous first and second derivatives at each
knot. Furthermore, it is linear in the region outside of the extreme knots.
In other words, the function g(x) that minimizes (7.11) is a natural cubic
spline with knots at x1, . . . , xn! However, it is not the same natural cubic
spline that one would get if one applied the basis function approach de-
scribed in Section 7.4.3 with knots at x1, . . . , xn—rather, it is a shrunken
version of such a natural cubic spline, where the value of the tuning pa-
rameter λ in (7.11) controls the level of shrinkage.

7.5.2 Choosing the Smoothing Parameter λ

We have seen that a smoothing spline is simply a natural cubic spline
with knots at every unique value of xi. It might seem that a smoothing
spline will have far too many degrees of freedom, since a knot at each data
point allows a great deal of flexibility. But the tuning parameter λ controls
the roughness of the smoothing spline, and hence the effective degrees of
freedom. It is possible to show that as λ increases from 0 to∞, the effective

effective
degrees of
freedom

degrees of freedom, which we write dfλ, decrease from n to 2.
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In the context of smoothing splines, why do we discuss effective degrees
of freedom instead of degrees of freedom? Usually degrees of freedom refer
to the number of free parameters, such as the number of coefficients fit in a
polynomial or cubic spline. Although a smoothing spline has n parameters
and hence n nominal degrees of freedom, these n parameters are heavily
constrained or shrunk down. Hence dfλ is a measure of the flexibility of the
smoothing spline—the higher it is, the more flexible (and the lower-bias but
higher-variance) the smoothing spline. The definition of effective degrees of
freedom is somewhat technical. We can write

ĝλ = Sλy, (7.12)

where ĝλ is the solution to (7.11) for a particular choice of λ—that is, it
is an n-vector containing the fitted values of the smoothing spline at the
training points x1, . . . , xn. Equation 7.12 indicates that the vector of fitted
values when applying a smoothing spline to the data can be written as a
n × n matrix Sλ (for which there is a formula) times the response vector
y. Then the effective degrees of freedom is defined to be

dfλ =
n∑

i=1

{Sλ}ii, (7.13)

the sum of the diagonal elements of the matrix Sλ.
In fitting a smoothing spline, we do not need to select the number or

location of the knots—there will be a knot at each training observation,
x1, . . . , xn. Instead, we have another problem: we need to choose the value
of λ. It should come as no surprise that one possible solution to this problem
is cross-validation. In other words, we can find the value of λ that makes
the cross-validated RSS as small as possible. It turns out that the leave-
one-out cross-validation error (LOOCV) can be computed very efficiently
for smoothing splines, with essentially the same cost as computing a single
fit, using the following formula:

RSScv(λ) =
n∑

i=1

(yi − ĝ(−i)
λ (xi))

2 =
n∑

i=1

[
yi − ĝλ(xi)

1− {Sλ}ii

]2
.

The notation ĝ(−i)
λ (xi) indicates the fitted value for this smoothing spline

evaluated at xi, where the fit uses all of the training observations except
for the ith observation (xi, yi). In contrast, ĝλ(xi) indicates the smoothing
spline function fit to all of the training observations and evaluated at xi.
This remarkable formula says that we can compute each of these leave-
one-out fits using only ĝλ, the original fit to all of the data!5 We have

5The exact formulas for computing ĝ(xi) and Sλ are very technical; however, efficient
algorithms are available for computing these quantities.
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FIGURE 7.8. Smoothing spline fits to the Wage data. The red curve results
from specifying 16 effective degrees of freedom. For the blue curve, λ was found
automatically by leave-one-out cross-validation, which resulted in 6.8 effective
degrees of freedom.

a very similar formula (5.2) on page 202 in Chapter 5 for least squares
linear regression. Using (5.2), we can very quickly perform LOOCV for
the regression splines discussed earlier in this chapter, as well as for least
squares regression using arbitrary basis functions.
Figure 7.8 shows the results from fitting a smoothing spline to the Wage

data. The red curve indicates the fit obtained from pre-specifying that we
would like a smoothing spline with 16 effective degrees of freedom. The blue
curve is the smoothing spline obtained when λ is chosen using LOOCV; in
this case, the value of λ chosen results in 6.8 effective degrees of freedom
(computed using (7.13)). For this data, there is little discernible difference
between the two smoothing splines, beyond the fact that the one with 16
degrees of freedom seems slightly wigglier. Since there is little difference
between the two fits, the smoothing spline fit with 6.8 degrees of freedom
is preferable, since in general simpler models are better unless the data
provides evidence in support of a more complex model.

7.6 Local Regression

Local regression is a different approach for fitting flexible non-linear func-
local
regressiontions, which involves computing the fit at a target point x0 using only the

nearby training observations. Figure 7.9 illustrates the idea on some simu-
lated data, with one target point near 0.4, and another near the boundary
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FIGURE 7.9. Local regression illustrated on some simulated data, where the
blue curve represents f(x) from which the data were generated, and the light
orange curve corresponds to the local regression estimate f̂(x). The orange colored
points are local to the target point x0, represented by the orange vertical line.
The yellow bell-shape superimposed on the plot indicates weights assigned to each
point, decreasing to zero with distance from the target point. The fit f̂(x0) at x0 is
obtained by fitting a weighted linear regression (orange line segment), and using
the fitted value at x0 (orange solid dot) as the estimate f̂(x0).

at 0.05. In this figure the blue line represents the function f(x) from which
the data were generated, and the light orange line corresponds to the local
regression estimate f̂(x). Local regression is described in Algorithm 7.1.
Note that in Step 3 of Algorithm 7.1, the weights Ki0 will differ for each

value of x0. In other words, in order to obtain the local regression fit at a
new point, we need to fit a new weighted least squares regression model by
minimizing (7.14) for a new set of weights. Local regression is sometimes
referred to as amemory-based procedure, because like nearest-neighbors, we
need all the training data each time we wish to compute a prediction. We
will avoid getting into the technical details of local regression here—there
are books written on the topic.
In order to perform local regression, there are a number of choices to

be made, such as how to define the weighting function K, and whether
to fit a linear, constant, or quadratic regression in Step 3. (Equation 7.14
corresponds to a linear regression.) While all of these choices make some
difference, the most important choice is the span s, which is the proportion
of points used to compute the local regression at x0, as defined in Step 1
above. The span plays a role like that of the tuning parameter λ in smooth-
ing splines: it controls the flexibility of the non-linear fit. The smaller the
value of s, the more local and wiggly will be our fit; alternatively, a very
large value of s will lead to a global fit to the data using all of the train-
ing observations. We can again use cross-validation to choose s, or we can
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Algorithm 7.1 Local Regression At X = x0

1. Gather the fraction s = k/n of training points whose xi are closest
to x0.

2. Assign a weight Ki0 = K(xi, x0) to each point in this neighborhood,
so that the point furthest from x0 has weight zero, and the closest
has the highest weight. All but these k nearest neighbors get weight
zero.

3. Fit a weighted least squares regression of the yi on the xi using the
aforementioned weights, by finding β̂0 and β̂1 that minimize

n∑

i=1

Ki0(yi − β0 − β1xi)
2. (7.14)

4. The fitted value at x0 is given by f̂(x0) = β̂0 + β̂1x0.

specify it directly. Figure 7.10 displays local linear regression fits on the
Wage data, using two values of s: 0.7 and 0.2. As expected, the fit obtained
using s = 0.7 is smoother than that obtained using s = 0.2.
The idea of local regression can be generalized in many different ways.

In a setting with multiple features X1, X2, . . . , Xp, one very useful general-
ization involves fitting a multiple linear regression model that is global in
some variables, but local in another, such as time. Such varying coefficient
models are a useful way of adapting a model to the most recently gathered

varying
coefficient
model

data. Local regression also generalizes very naturally when we want to fit
models that are local in a pair of variables X1 and X2, rather than one.
We can simply use two-dimensional neighborhoods, and fit bivariate linear
regression models using the observations that are near each target point
in two-dimensional space. Theoretically the same approach can be imple-
mented in higher dimensions, using linear regressions fit to p-dimensional
neighborhoods. However, local regression can perform poorly if p is much
larger than about 3 or 4 because there will generally be very few training
observations close to x0. Nearest-neighbors regression, discussed in Chap-
ter 3, suffers from a similar problem in high dimensions.

7.7 Generalized Additive Models

In Sections 7.1–7.6, we present a number of approaches for flexibly predict-
ing a response Y on the basis of a single predictor X. These approaches can
be seen as extensions of simple linear regression. Here we explore the prob-
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FIGURE 7.10. Local linear fits to the Wage data. The span specifies the fraction
of the data used to compute the fit at each target point.

lem of flexibly predicting Y on the basis of several predictors, X1, . . . , Xp.
This amounts to an extension of multiple linear regression.
Generalized additive models (GAMs) provide a general framework for

generalized
additive
model

extending a standard linear model by allowing non-linear functions of each
of the variables, while maintaining additivity. Just like linear models, GAMs

additivitycan be applied with both quantitative and qualitative responses. We first
examine GAMs for a quantitative response in Section 7.7.1, and then for a
qualitative response in Section 7.7.2.

7.7.1 GAMs for Regression Problems

A natural way to extend the multiple linear regression model

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + ϵi

in order to allow for non-linear relationships between each feature and the
response is to replace each linear component βjxij with a (smooth) non-
linear function fj(xij). We would then write the model as

yi = β0 +
p∑

j=1

fj(xij) + ϵi

= β0 + f1(xi1) + f2(xi2) + · · ·+ fp(xip) + ϵi. (7.15)

This is an example of a GAM. It is called an additive model because we
calculate a separate fj for each Xj , and then add together all of their
contributions.
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FIGURE 7.11. For the Wage data, plots of the relationship between each feature
and the response, wage, in the fitted model (7.16). Each plot displays the fitted
function and pointwise standard errors. The first two functions are natural splines
in year and age, with four and five degrees of freedom, respectively. The third
function is a step function, fit to the qualitative variable education.

In Sections 7.1–7.6, we discuss many methods for fitting functions to a
single variable. The beauty of GAMs is that we can use these methods
as building blocks for fitting an additive model. In fact, for most of the
methods that we have seen so far in this chapter, this can be done fairly
trivially. Take, for example, natural splines, and consider the task of fitting
the model

wage = β0 + f1(year) + f2(age) + f3(education) + ϵ (7.16)

on the Wage data. Here year and age are quantitative variables, and education

is a qualitative variable with five levels: <HS, HS, <Coll, Coll, >Coll, refer-
ring to the amount of high school or college education that an individual
has completed. We fit the first two functions using natural splines. We fit
the third function using a separate constant for each level, via the usual
dummy variable approach of Section 3.3.1.
Figure 7.11 shows the results of fitting the model (7.16) using least

squares. This is easy to do, since as discussed in Section 7.4, natural splines
can be constructed using an appropriately chosen set of basis functions.
Hence the entire model is just a big regression onto spline basis variables
and dummy variables, all packed into one big regression matrix.
Figure 7.11 can be easily interpreted. The left-hand panel indicates that

holding age and education fixed, wage tends to increase slightly with year;
this may be due to inflation. The center panel indicates that holding education

and year fixed, wage tends to be highest for intermediate values of age, and
lowest for the very young and very old. The right-hand panel indicates
that holding year and age fixed, wage tends to increase with education: the
more educated a person is, the higher their salary, on average. All of these
findings are intuitive.
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FIGURE 7.12. Details are as in Figure 7.11, but now f1 and f2 are smoothing
splines with four and five degrees of freedom, respectively.

Figure 7.12 shows a similar triple of plots, but this time f1 and f2 are
smoothing splines with four and five degrees of freedom, respectively. Fit-
ting a GAM with a smoothing spline is not quite as simple as fitting a GAM
with a natural spline, since in the case of smoothing splines, least squares
cannot be used. However, standard software such as the gam() function in R

can be used to fit GAMs using smoothing splines, via an approach known
as backfitting. This method fits a model involving multiple predictors by

backfitting
repeatedly updating the fit for each predictor in turn, holding the others
fixed. The beauty of this approach is that each time we update a function,
we simply apply the fitting method for that variable to a partial residual.6

The fitted functions in Figures 7.11 and 7.12 look rather similar. In most
situations, the differences in the GAMs obtained using smoothing splines
versus natural splines are small.
We do not have to use splines as the building blocks for GAMs: we can

just as well use local regression, polynomial regression, or any combination
of the approaches seen earlier in this chapter in order to create a GAM.
GAMs are investigated in further detail in the lab at the end of this chapter.

Pros and Cons of GAMs

Before we move on, let us summarize the advantages and limitations of a
GAM.

▲ GAMs allow us to fit a non-linear fj to each Xj , so that we can
automatically model non-linear relationships that standard linear re-
gression will miss. This means that we do not need to manually try
out many different transformations on each variable individually.

6A partial residual for X3, for example, has the form ri = yi − f1(xi1) − f2(xi2).
If we know f1 and f2, then we can fit f3 by treating this residual as a response in a
non-linear regression on X3.
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▲ The non-linear fits can potentially make more accurate predictions
for the response Y .

▲ Because the model is additive, we can examine the effect of each Xj

on Y individually while holding all of the other variables fixed.

▲ The smoothness of the function fj for the variable Xj can be sum-
marized via degrees of freedom.

◆ The main limitation of GAMs is that the model is restricted to be
additive. With many variables, important interactions can be missed.
However, as with linear regression, we can manually add interaction
terms to the GAM model by including additional predictors of the
form Xj × Xk. In addition we can add low-dimensional interaction
functions of the form fjk(Xj , Xk) into the model; such terms can
be fit using two-dimensional smoothers such as local regression, or
two-dimensional splines (not covered here).

For fully general models, we have to look for even more flexible approaches
such as random forests and boosting, described in Chapter 8. GAMs provide
a useful compromise between linear and fully nonparametric models.

7.7.2 GAMs for Classification Problems

GAMs can also be used in situations where Y is qualitative. For simplicity,
here we will assume Y takes on values zero or one, and let p(X) = Pr(Y =
1|X) be the conditional probability (given the predictors) that the response
equals one. Recall the logistic regression model (4.6):

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + β2X2 + · · ·+ βpXp. (7.17)

The left-hand side is the log of the odds of P (Y = 1|X) versus P (Y = 0|X),
which (7.17) represents as a linear function of the predictors. A natural way
to extend (7.17) to allow for non-linear relationships is to use the model

log

(
p(X)

1− p(X)

)
= β0 + f1(X1) + f2(X2) + · · ·+ fp(Xp). (7.18)

Equation 7.18 is a logistic regression GAM. It has all the same pros and
cons as discussed in the previous section for quantitative responses.
We fit a GAM to the Wage data in order to predict the probability that

an individual’s income exceeds $250,000 per year. The GAM that we fit
takes the form

log

(
p(X)

1− p(X)

)
= β0 + β1 × year+ f2(age) + f3(education), (7.19)

where
p(X) = Pr(wage > 250|year, age, education).
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FIGURE 7.13. For the Wage data, the logistic regression GAM given in (7.19)
is fit to the binary response I(wage>250). Each plot displays the fitted function
and pointwise standard errors. The first function is linear in year, the second
function a smoothing spline with five degrees of freedom in age, and the third a
step function for education. There are very wide standard errors for the first
level <HS of education.

Once again f2 is fit using a smoothing spline with five degrees of freedom,
and f3 is fit as a step function, by creating dummy variables for each of the
levels of education. The resulting fit is shown in Figure 7.13. The last panel
looks suspicious, with very wide confidence intervals for level <HS. In fact,
no response values equal one for that category: no individuals with less than
a high school education make more than $250,000 per year. Hence we refit
the GAM, excluding the individuals with less than a high school education.
The resulting model is shown in Figure 7.14. As in Figures 7.11 and 7.12,
all three panels have similar vertical scales. This allows us to visually assess
the relative contributions of each of the variables. We observe that age and
education have a much larger effect than year on the probability of being
a high earner.

7.8 Lab: Non-linear Modeling

In this lab, we re-analyze the Wage data considered in the examples through-
out this chapter, in order to illustrate the fact that many of the complex
non-linear fitting procedures discussed can be easily implemented in R. We
begin by loading the ISLR2 library, which contains the data.

> library(ISLR2)

> attach(Wage)
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FIGURE 7.14. The same model is fit as in Figure 7.13, this time excluding the
observations for which education is <HS. Now we see that increased education
tends to be associated with higher salaries.

7.8.1 Polynomial Regression and Step Functions

We now examine how Figure 7.1 was produced. We first fit the model using
the following command:

> fit <- lm(wage ∼ poly(age , 4), data = Wage)

> coef(summary(fit))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 111.704 0.729 153.28 <2e-16

poly(age , 4)1 447.068 39.915 11.20 <2e-16

poly(age , 4)2 -478.316 39.915 -11.98 <2e-16

poly(age , 4)3 125.522 39.915 3.14 0.0017

poly(age , 4)4 -77.911 39.915 -1.95 0.0510

This syntax fits a linear model, using the lm() function, in order to predict
wage using a fourth-degree polynomial in age: poly(age, 4). The poly()

command allows us to avoid having to write out a long formula with pow-
ers of age. The function returns a matrix whose columns are a basis of
orthogonal polynomials, which essentially means that each column is a lin-

orthogonal
polynomialear combination of the variables age, age^2, age^3 and age^4.

However, we can also use poly() to obtain age, age^2, age^3 and age^4

directly, if we prefer. We can do this by using the raw = TRUE argument to
the poly() function. Later we see that this does not affect the model in a
meaningful way—though the choice of basis clearly affects the coefficient
estimates, it does not affect the fitted values obtained.

> fit2 <- lm(wage ∼ poly(age , 4, raw = T), data = Wage)

> coef(summary(fit2))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.84e+02 6.00e+01 -3.07 0.002180

poly(age , 4, raw = T)1 2.12e+01 5.89e+00 3.61 0.000312

poly(age , 4, raw = T)2 -5.64e-01 2.06e-01 -2.74 0.006261

poly(age , 4, raw = T)3 6.81e-03 3.07e-03 2.22 0.026398

poly(age , 4, raw = T)4 -3.20e-05 1.64e-05 -1.95 0.051039
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There are several other equivalent ways of fitting this model, which show-
case the flexibility of the formula language in R. For example

> fit2a <- lm(wage ∼ age + I(age^2) + I(age^3) + I(age^4),

data = Wage)

> coef(fit2a)

(Intercept) age I(age^2) I(age^3) I(age ^4)

-1.84e+02 2.12e+01 -5.64e-01 6.81e-03 -3.20e-05

This simply creates the polynomial basis functions on the fly, taking care
to protect terms like age^2 via the wrapper function I() (the ^ symbol has wrapper
a special meaning in formulas).

> fit2b <- lm(wage ∼ cbind(age , age^2, age^3, age^4),

data = Wage)

This does the same more compactly, using the cbind() function for building
a matrix from a collection of vectors; any function call such as cbind() inside
a formula also serves as a wrapper.
We now create a grid of values for age at which we want predictions, and

then call the generic predict() function, specifying that we want standard
errors as well.

> agelims <- range(age)

> age.grid <- seq(from = agelims [1], to = agelims [2])

> preds <- predict(fit , newdata = list(age = age.grid),

se = TRUE)

> se.bands <- cbind(preds$fit + 2 * preds$se.fit ,

preds$fit - 2 * preds$se.fit)

Finally, we plot the data and add the fit from the degree-4 polynomial.

> par(mfrow = c(1, 2), mar = c(4.5, 4.5, 1, 1),

oma = c(0, 0, 4, 0))

> plot(age , wage , xlim = agelims , cex = .5, col = "darkgrey")

> title("Degree -4 Polynomial", outer = T)

> lines(age.grid, preds$fit , lwd = 2, col = "blue")

> matlines(age.grid , se.bands , lwd = 1, col = "blue", lty = 3)

Here the mar and oma arguments to par() allow us to control the margins
of the plot, and the title() function creates a figure title that spans both

title()
subplots.
We mentioned earlier that whether or not an orthogonal set of basis func-

tions is produced in the poly() function will not affect the model obtained
in a meaningful way. What do we mean by this? The fitted values obtained
in either case are identical:

> preds2 <- predict(fit2 , newdata = list(age = age.grid),

se = TRUE)

> max(abs(preds$fit - preds2$fit))

[1] 7.82e-11

In performing a polynomial regression we must decide on the degree of
the polynomial to use. One way to do this is by using hypothesis tests. We
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now fit models ranging from linear to a degree-5 polynomial and seek to
determine the simplest model which is sufficient to explain the relationship
between wage and age. We use the anova() function, which performs an

anova()
analysis of variance (ANOVA, using an F-test) in order to test the null

analysis of
variancehypothesis that a model M1 is sufficient to explain the data against the

alternative hypothesis that a more complex model M2 is required. In order
to use the anova() function, M1 and M2 must be nested models: the
predictors in M1 must be a subset of the predictors in M2. In this case,
we fit five different models and sequentially compare the simpler model to
the more complex model.

> fit.1 <- lm(wage ∼ age , data = Wage)

> fit.2 <- lm(wage ∼ poly(age , 2), data = Wage)

> fit.3 <- lm(wage ∼ poly(age , 3), data = Wage)

> fit.4 <- lm(wage ∼ poly(age , 4), data = Wage)

> fit.5 <- lm(wage ∼ poly(age , 5), data = Wage)

> anova(fit.1, fit.2, fit.3, fit.4, fit .5)

Analysis of Variance Table

Model 1: wage ∼ age

Model 2: wage ∼ poly(age , 2)

Model 3: wage ∼ poly(age , 3)

Model 4: wage ∼ poly(age , 4)

Model 5: wage ∼ poly(age , 5)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 2998 5022216

2 2997 4793430 1 228786 143.59 <2e-16 ***

3 2996 4777674 1 15756 9.89 0.0017 **

4 2995 4771604 1 6070 3.81 0.0510 .

5 2994 4770322 1 1283 0.80 0.3697

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The p-value comparing the linear Model 1 to the quadratic Model 2 is
essentially zero (<10−15), indicating that a linear fit is not sufficient. Sim-
ilarly the p-value comparing the quadratic Model 2 to the cubic Model 3

is very low (0.0017), so the quadratic fit is also insufficient. The p-value
comparing the cubic and degree-4 polynomials, Model 3 and Model 4, is ap-
proximately 5% while the degree-5 polynomial Model 5 seems unnecessary
because its p-value is 0.37. Hence, either a cubic or a quartic polynomial
appear to provide a reasonable fit to the data, but lower- or higher-order
models are not justified.
In this case, instead of using the anova() function, we could have obtained

these p-values more succinctly by exploiting the fact that poly() creates
orthogonal polynomials.

> coef(summary(fit.5))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 111.70 0.7288 153.2780 0.000e+00

poly(age , 5)1 447.07 39.9161 11.2002 1.491e-28
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poly(age , 5)2 -478.32 39.9161 -11.9830 2.368e-32

poly(age , 5)3 125.52 39.9161 3.1446 1.679e-03

poly(age , 5)4 -77.91 39.9161 -1.9519 5.105e-02

poly(age , 5)5 -35.81 39.9161 -0.8972 3.697e-01

Notice that the p-values are the same, and in fact the square of the
t-statistics are equal to the F-statistics from the anova() function; for
example:

> ( -11.983)^2

[1] 143.6

However, the ANOVA method works whether or not we used orthogonal
polynomials; it also works when we have other terms in the model as well.
For example, we can use anova() to compare these three models:

> fit.1 <- lm(wage ∼ education + age , data = Wage)

> fit.2 <- lm(wage ∼ education + poly(age , 2), data = Wage)

> fit.3 <- lm(wage ∼ education + poly(age , 3), data = Wage)

> anova(fit.1, fit.2, fit.3)

As an alternative to using hypothesis tests and ANOVA, we could choose
the polynomial degree using cross-validation, as discussed in Chapter 5.
Next we consider the task of predicting whether an individual earns more

than $250,000 per year. We proceed much as before, except that first we
create the appropriate response vector, and then apply the glm() function
using family = "binomial" in order to fit a polynomial logistic regression
model.

> fit <- glm(I(wage > 250) ∼ poly(age , 4), data = Wage ,

family = binomial)

Note that we again use the wrapper I() to create this binary response
variable on the fly. The expression wage > 250 evaluates to a logical variable
containing TRUEs and FALSEs, which glm() coerces to binary by setting the
TRUEs to 1 and the FALSEs to 0.
Once again, we make predictions using the predict() function.

> preds <- predict(fit , newdata = list(age = age.grid), se = T)

However, calculating the confidence intervals is slightly more involved than
in the linear regression case. The default prediction type for a glm() model
is type = "link", which is what we use here. This means we get predictions
for the logit, or log-odds: that is, we have fit a model of the form

log

(
Pr(Y = 1|X)

1− Pr(Y = 1|X)

)
= Xβ,

and the predictions given are of the form Xβ̂. The standard errors given
are also for Xβ̂. In order to obtain confidence intervals for Pr(Y = 1|X),
we use the transformation

Pr(Y = 1|X) =
exp(Xβ)

1 + exp(Xβ)
.



316 7. Moving Beyond Linearity

> pfit <- exp(preds$fit) / (1 + exp(preds$fit))

> se.bands.logit <- cbind(preds$fit + 2 * preds$se.fit ,

preds$fit - 2 * preds$se.fit)

> se.bands <- exp(se.bands.logit) / (1 + exp(se.bands.logit))

Note that we could have directly computed the probabilities by selecting
the type = "response" option in the predict() function.

> preds <- predict(fit , newdata = list(age = age.grid),

type = "response", se = T)

However, the corresponding confidence intervals would not have been sen-
sible because we would end up with negative probabilities!
Finally, the right-hand plot from Figure 7.1 was made as follows:

> plot(age , I(wage > 250), xlim = agelims , type = "n",

ylim = c(0, .2))

> points(jitter(age), I((wage > 250) / 5), cex = .5, pch = "|",

col = "darkgrey")

> lines(age.grid, pfit , lwd = 2, col = "blue")

> matlines(age.grid , se.bands , lwd = 1, col = "blue", lty = 3)

We have drawn the age values corresponding to the observations with wage

values above 250 as gray marks on the top of the plot, and those with wage

values below 250 are shown as gray marks on the bottom of the plot. We
used the jitter() function to jitter the age values a bit so that observations

jitter()
with the same age value do not cover each other up. This is often called a
rug plot.

rug plot
In order to fit a step function, as discussed in Section 7.2, we use the

cut() function.
cut()

> table(cut(age , 4))

(17.9 ,33.5] (33.5 ,49] (49 ,64.5] (64.5 ,80.1]

750 1399 779 72

> fit <- lm(wage ∼ cut(age , 4), data = Wage)

> coef(summary(fit))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 94.16 1.48 63.79 0.00e+00

cut(age , 4)(33.5 ,49] 24.05 1.83 13.15 1.98e-38

cut(age , 4)(49 ,64.5] 23.66 2.07 11.44 1.04e-29

cut(age , 4) (64.5 ,80.1] 7.64 4.99 1.53 1.26e-01

Here cut() automatically picked the cutpoints at 33.5, 49, and 64.5 years
of age. We could also have specified our own cutpoints directly using the
breaks option. The function cut() returns an ordered categorical variable;
the lm() function then creates a set of dummy variables for use in the re-
gression. The age < 33.5 category is left out, so the intercept coefficient of
$94,160 can be interpreted as the average salary for those under 33.5 years
of age, and the other coefficients can be interpreted as the average addi-
tional salary for those in the other age groups. We can produce predictions
and plots just as we did in the case of the polynomial fit.
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7.8.2 Splines

In order to fit regression splines in R, we use the splines library. In Section
7.4, we saw that regression splines can be fit by constructing an appropriate
matrix of basis functions. The bs() function generates the entire matrix of

bs()
basis functions for splines with the specified set of knots. By default, cubic
splines are produced. Fitting wage to age using a regression spline is simple:

> library(splines)

> fit <- lm(wage ∼ bs(age , knots = c(25, 40, 60)), data = Wage)

> pred <- predict(fit , newdata = list(age = age.grid), se = T)

> plot(age , wage , col = "gray")

> lines(age.grid, pred$fit , lwd = 2)

> lines(age.grid , pred$fit + 2 * pred$se, lty = "dashed")

> lines(age.grid , pred$fit - 2 * pred$se, lty = "dashed")

Here we have prespecified knots at ages 25, 40, and 60. This produces a
spline with six basis functions. (Recall that a cubic spline with three knots
has seven degrees of freedom; these degrees of freedom are used up by an
intercept, plus six basis functions.) We could also use the df option to
produce a spline with knots at uniform quantiles of the data.

> dim(bs(age , knots = c(25, 40, 60)))

[1] 3000 6

> dim(bs(age , df = 6))

[1] 3000 6

> attr(bs(age , df = 6), "knots")

25% 50% 75%

33.8 42.0 51.0

In this case R chooses knots at ages 33.8, 42.0, and 51.0, which correspond
to the 25th, 50th, and 75th percentiles of age. The function bs() also has
a degree argument, so we can fit splines of any degree, rather than the
default degree of 3 (which yields a cubic spline).
In order to instead fit a natural spline, we use the ns() function. Here

ns()
we fit a natural spline with four degrees of freedom.

> fit2 <- lm(wage ∼ ns(age , df = 4), data = Wage)

> pred2 <- predict(fit2 , newdata = list(age = age.grid),

se = T)

> lines(age.grid , pred2$fit , col = "red", lwd = 2)

As with the bs() function, we could instead specify the knots directly using
the knots option.
In order to fit a smoothing spline, we use the smooth.spline() function.

smooth.

spline()Figure 7.8 was produced with the following code:

> plot(age , wage , xlim = agelims , cex = .5, col = "darkgrey")

> title("Smoothing Spline")

> fit <- smooth.spline(age , wage , df = 16)

> fit2 <- smooth.spline(age , wage , cv = TRUE)

> fit2$df
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[1] 6.8

> lines(fit , col = "red", lwd = 2)

> lines(fit2 , col = "blue", lwd = 2)

> legend("topright", legend = c("16 DF", "6.8 DF"),

col = c("red", "blue"), lty = 1, lwd = 2, cex = .8)

Notice that in the first call to smooth.spline(), we specified df = 16. The
function then determines which value of λ leads to 16 degrees of freedom. In
the second call to smooth.spline(), we select the smoothness level by cross-
validation; this results in a value of λ that yields 6.8 degrees of freedom.
In order to perform local regression, we use the loess() function.

loess()

> plot(age , wage , xlim = agelims , cex = .5, col = "darkgrey")

> title("Local Regression")

> fit <- loess(wage ∼ age , span = .2, data = Wage)

> fit2 <- loess(wage ∼ age , span = .5, data = Wage)

> lines(age.grid, predict(fit , data.frame(age = age.grid)),

col = "red", lwd = 2)

> lines(age.grid, predict(fit2 , data.frame(age = age.grid)),

col = "blue", lwd = 2)

> legend("topright", legend = c("Span = 0.2", "Span = 0.5"),

col = c("red", "blue"), lty = 1, lwd = 2, cex = .8)

Here we have performed local linear regression using spans of 0.2 and 0.5:
that is, each neighborhood consists of 20% or 50% of the observations. The
larger the span, the smoother the fit. The locfit library can also be used
for fitting local regression models in R.

7.8.3 GAMs

We now fit a GAM to predict wage using natural spline functions of year

and age, treating education as a qualitative predictor, as in (7.16). Since
this is just a big linear regression model using an appropriate choice of
basis functions, we can simply do this using the lm() function.

> gam1 <- lm(wage ∼ ns(year , 4) + ns(age , 5) + education ,

data = Wage)

We now fit the model (7.16) using smoothing splines rather than natural
splines. In order to fit more general sorts of GAMs, using smoothing splines
or other components that cannot be expressed in terms of basis functions
and then fit using least squares regression, we will need to use the gam

library in R.
The s() function, which is part of the gam library, is used to indicate that

s()
we would like to use a smoothing spline. We specify that the function of
year should have 4 degrees of freedom, and that the function of age will
have 5 degrees of freedom. Since education is qualitative, we leave it as is,
and it is converted into four dummy variables. We use the gam() function in

gam()
order to fit a GAM using these components. All of the terms in (7.16) are
fit simultaneously, taking each other into account to explain the response.
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> library(gam)

> gam.m3 <- gam(wage ∼ s(year , 4) + s(age , 5) + education ,

data = Wage)

In order to produce Figure 7.12, we simply call the plot() function:

> par(mfrow = c(1, 3))

> plot(gam.m3, se = TRUE , col = "blue")

The generic plot() function recognizes that gam.m3 is an object of class Gam,
and invokes the appropriate plot.Gam() method. Conveniently, even though

plot.Gam()
gam1 is not of class Gam but rather of class lm, we can still use plot.Gam()

on it. Figure 7.11 was produced using the following expression:

> plot.Gam(gam1 , se = TRUE , col = "red")

Notice here we had to use plot.Gam() rather than the generic plot()

function.
In these plots, the function of year looks rather linear. We can perform a

series of ANOVA tests in order to determine which of these three models is
best: a GAM that excludes year (M1), a GAM that uses a linear function
of year (M2), or a GAM that uses a spline function of year (M3).

> gam.m1 <- gam(wage ∼ s(age , 5) + education , data = Wage)

> gam.m2 <- gam(wage ∼ year + s(age , 5) + education ,

data = Wage)

> anova(gam.m1 , gam.m2 , gam.m3 , test = "F")

Analysis of Deviance Table

Model 1: wage ∼ s(age , 5) + education

Model 2: wage ∼ year + s(age , 5) + education

Model 3: wage ∼ s(year , 4) + s(age , 5) + education

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 2990 3711730

2 2989 3693841 1 17889 14.5 0.00014 ***

3 2986 3689770 3 4071 1.1 0.34857

---

Signif.codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We find that there is compelling evidence that a GAM with a linear func-
tion of year is better than a GAM that does not include year at all
(p-value=0.00014). However, there is no evidence that a non-linear func-
tion of year is needed (p-value=0.349). In other words, based on the results
of this ANOVA, M2 is preferred.
The summary() function produces a summary of the gam fit.

> summary(gam.m3)

Call: gam(formula = wage ∼ s(year , 4) + s(age , 5) + education ,

data = Wage)

Deviance Residuals:

Min 1Q Median 3Q Max

-119.43 -19.70 -3.33 14.17 213.48
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(Dispersion Parameter for gaussian family taken to be 1236)

Null Deviance: 5222086 on 2999 degrees of freedom

Residual Deviance: 3689770 on 2986 degrees of freedom

AIC: 29888

Number of Local Scoring Iterations: 2

Anova for Parametric Effects

Df Sum Sq Mean Sq F value Pr(>F)

s(year , 4) 1 27162 27162 22 2.9e-06 ***

s(age , 5) 1 195338 195338 158 < 2e-16 ***

education 4 1069726 267432 216 < 2e-16 ***

Residuals 2986 3689770 1236

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Anova for Nonparametric Effects

Npar Df Npar F Pr(F)

(Intercept)

s(year , 4) 3 1.1 0.35

s(age , 5) 4 32.4 <2e-16 ***

education

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The “Anova for Parametric Effects” p-values clearly demonstrate that year,
age, and education are all highly statistically significant, even when only
assuming a linear relationship. Alternatively, the “Anova for Nonparamet-
ric Effects” p-values for year and age correspond to a null hypothesis of a
linear relationship versus the alternative of a non-linear relationship. The
large p-value for year reinforces our conclusion from the ANOVA test that
a linear function is adequate for this term. However, there is very clear
evidence that a non-linear term is required for age.
We can make predictions using the predict() method for the class Gam.

Here we make predictions on the training set.

> preds <- predict(gam.m2 , newdata = Wage)

We can also use local regression fits as building blocks in a GAM, using
the lo() function.

lo()

> gam.lo <- gam(

wage ∼ s(year , df = 4) + lo(age , span = 0.7) + education ,

data = Wage

)

> plot.Gam(gam.lo, se = TRUE , col = "green")

Here we have used local regression for the age term, with a span of 0.7.
We can also use the lo() function to create interactions before calling the
gam() function. For example,
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> gam.lo.i <- gam(wage ∼ lo(year , age , span = 0.5) + education ,

data = Wage)

fits a two-term model, in which the first term is an interaction between
year and age, fit by a local regression surface. We can plot the resulting
two-dimensional surface if we first install the akima package.

> library(akima)

> plot(gam.lo.i)

In order to fit a logistic regression GAM, we once again use the I() func-
tion in constructing the binary response variable, and set family=binomial.

> gam.lr <- gam(

I(wage > 250) ∼ year + s(age , df = 5) + education ,

family = binomial , data = Wage

)

> par(mfrow = c(1, 3))

> plot(gam.lr, se = T, col = "green")

It is easy to see that there are no high earners in the < HS category:

> table(education , I(wage > 250))

education FALSE TRUE

1. < HS Grad 268 0

2. HS Grad 966 5

3. Some College 643 7

4. College Grad 663 22

5. Advanced Degree 381 45

Hence, we fit a logistic regression GAM using all but this category. This
provides more sensible results.

> gam.lr.s <- gam(

I(wage > 250) ∼ year + s(age , df = 5) + education ,

family = binomial , data = Wage ,

subset = (education != "1. < HS Grad")

)

> plot(gam.lr.s, se = T, col = "green")

7.9 Exercises

Conceptual

1. It was mentioned in the chapter that a cubic regression spline with
one knot at ξ can be obtained using a basis of the form x, x2, x3,
(x− ξ)3+, where (x− ξ)3+ = (x− ξ)3 if x > ξ and equals 0 otherwise.
We will now show that a function of the form

f(x) = β0 + β1x+ β2x
2 + β3x

3 + β4(x− ξ)3+
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is indeed a cubic regression spline, regardless of the values of β0,β1,β2,
β3,β4.

(a) Find a cubic polynomial

f1(x) = a1 + b1x+ c1x
2 + d1x

3

such that f(x) = f1(x) for all x ≤ ξ. Express a1, b1, c1, d1 in
terms of β0,β1,β2,β3,β4.

(b) Find a cubic polynomial

f2(x) = a2 + b2x+ c2x
2 + d2x

3

such that f(x) = f2(x) for all x > ξ. Express a2, b2, c2, d2 in
terms of β0,β1,β2,β3,β4. We have now established that f(x) is
a piecewise polynomial.

(c) Show that f1(ξ) = f2(ξ). That is, f(x) is continuous at ξ.

(d) Show that f ′
1(ξ) = f ′

2(ξ). That is, f
′(x) is continuous at ξ.

(e) Show that f ′′
1 (ξ) = f ′′

2 (ξ). That is, f
′′(x) is continuous at ξ.

Therefore, f(x) is indeed a cubic spline.

Hint: Parts (d) and (e) of this problem require knowledge of single-
variable calculus. As a reminder, given a cubic polynomial

f1(x) = a1 + b1x+ c1x
2 + d1x

3,

the first derivative takes the form

f ′
1(x) = b1 + 2c1x+ 3d1x

2

and the second derivative takes the form

f ′′
1 (x) = 2c1 + 6d1x.

2. Suppose that a curve ĝ is computed to smoothly fit a set of n points
using the following formula:

ĝ = argmin
g

(
n∑

i=1

(yi − g(xi))
2 + λ

∫ [
g(m)(x)

]2
dx

)
,

where g(m) represents the mth derivative of g (and g(0) = g). Provide
example sketches of ĝ in each of the following scenarios.

(a) λ =∞,m = 0.

(b) λ =∞,m = 1.
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(c) λ =∞,m = 2.

(d) λ =∞,m = 3.

(e) λ = 0,m = 3.

3. Suppose we fit a curve with basis functions b1(X) = X, b2(X) =
(X − 1)2I(X ≥ 1). (Note that I(X ≥ 1) equals 1 for X ≥ 1 and 0
otherwise.) We fit the linear regression model

Y = β0 + β1b1(X) + β2b2(X) + ϵ,

and obtain coefficient estimates β̂0 = 1, β̂1 = 1, β̂2 = −2. Sketch the
estimated curve between X = −2 and X = 2. Note the intercepts,
slopes, and other relevant information.

4. Suppose we fit a curve with basis functions b1(X) = I(0 ≤ X ≤ 2)−
(X−1)I(1 ≤ X ≤ 2), b2(X) = (X−3)I(3 ≤ X ≤ 4)+ I(4 < X ≤ 5).
We fit the linear regression model

Y = β0 + β1b1(X) + β2b2(X) + ϵ,

and obtain coefficient estimates β̂0 = 1, β̂1 = 1, β̂2 = 3. Sketch the
estimated curve between X = −2 and X = 6. Note the intercepts,
slopes, and other relevant information.

5. Consider two curves, ĝ1 and ĝ2, defined by

ĝ1 = argmin
g

(
n∑

i=1

(yi − g(xi))
2 + λ

∫ [
g(3)(x)

]2
dx

)
,

ĝ2 = argmin
g

(
n∑

i=1

(yi − g(xi))
2 + λ

∫ [
g(4)(x)

]2
dx

)
,

where g(m) represents the mth derivative of g.

(a) As λ→∞, will ĝ1 or ĝ2 have the smaller training RSS?

(b) As λ→∞, will ĝ1 or ĝ2 have the smaller test RSS?

(c) For λ = 0, will ĝ1 or ĝ2 have the smaller training and test RSS?

Applied

6. In this exercise, you will further analyze the Wage data set considered
throughout this chapter.

(a) Perform polynomial regression to predict wage using age. Use
cross-validation to select the optimal degree d for the polyno-
mial. What degree was chosen, and how does this compare to
the results of hypothesis testing using ANOVA? Make a plot of
the resulting polynomial fit to the data.
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(b) Fit a step function to predict wage using age, and perform cross-
validation to choose the optimal number of cuts. Make a plot of
the fit obtained.

7. The Wage data set contains a number of other features not explored
in this chapter, such as marital status (maritl), job class (jobclass),
and others. Explore the relationships between some of these other
predictors and wage, and use non-linear fitting techniques in order to
fit flexible models to the data. Create plots of the results obtained,
and write a summary of your findings.

8. Fit some of the non-linear models investigated in this chapter to the
Auto data set. Is there evidence for non-linear relationships in this
data set? Create some informative plots to justify your answer.

9. This question uses the variables dis (the weighted mean of distances
to five Boston employment centers) and nox (nitrogen oxides concen-
tration in parts per 10 million) from the Boston data. We will treat
dis as the predictor and nox as the response.

(a) Use the poly() function to fit a cubic polynomial regression to
predict nox using dis. Report the regression output, and plot
the resulting data and polynomial fits.

(b) Plot the polynomial fits for a range of different polynomial
degrees (say, from 1 to 10), and report the associated residual
sum of squares.

(c) Perform cross-validation or another approach to select the opti-
mal degree for the polynomial, and explain your results.

(d) Use the bs() function to fit a regression spline to predict nox

using dis. Report the output for the fit using four degrees of
freedom. How did you choose the knots? Plot the resulting fit.

(e) Now fit a regression spline for a range of degrees of freedom, and
plot the resulting fits and report the resulting RSS. Describe the
results obtained.

(f) Perform cross-validation or another approach in order to select
the best degrees of freedom for a regression spline on this data.
Describe your results.

10. This question relates to the College data set.

(a) Split the data into a training set and a test set. Using out-of-state
tuition as the response and the other variables as the predictors,
perform forward stepwise selection on the training set in order
to identify a satisfactory model that uses just a subset of the
predictors.
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(b) Fit a GAM on the training data, using out-of-state tuition as
the response and the features selected in the previous step as
the predictors. Plot the results, and explain your findings.

(c) Evaluate the model obtained on the test set, and explain the
results obtained.

(d) For which variables, if any, is there evidence of a non-linear
relationship with the response?

11. In Section 7.7, it was mentioned that GAMs are generally fit using
a backfitting approach. The idea behind backfitting is actually quite
simple. We will now explore backfitting in the context of multiple
linear regression.

Suppose that we would like to perform multiple linear regression, but
we do not have software to do so. Instead, we only have software
to perform simple linear regression. Therefore, we take the following
iterative approach: we repeatedly hold all but one coefficient esti-
mate fixed at its current value, and update only that coefficient
estimate using a simple linear regression. The process is continued un-
til convergence—that is, until the coefficient estimates stop changing.

We now try this out on a toy example.

(a) Generate a response Y and two predictors X1 and X2, with
n = 100.

(b) Initialize β̂1 to take on a value of your choice. It does not matter
what value you choose.

(c) Keeping β̂1 fixed, fit the model

Y − β̂1X1 = β0 + β2X2 + ϵ.

You can do this as follows:

> a <- y - beta1 * x1

> beta2 <- lm(a ∼ x2)$coef [2]

(d) Keeping β̂2 fixed, fit the model

Y − β̂2X2 = β0 + β1X1 + ϵ.

You can do this as follows:

> a <- y - beta2 * x2

> beta1 <- lm(a ∼ x1)$coef [2]

(e) Write a for loop to repeat (c) and (d) 1,000 times. Report the
estimates of β̂0, β̂1, and β̂2 at each iteration of the for loop.
Create a plot in which each of these values is displayed, with β̂0,
β̂1, and β̂2 each shown in a different color.
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(f) Compare your answer in (e) to the results of simply performing
multiple linear regression to predict Y using X1 and X2. Use
the abline() function to overlay those multiple linear regression
coefficient estimates on the plot obtained in (e).

(g) On this data set, how many backfitting iterations were required
in order to obtain a “good” approximation to the multiple re-
gression coefficient estimates?

12. This problem is a continuation of the previous exercise. In a toy
example with p = 100, show that one can approximate the multiple
linear regression coefficient estimates by repeatedly performing simple
linear regression in a backfitting procedure. How many backfitting
iterations are required in order to obtain a “good” approximation to
the multiple regression coefficient estimates? Create a plot to justify
your answer.



8
Tree-Based Methods

In this chapter, we describe tree-based methods for regression and classi-
fication. These involve stratifying or segmenting the predictor space into
a number of simple regions. In order to make a prediction for a given ob-
servation, we typically use the mean or the mode response value for the
training observations in the region to which it belongs. Since the set of
splitting rules used to segment the predictor space can be summarized in
a tree, these types of approaches are known as decision tree methods.

decision tree
Tree-based methods are simple and useful for interpretation. However,

they typically are not competitive with the best supervised learning ap-
proaches, such as those seen in Chapters 6 and 7, in terms of prediction
accuracy. Hence in this chapter we also introduce bagging , random forests ,
boosting , and Bayesian additive regression trees . Each of these approaches
involves producing multiple trees which are then combined to yield a single
consensus prediction. We will see that combining a large number of trees
can often result in dramatic improvements in prediction accuracy, at the
expense of some loss in interpretation.

8.1 The Basics of Decision Trees

Decision trees can be applied to both regression and classification problems.
We first consider regression problems, and then move on to classification.
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|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

FIGURE 8.1. For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he has played in
the major leagues and the number of hits that he made in the previous year. At a
given internal node, the label (of the form Xj < tk) indicates the left-hand branch
emanating from that split, and the right-hand branch corresponds to Xj ≥ tk.
For instance, the split at the top of the tree results in two large branches. The
left-hand branch corresponds to Years<4.5, and the right-hand branch corresponds
to Years>=4.5. The tree has two internal nodes and three terminal nodes, or
leaves. The number in each leaf is the mean of the response for the observations
that fall there.

8.1.1 Regression Trees

In order to motivate regression trees, we begin with a simple example.
regression
tree

Predicting Baseball Players’ Salaries Using Regression Trees

We use the Hitters data set to predict a baseball player’s Salary based on
Years (the number of years that he has played in the major leagues) and
Hits (the number of hits that he made in the previous year). We first remove
observations that are missing Salary values, and log-transform Salary so
that its distribution has more of a typical bell-shape. (Recall that Salary

is measured in thousands of dollars.)
Figure 8.1 shows a regression tree fit to this data. It consists of a series

of splitting rules, starting at the top of the tree. The top split assigns
observations having Years<4.5 to the left branch.1 The predicted salary
for these players is given by the mean response value for the players in
the data set with Years<4.5. For such players, the mean log salary is 5.107,
and so we make a prediction of e5.107 thousands of dollars, i.e. $165,174, for

1Both Years and Hits are integers in these data; the tree() function in R labels
the splits at the midpoint between two adjacent values.
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FIGURE 8.2. The three-region partition for the Hitters data set from the re-
gression tree illustrated in Figure 8.1.

these players. Players with Years>=4.5 are assigned to the right branch, and
then that group is further subdivided by Hits. Overall, the tree stratifies
or segments the players into three regions of predictor space: players who
have played for four or fewer years, players who have played for five or more
years and who made fewer than 118 hits last year, and players who have
played for five or more years and who made at least 118 hits last year. These
three regions can be written as R1 ={X | Years<4.5}, R2 ={X | Years>=4.5,
Hits<117.5}, and R3 ={X | Years>=4.5, Hits>=117.5}. Figure 8.2 illustrates
the regions as a function of Years and Hits. The predicted salaries for these
three groups are $1,000×e5.107 =$165,174, $1,000×e5.999 =$402,834, and
$1,000×e6.740 =$845,346 respectively.
In keeping with the tree analogy, the regions R1, R2, and R3 are known

as terminal nodes or leaves of the tree. As is the case for Figure 8.1, decision
terminal
node
leaf

trees are typically drawn upside down, in the sense that the leaves are at
the bottom of the tree. The points along the tree where the predictor space
is split are referred to as internal nodes. In Figure 8.1, the two internal

internal
nodenodes are indicated by the text Years<4.5 and Hits<117.5. We refer to the

segments of the trees that connect the nodes as branches.
branch

We might interpret the regression tree displayed in Figure 8.1 as follows:
Years is the most important factor in determining Salary, and players with
less experience earn lower salaries than more experienced players. Given
that a player is less experienced, the number of hits that he made in the
previous year seems to play little role in his salary. But among players who
have been in the major leagues for five or more years, the number of hits
made in the previous year does affect salary, and players who made more
hits last year tend to have higher salaries. The regression tree shown in
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Figure 8.1 is likely an over-simplification of the true relationship between
Hits, Years, and Salary. However, it has advantages over other types of
regression models (such as those seen in Chapters 3 and 6): it is easier to
interpret, and has a nice graphical representation.

Prediction via Stratification of the Feature Space

We now discuss the process of building a regression tree. Roughly speaking,
there are two steps.

1. We divide the predictor space — that is, the set of possible values
for X1, X2, . . . , Xp — into J distinct and non-overlapping regions,
R1, R2, . . . , RJ .

2. For every observation that falls into the region Rj , we make the same
prediction, which is simply the mean of the response values for the
training observations in Rj .

For instance, suppose that in Step 1 we obtain two regions, R1 and R2,
and that the response mean of the training observations in the first region
is 10, while the response mean of the training observations in the second
region is 20. Then for a given observation X = x, if x ∈ R1 we will predict
a value of 10, and if x ∈ R2 we will predict a value of 20.
We now elaborate on Step 1 above. How do we construct the regions

R1, . . . , RJ? In theory, the regions could have any shape. However, we
choose to divide the predictor space into high-dimensional rectangles, or
boxes, for simplicity and for ease of interpretation of the resulting predic-
tive model. The goal is to find boxes R1, . . . , RJ that minimize the RSS,
given by

J∑

j=1

∑

i∈Rj

(yi − ŷRj
)2, (8.1)

where ŷRj
is the mean response for the training observations within the

jth box. Unfortunately, it is computationally infeasible to consider every
possible partition of the feature space into J boxes. For this reason, we take
a top-down, greedy approach that is known as recursive binary splitting. The

recursive
binary
splitting

approach is top-down because it begins at the top of the tree (at which point
all observations belong to a single region) and then successively splits the
predictor space; each split is indicated via two new branches further down
on the tree. It is greedy because at each step of the tree-building process,
the best split is made at that particular step, rather than looking ahead
and picking a split that will lead to a better tree in some future step.
In order to perform recursive binary splitting, we first select the pre-

dictor Xj and the cutpoint s such that splitting the predictor space into
the regions {X|Xj < s} and {X|Xj ≥ s} leads to the greatest possible
reduction in RSS. (The notation {X|Xj < s} means the region of predictor
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space in which Xj takes on a value less than s.) That is, we consider all
predictors X1, . . . , Xp, and all possible values of the cutpoint s for each of
the predictors, and then choose the predictor and cutpoint such that the
resulting tree has the lowest RSS. In greater detail, for any j and s, we
define the pair of half-planes

R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s}, (8.2)

and we seek the value of j and s that minimize the equation

∑

i: xi∈R1(j,s)

(yi − ŷR1
)2 +

∑

i: xi∈R2(j,s)

(yi − ŷR2
)2, (8.3)

where ŷR1
is the mean response for the training observations in R1(j, s),

and ŷR2
is the mean response for the training observations in R2(j, s).

Finding the values of j and s that minimize (8.3) can be done quite quickly,
especially when the number of features p is not too large.
Next, we repeat the process, looking for the best predictor and best

cutpoint in order to split the data further so as to minimize the RSS within
each of the resulting regions. However, this time, instead of splitting the
entire predictor space, we split one of the two previously identified regions.
We now have three regions. Again, we look to split one of these three regions
further, so as to minimize the RSS. The process continues until a stopping
criterion is reached; for instance, we may continue until no region contains
more than five observations.
Once the regions R1, . . . , RJ have been created, we predict the response

for a given test observation using the mean of the training observations in
the region to which that test observation belongs.
A five-region example of this approach is shown in Figure 8.3.

Tree Pruning

The process described above may produce good predictions on the training
set, but is likely to overfit the data, leading to poor test set performance.
This is because the resulting tree might be too complex. A smaller tree
with fewer splits (that is, fewer regions R1, . . . , RJ) might lead to lower
variance and better interpretation at the cost of a little bias. One possible
alternative to the process described above is to build the tree only so long
as the decrease in the RSS due to each split exceeds some (high) threshold.
This strategy will result in smaller trees, but is too short-sighted since a
seemingly worthless split early on in the tree might be followed by a very
good split—that is, a split that leads to a large reduction in RSS later on.
Therefore, a better strategy is to grow a very large tree T0, and then

prune it back in order to obtain a subtree. How do we determine the best prune

subtreeway to prune the tree? Intuitively, our goal is to select a subtree that
leads to the lowest test error rate. Given a subtree, we can estimate its
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FIGURE 8.3. Top Left: A partition of two-dimensional feature space that could
not result from recursive binary splitting. Top Right: The output of recursive
binary splitting on a two-dimensional example. Bottom Left: A tree corresponding
to the partition in the top right panel. Bottom Right: A perspective plot of the
prediction surface corresponding to that tree.

test error using cross-validation or the validation set approach. However,
estimating the cross-validation error for every possible subtree would be too
cumbersome, since there is an extremely large number of possible subtrees.
Instead, we need a way to select a small set of subtrees for consideration.
Cost complexity pruning—also known as weakest link pruning—gives us

cost
complexity
pruning

weakest link
pruning

a way to do just this. Rather than considering every possible subtree, we
consider a sequence of trees indexed by a nonnegative tuning parameter α.
For each value of α there corresponds a subtree T ⊂ T0 such that

|T |∑

m=1

∑

i: xi∈Rm

(yi − ŷRm)2 + α|T | (8.4)
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Algorithm 8.1 Building a Regression Tree

1. Use recursive binary splitting to grow a large tree on the training
data, stopping only when each terminal node has fewer than some
minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a
sequence of best subtrees, as a function of α.

3. Use K-fold cross-validation to choose α. That is, divide the training
observations into K folds. For each k = 1, . . . ,K:

(a) Repeat Steps 1 and 2 on all but the kth fold of the training data.

(b) Evaluate the mean squared prediction error on the data in the
left-out kth fold, as a function of α.

Average the results for each value of α, and pick α to minimize the
average error.

4. Return the subtree from Step 2 that corresponds to the chosen value
of α.

is as small as possible. Here |T | indicates the number of terminal nodes
of the tree T , Rm is the rectangle (i.e. the subset of predictor space) cor-
responding to the mth terminal node, and ŷRm is the predicted response
associated with Rm—that is, the mean of the training observations in Rm.
The tuning parameter α controls a trade-off between the subtree’s com-
plexity and its fit to the training data. When α = 0, then the subtree T
will simply equal T0, because then (8.4) just measures the training error.
However, as α increases, there is a price to pay for having a tree with
many terminal nodes, and so the quantity (8.4) will tend to be minimized
for a smaller subtree. Equation 8.4 is reminiscent of the lasso (6.7) from
Chapter 6, in which a similar formulation was used in order to control the
complexity of a linear model.
It turns out that as we increase α from zero in (8.4), branches get pruned

from the tree in a nested and predictable fashion, so obtaining the whole
sequence of subtrees as a function of α is easy. We can select a value of
α using a validation set or using cross-validation. We then return to the
full data set and obtain the subtree corresponding to α. This process is
summarized in Algorithm 8.1.

Figures 8.4 and 8.5 display the results of fitting and pruning a regression
tree on the Hitters data, using nine of the features. First, we randomly
divided the data set in half, yielding 132 observations in the training set
and 131 observations in the test set. We then built a large regression tree
on the training data and varied α in (8.4) in order to create subtrees with
different numbers of terminal nodes. Finally, we performed six-fold cross-
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FIGURE 8.4. Regression tree analysis for the Hitters data. The unpruned tree
that results from top-down greedy splitting on the training data is shown.

validation in order to estimate the cross-validated MSE of the trees as
a function of α. (We chose to perform six-fold cross-validation because
132 is an exact multiple of six.) The unpruned regression tree is shown
in Figure 8.4. The green curve in Figure 8.5 shows the CV error as a
function of the number of leaves,2 while the orange curve indicates the
test error. Also shown are standard error bars around the estimated errors.
For reference, the training error curve is shown in black. The CV error
is a reasonable approximation of the test error: the CV error takes on its
minimum for a three-node tree, while the test error also dips down at the
three-node tree (though it takes on its lowest value at the ten-node tree).
The pruned tree containing three terminal nodes is shown in Figure 8.1.

2Although CV error is computed as a function of α, it is convenient to display the
result as a function of |T |, the number of leaves; this is based on the relationship between
α and |T | in the original tree grown to all the training data.
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FIGURE 8.5. Regression tree analysis for the Hitters data. The training,
cross-validation, and test MSE are shown as a function of the number of termi-
nal nodes in the pruned tree. Standard error bands are displayed. The minimum
cross-validation error occurs at a tree size of three.

8.1.2 Classification Trees

A classification tree is very similar to a regression tree, except that it is
classification
treeused to predict a qualitative response rather than a quantitative one. Re-

call that for a regression tree, the predicted response for an observation is
given by the mean response of the training observations that belong to the
same terminal node. In contrast, for a classification tree, we predict that
each observation belongs to the most commonly occurring class of training
observations in the region to which it belongs. In interpreting the results of
a classification tree, we are often interested not only in the class prediction
corresponding to a particular terminal node region, but also in the class
proportions among the training observations that fall into that region.
The task of growing a classification tree is quite similar to the task of

growing a regression tree. Just as in the regression setting, we use recursive
binary splitting to grow a classification tree. However, in the classification
setting, RSS cannot be used as a criterion for making the binary splits.
A natural alternative to RSS is the classification error rate. Since we plan

classification
error rateto assign an observation in a given region to the most commonly occurring

class of training observations in that region, the classification error rate is
simply the fraction of the training observations in that region that do not
belong to the most common class:

E = 1−max
k

(p̂mk). (8.5)
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Here p̂mk represents the proportion of training observations in the mth
region that are from the kth class. However, it turns out that classification
error is not sufficiently sensitive for tree-growing, and in practice two other
measures are preferable.
The Gini index is defined by

Gini index

G =
K∑

k=1

p̂mk(1− p̂mk), (8.6)

a measure of total variance across the K classes. It is not hard to see
that the Gini index takes on a small value if all of the p̂mk’s are close to
zero or one. For this reason the Gini index is referred to as a measure of
node purity—a small value indicates that a node contains predominantly
observations from a single class.
An alternative to the Gini index is entropy, given by

entropy

D = −
K∑

k=1

p̂mk log p̂mk. (8.7)

Since 0 ≤ p̂mk ≤ 1, it follows that 0 ≤ −p̂mk log p̂mk. One can show that
the entropy will take on a value near zero if the p̂mk’s are all near zero or
near one. Therefore, like the Gini index, the entropy will take on a small
value if the mth node is pure. In fact, it turns out that the Gini index and
the entropy are quite similar numerically.
When building a classification tree, either the Gini index or the entropy

are typically used to evaluate the quality of a particular split, since these
two approaches are more sensitive to node purity than is the classification
error rate. Any of these three approaches might be used when pruning the
tree, but the classification error rate is preferable if prediction accuracy of
the final pruned tree is the goal.
Figure 8.6 shows an example on the Heart data set. These data con-

tain a binary outcome HD for 303 patients who presented with chest pain.
An outcome value of Yes indicates the presence of heart disease based on
an angiographic test, while No means no heart disease. There are 13 predic-
tors including Age, Sex, Chol (a cholesterol measurement), and other heart
and lung function measurements. Cross-validation results in a tree with six
terminal nodes.
In our discussion thus far, we have assumed that the predictor vari-

ables take on continuous values. However, decision trees can be constructed
even in the presence of qualitative predictor variables. For instance, in the
Heart data, some of the predictors, such as Sex, Thal (Thallium stress test),
and ChestPain, are qualitative. Therefore, a split on one of these variables
amounts to assigning some of the qualitative values to one branch and
assigning the remaining to the other branch. In Figure 8.6, some of the in-
ternal nodes correspond to splitting qualitative variables. For instance, the
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FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross-valida-
tion error, training, and test error, for different sizes of the pruned tree. Bottom
Right: The pruned tree corresponding to the minimal cross-validation error.

top internal node corresponds to splitting Thal. The text Thal:a indicates
that the left-hand branch coming out of that node consists of observations
with the first value of the Thal variable (normal), and the right-hand node
consists of the remaining observations (fixed or reversible defects). The text
ChestPain:bc two splits down the tree on the left indicates that the left-hand
branch coming out of that node consists of observations with the second
and third values of the ChestPain variable, where the possible values are
typical angina, atypical angina, non-anginal pain, and asymptomatic.
Figure 8.6 has a surprising characteristic: some of the splits yield two

terminal nodes that have the same predicted value. For instance, consider
the split RestECG<1 near the bottom right of the unpruned tree. Regardless
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of the value of RestECG, a response value of Yes is predicted for those ob-
servations. Why, then, is the split performed at all? The split is performed
because it leads to increased node purity. That is, all 9 of the observations
corresponding to the right-hand leaf have a response value of Yes, whereas
7/11 of those corresponding to the left-hand leaf have a response value of
Yes. Why is node purity important? Suppose that we have a test obser-
vation that belongs to the region given by that right-hand leaf. Then we
can be pretty certain that its response value is Yes. In contrast, if a test
observation belongs to the region given by the left-hand leaf, then its re-
sponse value is probably Yes, but we are much less certain. Even though
the split RestECG<1 does not reduce the classification error, it improves the
Gini index and the entropy, which are more sensitive to node purity.

8.1.3 Trees Versus Linear Models

Regression and classification trees have a very different flavor from the more
classical approaches for regression and classification presented in Chapters 3
and 4. In particular, linear regression assumes a model of the form

f(X) = β0 +
p∑

j=1

Xjβj , (8.8)

whereas regression trees assume a model of the form

f(X) =
M∑

m=1

cm · 1(X∈Rm) (8.9)

where R1, . . . , RM represent a partition of feature space, as in Figure 8.3.
Which model is better? It depends on the problem at hand. If the re-

lationship between the features and the response is well approximated by
a linear model as in (8.8), then an approach such as linear regression will
likely work well, and will outperform a method such as a regression tree
that does not exploit this linear structure. If instead there is a highly non-
linear and complex relationship between the features and the response as
indicated by model (8.9), then decision trees may outperform classical ap-
proaches. An illustrative example is displayed in Figure 8.7. The relative
performances of tree-based and classical approaches can be assessed by es-
timating the test error, using either cross-validation or the validation set
approach (Chapter 5).
Of course, other considerations beyond simply test error may come into

play in selecting a statistical learning method; for instance, in certain set-
tings, prediction using a tree may be preferred for the sake of interpretabil-
ity and visualization.
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FIGURE 8.7. Top Row: A two-dimensional classification example in which the
true decision boundary is linear, and is indicated by the shaded regions. A classical
approach that assumes a linear boundary (left) will outperform a decision tree
that performs splits parallel to the axes (right). Bottom Row: Here the true de-
cision boundary is non-linear. Here a linear model is unable to capture the true
decision boundary (left), whereas a decision tree is successful (right).

8.1.4 Advantages and Disadvantages of Trees

Decision trees for regression and classification have a number of advantages
over the more classical approaches seen in Chapters 3 and 4:

▲ Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!

▲ Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches
seen in previous chapters.

▲ Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).

▲ Trees can easily handle qualitative predictors without the need to
create dummy variables.
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▼ Unfortunately, trees generally do not have the same level of predictive
accuracy as some of the other regression and classification approaches
seen in this book.

▼ Additionally, trees can be very non-robust. In other words, a small
change in the data can cause a large change in the final estimated
tree.

However, by aggregating many decision trees, using methods like bagging,
random forests, and boosting, the predictive performance of trees can be
substantially improved. We introduce these concepts in the next section.

8.2 Bagging, Random Forests, Boosting, and
Bayesian Additive Regression Trees

An ensemble method is an approach that combines many simple “building
ensemble

block” models in order to obtain a single and potentially very powerful
model. These simple building block models are sometimes known as weak
learners, since they may lead to mediocre predictions on their own.

weak
learnersWe will now discuss bagging, random forests, boosting, and Bayesian

additive regression trees. These are ensemble methods for which the simple
building block is a regression or a classification tree.

8.2.1 Bagging

The bootstrap, introduced in Chapter 5, is an extremely powerful idea. It is
used in many situations in which it is hard or even impossible to directly
compute the standard deviation of a quantity of interest. We see here that
the bootstrap can be used in a completely different context, in order to
improve statistical learning methods such as decision trees.
The decision trees discussed in Section 8.1 suffer from high variance.

This means that if we split the training data into two parts at random,
and fit a decision tree to both halves, the results that we get could be
quite different. In contrast, a procedure with low variance will yield similar
results if applied repeatedly to distinct data sets; linear regression tends
to have low variance, if the ratio of n to p is moderately large. Bootstrap
aggregation, or bagging, is a general-purpose procedure for reducing the

bagging
variance of a statistical learning method; we introduce it here because it is
particularly useful and frequently used in the context of decision trees.
Recall that given a set of n independent observations Z1, . . . , Zn, each

with variance σ2, the variance of the mean Z̄ of the observations is given
by σ2/n. In other words, averaging a set of observations reduces variance.
Hence a natural way to reduce the variance and increase the test set ac-
curacy of a statistical learning method is to take many training sets from
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the population, build a separate prediction model using each training set,
and average the resulting predictions. In other words, we could calculate
f̂1(x), f̂2(x), . . . , f̂B(x) using B separate training sets, and average them
in order to obtain a single low-variance statistical learning model, given by

f̂avg(x) =
1

B

B∑

b=1

f̂ b(x).

Of course, this is not practical because we generally do not have access
to multiple training sets. Instead, we can bootstrap, by taking repeated
samples from the (single) training data set. In this approach we generate
B different bootstrapped training data sets. We then train our method on
the bth bootstrapped training set in order to get f̂∗b(x), and finally average
all the predictions, to obtain

f̂bag(x) =
1

B

B∑

b=1

f̂∗b(x).

This is called bagging.
While bagging can improve predictions for many regression methods,

it is particularly useful for decision trees. To apply bagging to regression
trees, we simply construct B regression trees using B bootstrapped training
sets, and average the resulting predictions. These trees are grown deep,
and are not pruned. Hence each individual tree has high variance, but
low bias. Averaging these B trees reduces the variance. Bagging has been
demonstrated to give impressive improvements in accuracy by combining
together hundreds or even thousands of trees into a single procedure.
Thus far, we have described the bagging procedure in the regression

context, to predict a quantitative outcome Y . How can bagging be extended
to a classification problem where Y is qualitative? In that situation, there
are a few possible approaches, but the simplest is as follows. For a given test
observation, we can record the class predicted by each of the B trees, and
take a majority vote: the overall prediction is the most commonly occurring

majority
voteclass among the B predictions.

Figure 8.8 shows the results from bagging trees on the Heart data. The
test error rate is shown as a function of B, the number of trees constructed
using bootstrapped training data sets. We see that the bagging test error
rate is slightly lower in this case than the test error rate obtained from a
single tree. The number of trees B is not a critical parameter with bagging;
using a very large value of B will not lead to overfitting. In practice we
use a value of B sufficiently large that the error has settled down. Using
B = 100 is sufficient to achieve good performance in this example.
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FIGURE 8.8. Bagging and random forest results for the Heart data. The test
error (black and orange) is shown as a function of B, the number of bootstrapped
training sets used. Random forests were applied with m =

√
p. The dashed line

indicates the test error resulting from a single classification tree. The green and
blue traces show the OOB error, which in this case is — by chance — considerably
lower.

Out-of-Bag Error Estimation

It turns out that there is a very straightforward way to estimate the test
error of a bagged model, without the need to perform cross-validation or
the validation set approach. Recall that the key to bagging is that trees are
repeatedly fit to bootstrapped subsets of the observations. One can show
that on average, each bagged tree makes use of around two-thirds of the
observations.3 The remaining one-third of the observations not used to fit a
given bagged tree are referred to as the out-of-bag (OOB) observations. We

out-of-bag
can predict the response for the ith observation using each of the trees in
which that observation was OOB. This will yield around B/3 predictions
for the ith observation. In order to obtain a single prediction for the ith
observation, we can average these predicted responses (if regression is the
goal) or can take a majority vote (if classification is the goal). This leads
to a single OOB prediction for the ith observation. An OOB prediction
can be obtained in this way for each of the n observations, from which the

3This relates to Exercise 2 of Chapter 5.
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overall OOB MSE (for a regression problem) or classification error (for a
classification problem) can be computed. The resulting OOB error is a valid
estimate of the test error for the bagged model, since the response for each
observation is predicted using only the trees that were not fit using that
observation. Figure 8.8 displays the OOB error on the Heart data. It can
be shown that with B sufficiently large, OOB error is virtually equivalent
to leave-one-out cross-validation error. The OOB approach for estimating
the test error is particularly convenient when performing bagging on large
data sets for which cross-validation would be computationally onerous.

Variable Importance Measures

As we have discussed, bagging typically results in improved accuracy over
prediction using a single tree. Unfortunately, however, it can be difficult to
interpret the resulting model. Recall that one of the advantages of decision
trees is the attractive and easily interpreted diagram that results, such as
the one displayed in Figure 8.1. However, when we bag a large number of
trees, it is no longer possible to represent the resulting statistical learning
procedure using a single tree, and it is no longer clear which variables
are most important to the procedure. Thus, bagging improves prediction
accuracy at the expense of interpretability.
Although the collection of bagged trees is much more difficult to interpret

than a single tree, one can obtain an overall summary of the importance of
each predictor using the RSS (for bagging regression trees) or the Gini index
(for bagging classification trees). In the case of bagging regression trees, we
can record the total amount that the RSS (8.1) is decreased due to splits
over a given predictor, averaged over all B trees. A large value indicates
an important predictor. Similarly, in the context of bagging classification
trees, we can add up the total amount that the Gini index (8.6) is decreased
by splits over a given predictor, averaged over all B trees.
A graphical representation of the variable importances in the Heart data

variable
importanceis shown in Figure 8.9. We see the mean decrease in Gini index for each vari-

able, relative to the largest. The variables with the largest mean decrease
in Gini index are Thal, Ca, and ChestPain.

8.2.2 Random Forests

Random forests provide an improvement over bagged trees by way of a
random
forestsmall tweak that decorrelates the trees. As in bagging, we build a number

of decision trees on bootstrapped training samples. But when building these
decision trees, each time a split in a tree is considered, a random sample of
m predictors is chosen as split candidates from the full set of p predictors.
The split is allowed to use only one of those m predictors. A fresh sample of
m predictors is taken at each split, and typically we choose m ≈ √p—that
is, the number of predictors considered at each split is approximately equal
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FIGURE 8.9. A variable importance plot for the Heart data. Variable impor-
tance is computed using the mean decrease in Gini index, and expressed relative
to the maximum.

to the square root of the total number of predictors (4 out of the 13 for the
Heart data).
In other words, in building a random forest, at each split in the tree,

the algorithm is not even allowed to consider a majority of the available
predictors. This may sound crazy, but it has a clever rationale. Suppose
that there is one very strong predictor in the data set, along with a num-
ber of other moderately strong predictors. Then in the collection of bagged
trees, most or all of the trees will use this strong predictor in the top split.
Consequently, all of the bagged trees will look quite similar to each other.
Hence the predictions from the bagged trees will be highly correlated. Un-
fortunately, averaging many highly correlated quantities does not lead to
as large of a reduction in variance as averaging many uncorrelated quanti-
ties. In particular, this means that bagging will not lead to a substantial
reduction in variance over a single tree in this setting.
Random forests overcome this problem by forcing each split to consider

only a subset of the predictors. Therefore, on average (p − m)/p of the
splits will not even consider the strong predictor, and so other predictors
will have more of a chance. We can think of this process as decorrelating
the trees, thereby making the average of the resulting trees less variable
and hence more reliable.
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The main difference between bagging and random forests is the choice
of predictor subset size m. For instance, if a random forest is built using
m = p, then this amounts simply to bagging. On the Heart data, random
forests using m =

√
p leads to a reduction in both test error and OOB error

over bagging (Figure 8.8).
Using a small value of m in building a random forest will typically be

helpful when we have a large number of correlated predictors. We applied
random forests to a high-dimensional biological data set consisting of ex-
pression measurements of 4,718 genes measured on tissue samples from 349
patients. There are around 20,000 genes in humans, and individual genes
have different levels of activity, or expression, in particular cells, tissues,
and biological conditions. In this data set, each of the patient samples has
a qualitative label with 15 different levels: either normal or 1 of 14 different
types of cancer. Our goal was to use random forests to predict cancer type
based on the 500 genes that have the largest variance in the training set.
We randomly divided the observations into a training and a test set, and
applied random forests to the training set for three different values of the
number of splitting variables m. The results are shown in Figure 8.10. The
error rate of a single tree is 45.7%, and the null rate is 75.4%.4 We see that
using 400 trees is sufficient to give good performance, and that the choice
m =

√
p gave a small improvement in test error over bagging (m = p) in

this example. As with bagging, random forests will not overfit if we increase
B, so in practice we use a value of B sufficiently large for the error rate to
have settled down.

8.2.3 Boosting

We now discuss boosting, yet another approach for improving the predic-
boosting

tions resulting from a decision tree. Like bagging, boosting is a general
approach that can be applied to many statistical learning methods for re-
gression or classification. Here we restrict our discussion of boosting to the
context of decision trees.
Recall that bagging involves creating multiple copies of the original train-

ing data set using the bootstrap, fitting a separate decision tree to each
copy, and then combining all of the trees in order to create a single predic-
tive model. Notably, each tree is built on a bootstrap data set, independent
of the other trees. Boosting works in a similar way, except that the trees are
grown sequentially : each tree is grown using information from previously
grown trees. Boosting does not involve bootstrap sampling; instead each
tree is fit on a modified version of the original data set.

4The null rate results from simply classifying each observation to the dominant class
overall, which is in this case the normal class.



346 8. Tree-Based Methods

0 100 200 300 400 500

0
.2

0
.3

0
.4

0
.5

Number of Trees

Te
st

 C
la

ss
ifi

ca
tio

n
 E

rr
o
r

m=p

m=p/2
m= p

FIGURE 8.10. Results from random forests for the 15-class gene expression
data set with p = 500 predictors. The test error is displayed as a function of
the number of trees. Each colored line corresponds to a different value of m, the
number of predictors available for splitting at each interior tree node. Random
forests (m < p) lead to a slight improvement over bagging (m = p). A single
classification tree has an error rate of 45.7%.

Consider first the regression setting. Like bagging, boosting involves com-
bining a large number of decision trees, f̂1, . . . , f̂B . Boosting is described
in Algorithm 8.2.
What is the idea behind this procedure? Unlike fitting a single large deci-

sion tree to the data, which amounts to fitting the data hard and potentially
overfitting, the boosting approach instead learns slowly. Given the current
model, we fit a decision tree to the residuals from the model. That is, we
fit a tree using the current residuals, rather than the outcome Y , as the re-
sponse. We then add this new decision tree into the fitted function in order
to update the residuals. Each of these trees can be rather small, with just
a few terminal nodes, determined by the parameter d in the algorithm. By
fitting small trees to the residuals, we slowly improve f̂ in areas where it
does not perform well. The shrinkage parameter λ slows the process down
even further, allowing more and different shaped trees to attack the resid-
uals. In general, statistical learning approaches that learn slowly tend to
perform well. Note that in boosting, unlike in bagging, the construction of
each tree depends strongly on the trees that have already been grown.
We have just described the process of boosting regression trees. Boosting

classification trees proceeds in a similar but slightly more complex way, and
the details are omitted here.
Boosting has three tuning parameters:
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Algorithm 8.2 Boosting for Regression Trees

1. Set f̂(x) = 0 and ri = yi for all i in the training set.

2. For b = 1, 2, . . . , B, repeat:

(a) Fit a tree f̂ b with d splits (d+1 terminal nodes) to the training
data (X, r).

(b) Update f̂ by adding in a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂ b(x). (8.10)

(c) Update the residuals,

ri ← ri − λf̂ b(xi). (8.11)

3. Output the boosted model,

f̂(x) =
B∑

b=1

λf̂ b(x). (8.12)

1. The number of trees B. Unlike bagging and random forests, boosting
can overfit if B is too large, although this overfitting tends to occur
slowly if at all. We use cross-validation to select B.

2. The shrinkage parameter λ, a small positive number. This controls the
rate at which boosting learns. Typical values are 0.01 or 0.001, and
the right choice can depend on the problem. Very small λ can require
using a very large value of B in order to achieve good performance.

3. The number d of splits in each tree, which controls the complexity
of the boosted ensemble. Often d = 1 works well, in which case each
tree is a stump, consisting of a single split. In this case, the boosted

stump
ensemble is fitting an additive model, since each term involves only a
single variable. More generally d is the interaction depth, and controls

interaction
depththe interaction order of the boosted model, since d splits can involve

at most d variables.

In Figure 8.11, we applied boosting to the 15-class cancer gene expression
data set, in order to develop a classifier that can distinguish the normal
class from the 14 cancer classes. We display the test error as a function of
the total number of trees and the interaction depth d. We see that simple
stumps with an interaction depth of one perform well if enough of them
are included. This model outperforms the depth-two model, and both out-
perform a random forest. This highlights one difference between boosting
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FIGURE 8.11. Results from performing boosting and random forests on the
15-class gene expression data set in order to predict cancer versus normal. The
test error is displayed as a function of the number of trees. For the two boosted
models, λ = 0.01. Depth-1 trees slightly outperform depth-2 trees, and both out-
perform the random forest, although the standard errors are around 0.02, making
none of these differences significant. The test error rate for a single tree is 24%.

and random forests: in boosting, because the growth of a particular tree
takes into account the other trees that have already been grown, smaller
trees are typically sufficient. Using smaller trees can aid in interpretability
as well; for instance, using stumps leads to an additive model.

8.2.4 Bayesian Additive Regression Trees

Finally, we discuss Bayesian additive regression trees (BART), another en-
Bayesian
additive
regression
trees

semble method that uses decision trees as its building blocks. For simplicity,
we present BART for regression (as opposed to classification).
Recall that bagging and random forests make predictions from an aver-

age of regression trees, each of which is built using a random sample of data
and/or predictors. Each tree is built separately from the others. By con-
trast, boosting uses a weighted sum of trees, each of which is constructed
by fitting a tree to the residual of the current fit. Thus, each new tree at-
tempts to capture signal that is not yet accounted for by the current set
of trees. BART is related to both approaches: each tree is constructed in
a random manner as in bagging and random forests, and each tree tries to
capture signal not yet accounted for by the current model, as in boosting.
The main novelty in BART is the way in which new trees are generated.
Before we introduce the BART algorithm, we define some notation. We

let K denote the number of regression trees, and B the number of iterations
for which the BART algorithm will be run. The notation f̂ b

k(x) represents
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FIGURE 8.12. A schematic of perturbed trees from the BART algorithm. (a):
The kth tree at the (b−1)st iteration, f̂ b−1

k (X), is displayed. Panels (b)–(d) dis-

play three of many possibilities for f̂ b
k(X), given the form of f̂ b−1

k (X). (b): One

possibility is that f̂ b
k(X) has the same structure as f̂ b−1

k (X), but with different

predictions at the terminal nodes. (c): Another possibility is that f̂ b
k(X) results

from pruning f̂ b−1
k (X). (d): Alternatively, f̂ b

k(X) may have more terminal nodes

than f̂ b−1
k (X).

the prediction at x for the kth regression tree used in the bth iteration. At
the end of each iteration, the K trees from that iteration will be summed,
i.e. f̂ b(x) =

∑K
k=1 f̂

b
k(x) for b = 1, . . . , B.

In the first iteration of the BART algorithm, all trees are initialized to
have a single root node, with f̂1

k (x) =
1

nK

∑n
i=1 yi, the mean of the response

values divided by the total number of trees. Thus, f̂1(x) =
∑K

k=1 f̂
1
k (x) =

1
n

∑n
i=1 yi.

In subsequent iterations, BART updates each of the K trees, one at a
time. In the bth iteration, to update the kth tree, we subtract from each
response value the predictions from all but the kth tree, in order to obtain
a partial residual

ri = yi −
∑

k′<k

f̂ b
k′(xi)−

∑

k′>k

f̂ b−1
k′ (xi)

for the ith observation, i = 1, . . . , n. Rather than fitting a fresh tree to this
partial residual, BART randomly chooses a perturbation to the tree from
the previous iteration (f̂ b−1

k ) from a set of possible perturbations, favoring
ones that improve the fit to the partial residual. There are two components
to this perturbation:
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1. We may change the structure of the tree by adding or pruning branches.

2. We may change the prediction in each terminal node of the tree.

Figure 8.12 illustrates examples of possible perturbations to a tree.
The output of BART is a collection of prediction models,

f̂ b(x) =
K∑

k=1

f̂ b
k(x), for b = 1, 2, . . . , B.

We typically throw away the first few of these prediction models, since
models obtained in the earlier iterations — known as the burn-in period

burn-in
— tend not to provide very good results. We can let L denote the num-
ber of burn-in iterations; for instance, we might take L = 200. Then, to
obtain a single prediction, we simply take the average after the burn-in
iterations, f̂(x) = 1

B−L

∑B
b=L+1 f̂

b(x). However, it is also possible to com-
pute quantities other than the average: for instance, the percentiles of
f̂L+1(x), . . . , f̂B(x) provide a measure of uncertainty in the final predic-
tion. The overall BART procedure is summarized in Algorithm 8.3.
A key element of the BART approach is that in Step 3(a)ii., we do not fit

a fresh tree to the current partial residual: instead, we try to improve the fit
to the current partial residual by slightly modifying the tree obtained in the
previous iteration (see Figure 8.12). Roughly speaking, this guards against
overfitting since it limits how “hard” we fit the data in each iteration.
Furthermore, the individual trees are typically quite small. We limit the
tree size in order to avoid overfitting the data, which would be more likely
to occur if we grew very large trees.
Figure 8.13 shows the result of applying BART to the Heart data, using

K = 200 trees, as the number of iterations is increased to 10, 000. During
the initial iterations, the test and training errors jump around a bit. After
this initial burn-in period, the error rates settle down. We note that there
is only a small difference between the training error and the test error,
indicating that the tree perturbation process largely avoids overfitting.
The training and test errors for boosting are also displayed in Figure 8.13.

We see that the test error for boosting approaches that of BART, but then
begins to increase as the number of iterations increases. Furthermore, the
training error for boosting decreases as the number of iterations increases,
indicating that boosting has overfit the data.
Though the details are outside of the scope of this book, it turns out

that the BART method can be viewed as a Bayesian approach to fitting an
ensemble of trees: each time we randomly perturb a tree in order to fit the
residuals, we are in fact drawing a new tree from a posterior distribution.
(Of course, this Bayesian connection is the motivation for BART’s name.)
Furthermore, Algorithm 8.3 can be viewed as a Markov chain Monte Carlo

Markov
chain Monte
Carlo

algorithm for fitting the BART model.
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Algorithm 8.3 Bayesian Additive Regression Trees

1. Let f̂1
1 (x) = f̂1

2 (x) = · · · = f̂1
K(x) = 1

nK

∑n
i=1 yi.

2. Compute f̂1(x) =
∑K

k=1 f̂
1
k (x) =

1
n

∑n
i=1 yi.

3. For b = 2, . . . , B:

(a) For k = 1, 2, . . . ,K:

i. For i = 1, . . . , n, compute the current partial residual

ri = yi −
∑

k′<k

f̂ b
k′(xi)−

∑

k′>k

f̂ b−1
k′ (xi).

ii. Fit a new tree, f̂ b
k(x), to ri, by randomly perturbing the

kth tree from the previous iteration, f̂ b−1
k (x). Perturbations

that improve the fit are favored.

(b) Compute f̂ b(x) =
∑K

k=1 f̂
b
k(x).

4. Compute the mean after L burn-in samples,

f̂(x) =
1

B − L

B∑

b=L+1

f̂ b(x).

When we apply BART, we must select the number of trees K, the number
of iterations B, and the number of burn-in iterations L. We typically choose
large values for B andK, and a moderate value for L: for instance,K = 200,
B = 1,000, and L = 100 is a reasonable choice. BART has been shown to
have very impressive out-of-box performance — that is, it performs well
with minimal tuning.

8.2.5 Summary of Tree Ensemble Methods

Trees are an attractive choice of weak learner for an ensemble method
for a number of reasons, including their flexibility and ability to handle
predictors of mixed types (i.e. qualitative as well as quantitative). We have
now seen four approaches for fitting an ensemble of trees: bagging, random
forests, boosting, and BART.

• In bagging, the trees are grown independently on random samples of
the observations. Consequently, the trees tend to be quite similar to
each other. Thus, bagging can get caught in local optima and can fail
to thoroughly explore the model space.
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FIGURE 8.13. BART and boosting results for the Heart data. Both training
and test errors are displayed. After a burn-in period of 100 iterations (shown in
gray), the error rates for BART settle down. Boosting begins to overfit after a
few hundred iterations.

• In random forests, the trees are once again grown independently on
random samples of the observations. However, each split on each tree
is performed using a random subset of the features, thereby decorre-
lating the trees, and leading to a more thorough exploration of model
space relative to bagging.

• In boosting, we only use the original data, and do not draw any ran-
dom samples. The trees are grown successively, using a “slow” learn-
ing approach: each new tree is fit to the signal that is left over from
the earlier trees, and shrunken down before it is used.

• In BART, we once again only make use of the original data, and we
grow the trees successively. However, each tree is perturbed in order
to avoid local minima and achieve a more thorough exploration of
the model space.
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8.3 Lab: Decision Trees

8.3.1 Fitting Classification Trees

The tree library is used to construct classification and regression trees.

> library(tree)

We first use classification trees to analyze the Carseats data set. In these
data, Sales is a continuous variable, and so we begin by recoding it as a
binary variable. We use the ifelse() function to create a variable, called

ifelse()
High, which takes on a value of Yes if the Sales variable exceeds 8, and
takes on a value of No otherwise.

> library(ISLR2)

> attach(Carseats)

> High <- factor(ifelse(Sales <= 8, "No", "Yes"))

Finally, we use the data.frame() function to merge High with the rest of
the Carseats data.

> Carseats <- data.frame(Carseats , High)

We now use the tree() function to fit a classification tree in order to predict
tree()

High using all variables but Sales. The syntax of the tree() function is quite
similar to that of the lm() function.

> tree.carseats <- tree(High ∼ . - Sales , Carseats)

The summary() function lists the variables that are used as internal nodes
in the tree, the number of terminal nodes, and the (training) error rate.

> summary(tree.carseats)

Classification tree:

tree(formula = High ∼ . - Sales , data = Carseats)

Variables actually used in tree construction:

[1] "ShelveLoc" "Price" "Income" "CompPrice"

[5] "Population" "Advertising" "Age" "US"

Number of terminal nodes: 27

Residual mean deviance: 0.4575 = 170.7 / 373

Misclassification error rate: 0.09 = 36 / 400

We see that the training error rate is 9%. For classification trees, the de-
viance reported in the output of summary() is given by

−2
∑

m

∑

k

nmk log p̂mk,

where nmk is the number of observations in the mth terminal node that
belong to the kth class. This is closely related to the entropy, defined in
(8.7). A small deviance indicates a tree that provides a good fit to the
(training) data. The residual mean deviance reported is simply the deviance
divided by n− |T0|, which in this case is 400− 27 = 373.
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One of the most attractive properties of trees is that they can be
graphically displayed. We use the plot() function to display the tree struc-
ture, and the text() function to display the node labels. The argument
pretty = 0 instructs R to include the category names for any qualitative
predictors, rather than simply displaying a letter for each category.

> plot(tree.carseats)

> text(tree.carseats , pretty = 0)

The most important indicator of Sales appears to be shelving location,
since the first branch differentiates Good locations from Bad and Medium

locations.
If we just type the name of the tree object, R prints output corresponding

to each branch of the tree. R displays the split criterion (e.g. Price < 92.5),
the number of observations in that branch, the deviance, the overall pre-
diction for the branch (Yes or No), and the fraction of observations in that
branch that take on values of Yes and No. Branches that lead to terminal
nodes are indicated using asterisks.

> tree.carseats

node), split , n, deviance , yval , (yprob)

* denotes terminal node

1) root 400 541.5 No ( 0.590 0.410 )

2) ShelveLoc: Bad ,Medium 315 390.6 No ( 0.689 0.311 )

4) Price < 92.5 46 56.53 Yes ( 0.304 0.696 )

8) Income < 57 10 12.22 No ( 0.700 0.300 )

In order to properly evaluate the performance of a classification tree on
these data, we must estimate the test error rather than simply computing
the training error. We split the observations into a training set and a test
set, build the tree using the training set, and evaluate its performance on the
test data. The predict() function can be used for this purpose. In the case
of a classification tree, the argument type = "class" instructs R to return
the actual class prediction. This approach leads to correct predictions for
around 77% of the locations in the test data set.

> set.seed (2)

> train <- sample (1: nrow(Carseats), 200)

> Carseats.test <- Carseats[-train , ]

> High.test <- High[-train]

> tree.carseats <- tree(High ∼ . - Sales , Carseats ,

subset = train)

> tree.pred <- predict(tree.carseats , Carseats.test ,

type = "class")

> table(tree.pred , High.test)

High.test

tree.pred No Yes

No 104 33

Yes 13 50

> (104 + 50) / 200

[1] 0.77
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(If you re-run the predict() function then you might get slightly different
results, due to “ties”: for instance, this can happen when the training ob-
servations corresponding to a terminal node are evenly split between Yes

and No response values.)
Next, we consider whether pruning the tree might lead to improved

results. The function cv.tree() performs cross-validation in order to
cv.tree()

determine the optimal level of tree complexity; cost complexity pruning
is used in order to select a sequence of trees for consideration. We use
the argument FUN = prune.misclass in order to indicate that we want the
classification error rate to guide the cross-validation and pruning process,
rather than the default for the cv.tree() function, which is deviance. The
cv.tree() function reports the number of terminal nodes of each tree con-
sidered (size) as well as the corresponding error rate and the value of the
cost-complexity parameter used (k, which corresponds to α in (8.4)).

> set.seed (7)

> cv.carseats <- cv.tree(tree.carseats , FUN = prune.misclass)

> names(cv.carseats)

[1] "size" "dev" "k" "method"

> cv.carseats

$size

[1] 21 19 14 9 8 5 3 2 1

$dev

[1] 75 75 75 74 82 83 83 85 82

$k

[1] -Inf 0.0 1.0 1.4 2.0 3.0 4.0 9.0 18.0

$method

[1] "misclass"

attr(,"class")

[1] "prune" "tree.sequence"

Despite its name, dev corresponds to the number of cross-validation errors.
The tree with 9 terminal nodes results in only 74 cross-validation errors.
We plot the error rate as a function of both size and k.

> par(mfrow = c(1, 2))

> plot(cv.carseats$size , cv.carseats$dev, type = "b")

> plot(cv.carseats$k, cv.carseats$dev, type = "b")

We now apply the prune.misclass() function in order to prune the tree to
obtain the nine-node tree.

> prune.carseats <- prune.misclass(tree.carseats , best = 9)

> plot(prune.carseats)

> text(prune.carseats , pretty = 0)

How well does this pruned tree perform on the test data set? Once again,
we apply the predict() function.

> tree.pred <- predict(prune.carseats , Carseats.test ,

type = "class")

> table(tree.pred , High.test)

High.test

prune.misclass()



356 8. Tree-Based Methods

tree.pred No Yes

No 97 25

Yes 20 58

> (97 + 58) / 200

[1] 0.775

Now 77.5% of the test observations are correctly classified, so not only has
the pruning process produced a more interpretable tree, but it has also
slightly improved the classification accuracy.
If we increase the value of best, we obtain a larger pruned tree with lower

classification accuracy:

> prune.carseats <- prune.misclass(tree.carseats , best = 14)

> plot(prune.carseats)

> text(prune.carseats , pretty = 0)

> tree.pred <- predict(prune.carseats , Carseats.test ,

type = "class")

> table(tree.pred , High.test)

High.test

tree.pred No Yes

No 102 31

Yes 15 52

> (102 + 52) / 200

[1] 0.77

8.3.2 Fitting Regression Trees

Here we fit a regression tree to the Boston data set. First, we create a
training set, and fit the tree to the training data.

> set.seed (1)

> train <- sample (1: nrow(Boston), nrow(Boston) / 2)

> tree.boston <- tree(medv ∼ ., Boston , subset = train)

> summary(tree.boston)

Regression tree:

tree(formula = medv ∼ ., data = Boston , subset = train)

Variables actually used in tree construction:

[1] "rm" "lstat" "crim" "age"

Number of terminal nodes: 7

Residual mean deviance: 10.4 = 2550 / 246

Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-10.200 -1.780 -0.177 0.000 1.920 16.600

Notice that the output of summary() indicates that only four of the variables
have been used in constructing the tree. In the context of a regression tree,
the deviance is simply the sum of squared errors for the tree. We now plot
the tree.

> plot(tree.boston)

> text(tree.boston , pretty = 0)
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The variable lstat measures the percentage of individuals with lower
socioeconomic status, while the variable rm corresponds to the average num-
ber of rooms. The tree indicates that larger values of rm, or lower values of
lstat, correspond to more expensive houses. For example, the tree predicts
a median house price of $45,400 for homes in census tracts in which rm >=

7.553.
It is worth noting that we could have fit a much bigger tree, by pass-

ing control = tree.control(nobs = length(train), mindev = 0) into the
tree() function.
Now we use the cv.tree() function to see whether pruning the tree will

improve performance.

> cv.boston <- cv.tree(tree.boston)

> plot(cv.boston$size , cv.boston$dev, type = "b")

In this case, the most complex tree under consideration is selected by cross-
validation. However, if we wish to prune the tree, we could do so as follows,
using the prune.tree() function:

prune.tree()

> prune.boston <- prune.tree(tree.boston , best = 5)

> plot(prune.boston)

> text(prune.boston , pretty = 0)

In keeping with the cross-validation results, we use the unpruned tree to
make predictions on the test set.

> yhat <- predict(tree.boston , newdata = Boston[-train , ])

> boston.test <- Boston[-train , "medv"]

> plot(yhat , boston.test)

> abline(0, 1)

> mean((yhat - boston.test)^2)

[1] 35.29

In other words, the test set MSE associated with the regression tree is 35.29.
The square root of the MSE is therefore around 5.941, indicating that this
model leads to test predictions that are (on average) within approximately
$5,941 of the true median home value for the census tract.

8.3.3 Bagging and Random Forests

Here we apply bagging and random forests to the Boston data, using the
randomForest package in R. The exact results obtained in this section may
depend on the version of R and the version of the randomForest package
installed on your computer. Recall that bagging is simply a special case of
a random forest with m = p. Therefore, the randomForest() function can

randomForest()
be used to perform both random forests and bagging. We perform bagging
as follows:

> library(randomForest)

> set.seed (1)

> bag.boston <- randomForest(medv ∼ ., data = Boston ,
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subset = train , mtry = 12, importance = TRUE)

> bag.boston

Call:

randomForest(formula = medv ∼ ., data = Boston , mtry = 12,

importance = TRUE , subset = train)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 12

Mean of squared residuals: 11.40

% Var explained: 85.17

The argument mtry = 12 indicates that all 12 predictors should be consid-
ered for each split of the tree—in other words, that bagging should be done.
How well does this bagged model perform on the test set?

> yhat.bag <- predict(bag.boston , newdata = Boston[-train , ])

> plot(yhat.bag , boston.test)

> abline(0, 1)

> mean((yhat.bag - boston.test)^2)

[1] 23.42

The test set MSE associated with the bagged regression tree is 23.42, about
two-thirds of that obtained using an optimally-pruned single tree. We could
change the number of trees grown by randomForest() using the ntree argu-
ment:

> bag.boston <- randomForest(medv ∼ ., data = Boston ,

subset = train , mtry = 12, ntree = 25)

> yhat.bag <- predict(bag.boston , newdata = Boston[-train , ])

> mean((yhat.bag - boston.test)^2)

[1] 25.75

Growing a random forest proceeds in exactly the same way, except that
we use a smaller value of the mtry argument. By default, randomForest()
uses p/3 variables when building a random forest of regression trees, and√
p variables when building a random forest of classification trees. Here we

use mtry = 6.

> set.seed (1)

> rf.boston <- randomForest(medv ∼ ., data = Boston ,

subset = train , mtry = 6, importance = TRUE)

> yhat.rf <- predict(rf.boston , newdata = Boston[-train , ])

> mean((yhat.rf - boston.test)^2)

[1] 20.07

The test set MSE is 20.07; this indicates that random forests yielded an
improvement over bagging in this case.
Using the importance() function, we can view the importance of each

importance()
variable.

> importance(rf.boston)

%IncMSE IncNodePurity

crim 19.436 1070.42
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zn 3.092 82.19

indus 6.141 590.10

chas 1.370 36.70

nox 13.263 859.97

rm 35.095 8270.34

age 15.145 634.31

dis 9.164 684.88

rad 4.794 83.19

tax 4.411 292.21

ptratio 8.613 902.20

lstat 28.725 5813.05

Two measures of variable importance are reported. The first is based upon
the mean decrease of accuracy in predictions on the out of bag samples when
a given variable is permuted. The second is a measure of the total decrease
in node impurity that results from splits over that variable, averaged over
all trees (this was plotted in Figure 8.9). In the case of regression trees,
the node impurity is measured by the training RSS, and for classification
trees by the deviance. Plots of these importance measures can be produced
using the varImpPlot() function.

varImpPlot()
> varImpPlot(rf.boston)

The results indicate that across all of the trees considered in the random
forest, the wealth of the community (lstat) and the house size (rm) are by
far the two most important variables.

8.3.4 Boosting

Here we use the gbm package, and within it the gbm() function, to fit boosted
gbm()

regression trees to the Boston data set. We run gbm() with the option
distribution = "gaussian" since this is a regression problem; if it were
a binary classification problem, we would use distribution = "bernoulli".
The argument n.trees = 5000 indicates that we want 5000 trees, and the
option interaction.depth = 4 limits the depth of each tree.

> library(gbm)

> set.seed (1)

> boost.boston <- gbm(medv ∼ ., data = Boston[train , ],

distribution = "gaussian", n.trees = 5000,

interaction.depth = 4)

The summary() function produces a relative influence plot and also outputs
the relative influence statistics.

> summary(boost.boston)

var rel.inf

rm rm 44.482

lstat lstat 32.703

crim crim 4.851

dis dis 4.487

nox nox 3.752
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age age 3.198

ptratio ptratio 2.814

tax tax 1.544

indus indus 1.034

rad rad 0.876

zn zn 0.162

chas chas 0.097

We see that lstat and rm are by far the most important variables. We can
also produce partial dependence plots for these two variables. These plots

partial
dependence
plot

illustrate the marginal effect of the selected variables on the response after
integrating out the other variables. In this case, as we might expect, median
house prices are increasing with rm and decreasing with lstat.

> plot(boost.boston , i = "rm")

> plot(boost.boston , i = "lstat")

We now use the boosted model to predict medv on the test set:

> yhat.boost <- predict(boost.boston ,

newdata = Boston[-train , ], n.trees = 5000)

> mean((yhat.boost - boston.test)^2)

[1] 18.39

The test MSE obtained is 18.39: this is superior to the test MSE of random
forests and bagging. If we want to, we can perform boosting with a different
value of the shrinkage parameter λ in (8.10). The default value is 0.001,
but this is easily modified. Here we take λ = 0.2.

> boost.boston <- gbm(medv ∼ ., data = Boston[train , ],

distribution = "gaussian", n.trees = 5000,

interaction.depth = 4, shrinkage = 0.2, verbose = F)

> yhat.boost <- predict(boost.boston ,

newdata = Boston[-train , ], n.trees = 5000)

> mean((yhat.boost - boston.test)^2)

[1] 16.55

In this case, using λ = 0.2 leads to a lower test MSE than λ = 0.001.

8.3.5 Bayesian Additive Regression Trees

In this section we use the BART package, and within it the gbart() function,
gbart()

to fit a Bayesian additive regression tree model to the Boston housing data
set. The gbart() function is designed for quantitative outcome variables.
For binary outcomes, lbart() and pbart() are available.

lbart()

pbart()
To run the gbart() function, we must first create matrices of predictors

for the training and test data. We run BART with default settings.

> library(BART)

> x <- Boston[, 1:12]

> y <- Boston[, "medv"]

> xtrain <- x[train , ]

> ytrain <- y[train]



8.4 Exercises 361

> xtest <- x[-train , ]

> ytest <- y[-train]

> set.seed (1)

> bartfit <- gbart(xtrain , ytrain , x.test = xtest)

Next we compute the test error.

> yhat.bart <- bartfit$yhat.test.mean

> mean(( ytest - yhat.bart)^2)

[1] 15.95

On this data set, the test error of BART is lower than the test error of
random forests and boosting.
Now we can check how many times each variable appeared in the collec-

tion of trees.

> ord <- order(bartfit$varcount.mean , decreasing = T)

> bartfit$varcount.mean[ord]

nox lstat tax rad rm indus chas ptratio

22.95 21.33 21.25 20.78 19.89 19.82 19.05 18.98

age zn dis crim

18.27 15.95 14.46 11.01

8.4 Exercises

Conceptual

1. Draw an example (of your own invention) of a partition of two-
dimensional feature space that could result from recursive binary
splitting. Your example should contain at least six regions. Draw a
decision tree corresponding to this partition. Be sure to label all as-
pects of your figures, including the regions R1, R2, . . ., the cutpoints
t1, t2, . . ., and so forth.

Hint: Your result should look something like Figures 8.1 and 8.2.

2. It is mentioned in Section 8.2.3 that boosting using depth-one trees
(or stumps) leads to an additive model: that is, a model of the form

f(X) =
p∑

j=1

fj(Xj).

Explain why this is the case. You can begin with (8.12) in
Algorithm 8.2.

3. Consider the Gini index, classification error, and entropy in a simple
classification setting with two classes. Create a single plot that dis-
plays each of these quantities as a function of p̂m1. The x-axis should
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FIGURE 8.14. Left: A partition of the predictor space corresponding to Exer-
cise 4a. Right: A tree corresponding to Exercise 4b.

display p̂m1, ranging from 0 to 1, and the y-axis should display the
value of the Gini index, classification error, and entropy.

Hint: In a setting with two classes, p̂m1 = 1 − p̂m2. You could make
this plot by hand, but it will be much easier to make in R.

4. This question relates to the plots in Figure 8.14.

(a) Sketch the tree corresponding to the partition of the predictor
space illustrated in the left-hand panel of Figure 8.14. The num-
bers inside the boxes indicate the mean of Y within each region.

(b) Create a diagram similar to the left-hand panel of Figure 8.14,
using the tree illustrated in the right-hand panel of the same
figure. You should divide up the predictor space into the correct
regions, and indicate the mean for each region.

5. Suppose we produce ten bootstrapped samples from a data set
containing red and green classes. We then apply a classification tree
to each bootstrapped sample and, for a specific value of X, produce
10 estimates of P (Class is Red|X):

0.1, 0.15, 0.2, 0.2, 0.55, 0.6, 0.6, 0.65, 0.7, and 0.75.

There are two common ways to combine these results together into a
single class prediction. One is the majority vote approach discussed in
this chapter. The second approach is to classify based on the average
probability. In this example, what is the final classification under each
of these two approaches?

6. Provide a detailed explanation of the algorithm that is used to fit a
regression tree.
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Applied

7. In the lab, we applied random forests to the Boston data using mtry =

6 and using ntree = 25 and ntree = 500. Create a plot displaying the
test error resulting from random forests on this data set for a more
comprehensive range of values for mtry and ntree. You can model
your plot after Figure 8.10. Describe the results obtained.

8. In the lab, a classification tree was applied to the Carseats data set af-
ter converting Sales into a qualitative response variable. Now we will
seek to predict Sales using regression trees and related approaches,
treating the response as a quantitative variable.

(a) Split the data set into a training set and a test set.

(b) Fit a regression tree to the training set. Plot the tree, and inter-
pret the results. What test MSE do you obtain?

(c) Use cross-validation in order to determine the optimal level of
tree complexity. Does pruning the tree improve the test MSE?

(d) Use the bagging approach in order to analyze this data. What
test MSE do you obtain? Use the importance() function to de-
termine which variables are most important.

(e) Use random forests to analyze this data. What test MSE do you
obtain? Use the importance() function to determine which vari-
ables are most important. Describe the effect ofm, the number of
variables considered at each split, on the error rate
obtained.

(f) Now analyze the data using BART, and report your results.

9. This problem involves the OJ data set which is part of the ISLR2

package.

(a) Create a training set containing a random sample of 800 obser-
vations, and a test set containing the remaining observations.

(b) Fit a tree to the training data, with Purchase as the response
and the other variables as predictors. Use the summary() function
to produce summary statistics about the tree, and describe the
results obtained. What is the training error rate? How many
terminal nodes does the tree have?

(c) Type in the name of the tree object in order to get a detailed
text output. Pick one of the terminal nodes, and interpret the
information displayed.

(d) Create a plot of the tree, and interpret the results.

(e) Predict the response on the test data, and produce a confusion
matrix comparing the test labels to the predicted test labels.
What is the test error rate?
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(f) Apply the cv.tree() function to the training set in order to
determine the optimal tree size.

(g) Produce a plot with tree size on the x-axis and cross-validated
classification error rate on the y-axis.

(h) Which tree size corresponds to the lowest cross-validated classi-
fication error rate?

(i) Produce a pruned tree corresponding to the optimal tree size
obtained using cross-validation. If cross-validation does not lead
to selection of a pruned tree, then create a pruned tree with five
terminal nodes.

(j) Compare the training error rates between the pruned and un-
pruned trees. Which is higher?

(k) Compare the test error rates between the pruned and unpruned
trees. Which is higher?

10. We now use boosting to predict Salary in the Hitters data set.

(a) Remove the observations for whom the salary information is
unknown, and then log-transform the salaries.

(b) Create a training set consisting of the first 200 observations, and
a test set consisting of the remaining observations.

(c) Perform boosting on the training set with 1,000 trees for a range
of values of the shrinkage parameter λ. Produce a plot with
different shrinkage values on the x-axis and the corresponding
training set MSE on the y-axis.

(d) Produce a plot with different shrinkage values on the x-axis and
the corresponding test set MSE on the y-axis.

(e) Compare the test MSE of boosting to the test MSE that results
from applying two of the regression approaches seen in
Chapters 3 and 6.

(f) Which variables appear to be the most important predictors in
the boosted model?

(g) Now apply bagging to the training set. What is the test set MSE
for this approach?

11. This question uses the Caravan data set.

(a) Create a training set consisting of the first 1,000 observations,
and a test set consisting of the remaining observations.

(b) Fit a boosting model to the training set with Purchase as the
response and the other variables as predictors. Use 1,000 trees,
and a shrinkage value of 0.01. Which predictors appear to be
the most important?
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(c) Use the boosting model to predict the response on the test data.
Predict that a person will make a purchase if the estimated prob-
ability of purchase is greater than 20%. Form a confusion ma-
trix. What fraction of the people predicted to make a purchase
do in fact make one? How does this compare with the results
obtained from applying KNN or logistic regression to this data
set?

12. Apply boosting, bagging, random forests, and BART to a data set
of your choice. Be sure to fit the models on a training set and to
evaluate their performance on a test set. How accurate are the results
compared to simple methods like linear or logistic regression? Which
of these approaches yields the best performance?



9
Support Vector Machines

In this chapter, we discuss the support vector machine (SVM), an approach
for classification that was developed in the computer science community in
the 1990s and that has grown in popularity since then. SVMs have been
shown to perform well in a variety of settings, and are often considered one
of the best “out of the box” classifiers.
The support vector machine is a generalization of a simple and intu-

itive classifier called the maximal margin classifier , which we introduce in
Section 9.1. Though it is elegant and simple, we will see that this classifier
unfortunately cannot be applied to most data sets, since it requires that
the classes be separable by a linear boundary. In Section 9.2, we introduce
the support vector classifier , an extension of the maximal margin classifier
that can be applied in a broader range of cases. Section 9.3 introduces the
support vector machine, which is a further extension of the support vec-
tor classifier in order to accommodate non-linear class boundaries. Support
vector machines are intended for the binary classification setting in which
there are two classes; in Section 9.4 we discuss extensions of support vector
machines to the case of more than two classes. In Section 9.5 we discuss
the close connections between support vector machines and other statistical
methods such as logistic regression.
People often loosely refer to the maximal margin classifier, the support

vector classifier, and the support vector machine as “support vector
machines”. To avoid confusion, we will carefully distinguish between these
three notions in this chapter.
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9.1 Maximal Margin Classifier

In this section, we define a hyperplane and introduce the concept of an
optimal separating hyperplane.

9.1.1 What Is a Hyperplane?

In a p-dimensional space, a hyperplane is a flat affine subspace of
hyperplane

dimension p − 1.1 For instance, in two dimensions, a hyperplane is a flat
one-dimensional subspace—in other words, a line. In three dimensions, a
hyperplane is a flat two-dimensional subspace—that is, a plane. In p > 3
dimensions, it can be hard to visualize a hyperplane, but the notion of a
(p− 1)-dimensional flat subspace still applies.
The mathematical definition of a hyperplane is quite simple. In two di-

mensions, a hyperplane is defined by the equation

β0 + β1X1 + β2X2 = 0 (9.1)

for parameters β0,β1, and β2. When we say that (9.1) “defines” the hyper-
plane, we mean that any X = (X1, X2)T for which (9.1) holds is a point
on the hyperplane. Note that (9.1) is simply the equation of a line, since
indeed in two dimensions a hyperplane is a line.
Equation 9.1 can be easily extended to the p-dimensional setting:

β0 + β1X1 + β2X2 + · · ·+ βpXp = 0 (9.2)

defines a p-dimensional hyperplane, again in the sense that if a point X =
(X1, X2, . . . , Xp)T in p-dimensional space (i.e. a vector of length p) satisfies
(9.2), then X lies on the hyperplane.
Now, suppose that X does not satisfy (9.2); rather,

β0 + β1X1 + β2X2 + · · ·+ βpXp > 0. (9.3)

Then this tells us that X lies to one side of the hyperplane. On the other
hand, if

β0 + β1X1 + β2X2 + · · ·+ βpXp < 0, (9.4)

then X lies on the other side of the hyperplane. So we can think of the
hyperplane as dividing p-dimensional space into two halves. One can easily
determine on which side of the hyperplane a point lies by simply calculating
the sign of the left hand side of (9.2). A hyperplane in two-dimensional
space is shown in Figure 9.1.

1The word affine indicates that the subspace need not pass through the origin.
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FIGURE 9.1. The hyperplane 1 + 2X1 + 3X2 = 0 is shown. The blue region is
the set of points for which 1+ 2X1 +3X2 > 0, and the purple region is the set of
points for which 1 + 2X1 + 3X2 < 0.

9.1.2 Classification Using a Separating Hyperplane

Now suppose that we have a n×p data matrix X that consists of n training
observations in p-dimensional space,

x1 =

⎛

⎜⎝
x11
...

x1p

⎞

⎟⎠ , . . . , xn =

⎛

⎜⎝
xn1
...

xnp

⎞

⎟⎠ , (9.5)

and that these observations fall into two classes—that is, y1, . . . , yn ∈
{−1, 1} where −1 represents one class and 1 the other class. We also have a

test observation, a p-vector of observed features x∗ =
(
x∗
1 . . . x∗

p

)T
. Our

goal is to develop a classifier based on the training data that will correctly
classify the test observation using its feature measurements. We have seen
a number of approaches for this task, such as linear discriminant analysis
and logistic regression in Chapter 4, and classification trees, bagging, and
boosting in Chapter 8. We will now see a new approach that is based upon
the concept of a separating hyperplane.

separating
hyperplaneSuppose that it is possible to construct a hyperplane that separates the

training observations perfectly according to their class labels. Examples
of three such separating hyperplanes are shown in the left-hand panel of
Figure 9.2. We can label the observations from the blue class as yi = 1 and
those from the purple class as yi = −1. Then a separating hyperplane has
the property that

β0 + β1xi1 + β2xi2 + · · ·+ βpxip > 0 if yi = 1, (9.6)
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FIGURE 9.2. Left: There are two classes of observations, shown in blue and
in purple, each of which has measurements on two variables. Three separating
hyperplanes, out of many possible, are shown in black. Right: A separating hy-
perplane is shown in black. The blue and purple grid indicates the decision rule
made by a classifier based on this separating hyperplane: a test observation that
falls in the blue portion of the grid will be assigned to the blue class, and a test
observation that falls into the purple portion of the grid will be assigned to the
purple class.

and
β0 + β1xi1 + β2xi2 + · · ·+ βpxip < 0 if yi = −1. (9.7)

Equivalently, a separating hyperplane has the property that

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) > 0 (9.8)

for all i = 1, . . . , n.
If a separating hyperplane exists, we can use it to construct a very natural

classifier: a test observation is assigned a class depending on which side of
the hyperplane it is located. The right-hand panel of Figure 9.2 shows
an example of such a classifier. That is, we classify the test observation x∗

based on the sign of f(x∗) = β0+β1x∗
1+β2x∗

2+· · ·+βpx∗
p. If f(x

∗) is positive,
then we assign the test observation to class 1, and if f(x∗) is negative, then
we assign it to class −1. We can also make use of the magnitude of f(x∗). If
f(x∗) is far from zero, then this means that x∗ lies far from the hyperplane,
and so we can be confident about our class assignment for x∗. On the other
hand, if f(x∗) is close to zero, then x∗ is located near the hyperplane, and so
we are less certain about the class assignment for x∗. Not surprisingly, and
as we see in Figure 9.2, a classifier that is based on a separating hyperplane
leads to a linear decision boundary.
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9.1.3 The Maximal Margin Classifier

In general, if our data can be perfectly separated using a hyperplane, then
there will in fact exist an infinite number of such hyperplanes. This is
because a given separating hyperplane can usually be shifted a tiny bit up or
down, or rotated, without coming into contact with any of the observations.
Three possible separating hyperplanes are shown in the left-hand panel
of Figure 9.2. In order to construct a classifier based upon a separating
hyperplane, we must have a reasonable way to decide which of the infinite
possible separating hyperplanes to use.
A natural choice is the maximal margin hyperplane (also known as the

maximal
margin
hyperplane

optimal separating hyperplane), which is the separating hyperplane that

optimal
separating
hyperplane

is farthest from the training observations. That is, we can compute the
(perpendicular) distance from each training observation to a given separat-
ing hyperplane; the smallest such distance is the minimal distance from the
observations to the hyperplane, and is known as the margin. The maximal

marginmargin hyperplane is the separating hyperplane for which the margin is
largest—that is, it is the hyperplane that has the farthest minimum dis-
tance to the training observations. We can then classify a test observation
based on which side of the maximal margin hyperplane it lies. This is known
as the maximal margin classifier. We hope that a classifier that has a large

maximal
margin
classifier

margin on the training data will also have a large margin on the test data,
and hence will classify the test observations correctly. Although the maxi-
mal margin classifier is often successful, it can also lead to overfitting when
p is large.
If β0,β1, . . . ,βp are the coefficients of the maximal margin hyperplane,

then the maximal margin classifier classifies the test observation x∗ based
on the sign of f(x∗) = β0 + β1x∗

1 + β2x∗
2 + · · ·+ βpx∗

p.
Figure 9.3 shows the maximal margin hyperplane on the data set of

Figure 9.2. Comparing the right-hand panel of Figure 9.2 to Figure 9.3,
we see that the maximal margin hyperplane shown in Figure 9.3 does in-
deed result in a greater minimal distance between the observations and the
separating hyperplane—that is, a larger margin. In a sense, the maximal
margin hyperplane represents the mid-line of the widest “slab” that we can
insert between the two classes.
Examining Figure 9.3, we see that three training observations are equidis-

tant from the maximal margin hyperplane and lie along the dashed lines
indicating the width of the margin. These three observations are known as
support vectors, since they are vectors in p-dimensional space (in Figure 9.3,

support
vectorp = 2) and they “support” the maximal margin hyperplane in the sense

that if these points were moved slightly then the maximal margin hyper-
plane would move as well. Interestingly, the maximal margin hyperplane
depends directly on the support vectors, but not on the other observations:
a movement to any of the other observations would not affect the separating
hyperplane, provided that the observation’s movement does not cause it to
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FIGURE 9.3. There are two classes of observations, shown in blue and in pur-
ple. The maximal margin hyperplane is shown as a solid line. The margin is the
distance from the solid line to either of the dashed lines. The two blue points and
the purple point that lie on the dashed lines are the support vectors, and the dis-
tance from those points to the hyperplane is indicated by arrows. The purple and
blue grid indicates the decision rule made by a classifier based on this separating
hyperplane.

cross the boundary set by the margin. The fact that the maximal margin
hyperplane depends directly on only a small subset of the observations is
an important property that will arise later in this chapter when we discuss
the support vector classifier and support vector machines.

9.1.4 Construction of the Maximal Margin Classifier

We now consider the task of constructing the maximal margin hyperplane
based on a set of n training observations x1, . . . , xn ∈ Rp and associated
class labels y1, . . . , yn ∈ {−1, 1}. Briefly, the maximal margin hyperplane
is the solution to the optimization problem

maximize
β0,β1,...,βp,M

M (9.9)

subject to
p∑

j=1

β2
j = 1, (9.10)

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥M ∀ i = 1, . . . , n. (9.11)

This optimization problem (9.9)–(9.11) is actually simpler than it looks.
First of all, the constraint in (9.11) that

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥M ∀ i = 1, . . . , n
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guarantees that each observation will be on the correct side of the hyper-
plane, provided that M is positive. (Actually, for each observation to be on
the correct side of the hyperplane we would simply need yi(β0 + β1xi1 +
β2xi2+· · ·+βpxip) > 0, so the constraint in (9.11) in fact requires that each
observation be on the correct side of the hyperplane, with some cushion,
provided that M is positive.)
Second, note that (9.10) is not really a constraint on the hyperplane, since

if β0 + β1xi1 + β2xi2 + · · · + βpxip = 0 defines a hyperplane, then so does
k(β0+β1xi1+β2xi2+ · · ·+βpxip) = 0 for any k ̸= 0. However, (9.10) adds
meaning to (9.11); one can show that with this constraint the perpendicular
distance from the ith observation to the hyperplane is given by

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip).

Therefore, the constraints (9.10) and (9.11) ensure that each observation
is on the correct side of the hyperplane and at least a distance M from the
hyperplane. Hence, M represents the margin of our hyperplane, and the
optimization problem chooses β0,β1, . . . ,βp to maximize M . This is exactly
the definition of the maximal margin hyperplane! The problem (9.9)–(9.11)
can be solved efficiently, but details of this optimization are outside of the
scope of this book.

9.1.5 The Non-separable Case

The maximal margin classifier is a very natural way to perform classifi-
cation, if a separating hyperplane exists. However, as we have hinted, in
many cases no separating hyperplane exists, and so there is no maximal
margin classifier. In this case, the optimization problem (9.9)–(9.11) has no
solution with M > 0. An example is shown in Figure 9.4. In this case, we
cannot exactly separate the two classes. However, as we will see in the next
section, we can extend the concept of a separating hyperplane in order to
develop a hyperplane that almost separates the classes, using a so-called
soft margin. The generalization of the maximal margin classifier to the
non-separable case is known as the support vector classifier.

9.2 Support Vector Classifiers

9.2.1 Overview of the Support Vector Classifier

In Figure 9.4, we see that observations that belong to two classes are not
necessarily separable by a hyperplane. In fact, even if a separating hyper-
plane does exist, then there are instances in which a classifier based on
a separating hyperplane might not be desirable. A classifier based on a
separating hyperplane will necessarily perfectly classify all of the training
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FIGURE 9.4. There are two classes of observations, shown in blue and in pur-
ple. In this case, the two classes are not separable by a hyperplane, and so the
maximal margin classifier cannot be used.

observations; this can lead to sensitivity to individual observations. An ex-
ample is shown in Figure 9.5. The addition of a single observation in the
right-hand panel of Figure 9.5 leads to a dramatic change in the maxi-
mal margin hyperplane. The resulting maximal margin hyperplane is not
satisfactory—for one thing, it has only a tiny margin. This is problematic
because as discussed previously, the distance of an observation from the
hyperplane can be seen as a measure of our confidence that the obser-
vation was correctly classified. Moreover, the fact that the maximal mar-
gin hyperplane is extremely sensitive to a change in a single observation
suggests that it may have overfit the training data.
In this case, we might be willing to consider a classifier based on a hy-

perplane that does not perfectly separate the two classes, in the interest of

• Greater robustness to individual observations, and

• Better classification of most of the training observations.

That is, it could be worthwhile to misclassify a few training observations
in order to do a better job in classifying the remaining observations.
The support vector classifier, sometimes called a soft margin classifier,

support
vector
classifier
soft margin
classifier

does exactly this. Rather than seeking the largest possible margin so that
every observation is not only on the correct side of the hyperplane but
also on the correct side of the margin, we instead allow some observations
to be on the incorrect side of the margin, or even the incorrect side of
the hyperplane. (The margin is soft because it can be violated by some
of the training observations.) An example is shown in the left-hand panel
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FIGURE 9.5. Left: Two classes of observations are shown in blue and in
purple, along with the maximal margin hyperplane. Right: An additional blue
observation has been added, leading to a dramatic shift in the maximal margin
hyperplane shown as a solid line. The dashed line indicates the maximal margin
hyperplane that was obtained in the absence of this additional point.

of Figure 9.6. Most of the observations are on the correct side of the margin.
However, a small subset of the observations are on the wrong side of the
margin.
An observation can be not only on the wrong side of the margin, but also

on the wrong side of the hyperplane. In fact, when there is no separating
hyperplane, such a situation is inevitable. Observations on the wrong side of
the hyperplane correspond to training observations that are misclassified by
the support vector classifier. The right-hand panel of Figure 9.6 illustrates
such a scenario.

9.2.2 Details of the Support Vector Classifier

The support vector classifier classifies a test observation depending on
which side of a hyperplane it lies. The hyperplane is chosen to correctly
separate most of the training observations into the two classes, but may
misclassify a few observations. It is the solution to the optimization problem

maximize
β0,β1,...,βp,ϵ1,...,ϵn,M

M (9.12)

subject to
p∑

j=1

β2
j = 1, (9.13)

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥M(1− ϵi), (9.14)

ϵi ≥ 0,
n∑

i=1

ϵi ≤ C, (9.15)
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FIGURE 9.6. Left: A support vector classifier was fit to a small data set. The
hyperplane is shown as a solid line and the margins are shown as dashed lines.
Purple observations: Observations 3, 4, 5, and 6 are on the correct side of the
margin, observation 2 is on the margin, and observation 1 is on the wrong side of
the margin. Blue observations: Observations 7 and 10 are on the correct side of
the margin, observation 9 is on the margin, and observation 8 is on the wrong side
of the margin. No observations are on the wrong side of the hyperplane. Right:
Same as left panel with two additional points, 11 and 12. These two observations
are on the wrong side of the hyperplane and the wrong side of the margin.

where C is a nonnegative tuning parameter. As in (9.11), M is the width
of the margin; we seek to make this quantity as large as possible. In (9.14),
ϵ1, . . . , ϵn are slack variables that allow individual observations to be on

slack
variablethe wrong side of the margin or the hyperplane; we will explain them in

greater detail momentarily. Once we have solved (9.12)–(9.15), we classify
a test observation x∗ as before, by simply determining on which side of the
hyperplane it lies. That is, we classify the test observation based on the
sign of f(x∗) = β0 + β1x∗

1 + · · ·+ βpx∗
p.

The problem (9.12)–(9.15) seems complex, but insight into its behavior
can be made through a series of simple observations presented below. First
of all, the slack variable ϵi tells us where the ith observation is located,
relative to the hyperplane and relative to the margin. If ϵi = 0 then the ith
observation is on the correct side of the margin, as we saw in Section 9.1.4.
If ϵi > 0 then the ith observation is on the wrong side of the margin, and
we say that the ith observation has violated the margin. If ϵi > 1 then it
is on the wrong side of the hyperplane.
We now consider the role of the tuning parameter C. In (9.15), C bounds

the sum of the ϵi’s, and so it determines the number and severity of the vio-
lations to the margin (and to the hyperplane) that we will tolerate. We can
think of C as a budget for the amount that the margin can be violated
by the n observations. If C = 0 then there is no budget for violations to
the margin, and it must be the case that ϵ1 = · · · = ϵn = 0, in which case
(9.12)–(9.15) simply amounts to the maximal margin hyperplane optimiza-
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tion problem (9.9)–(9.11). (Of course, a maximal margin hyperplane exists
only if the two classes are separable.) For C > 0 no more than C observa-
tions can be on the wrong side of the hyperplane, because if an observation
is on the wrong side of the hyperplane then ϵi > 1, and (9.15) requires
that

∑n
i=1 ϵi ≤ C. As the budget C increases, we become more tolerant of

violations to the margin, and so the margin will widen. Conversely, as C
decreases, we become less tolerant of violations to the margin and so the
margin narrows. An example is shown in Figure 9.7.
In practice, C is treated as a tuning parameter that is generally chosen via

cross-validation. As with the tuning parameters that we have seen through-
out this book, C controls the bias-variance trade-off of the statistical learn-
ing technique. When C is small, we seek narrow margins that are rarely
violated; this amounts to a classifier that is highly fit to the data, which
may have low bias but high variance. On the other hand, when C is larger,
the margin is wider and we allow more violations to it; this amounts to
fitting the data less hard and obtaining a classifier that is potentially more
biased but may have lower variance.
The optimization problem (9.12)–(9.15) has a very interesting property:

it turns out that only observations that either lie on the margin or that
violate the margin will affect the hyperplane, and hence the classifier ob-
tained. In other words, an observation that lies strictly on the correct side
of the margin does not affect the support vector classifier! Changing the
position of that observation would not change the classifier at all, provided
that its position remains on the correct side of the margin. Observations
that lie directly on the margin, or on the wrong side of the margin for
their class, are known as support vectors. These observations do affect the
support vector classifier.
The fact that only support vectors affect the classifier is in line with our

previous assertion that C controls the bias-variance trade-off of the support
vector classifier. When the tuning parameter C is large, then the margin is
wide, many observations violate the margin, and so there are many support
vectors. In this case, many observations are involved in determining the
hyperplane. The top left panel in Figure 9.7 illustrates this setting: this
classifier has low variance (since many observations are support vectors)
but potentially high bias. In contrast, if C is small, then there will be fewer
support vectors and hence the resulting classifier will have low bias but
high variance. The bottom right panel in Figure 9.7 illustrates this setting,
with only eight support vectors.
The fact that the support vector classifier’s decision rule is based only

on a potentially small subset of the training observations (the support vec-
tors) means that it is quite robust to the behavior of observations that
are far away from the hyperplane. This property is distinct from some of
the other classification methods that we have seen in preceding chapters,
such as linear discriminant analysis. Recall that the LDA classification rule
depends on the mean of all of the observations within each class, as well as
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FIGURE 9.7. A support vector classifier was fit using four different values of the
tuning parameter C in (9.12)–(9.15). The largest value of C was used in the top
left panel, and smaller values were used in the top right, bottom left, and bottom
right panels. When C is large, then there is a high tolerance for observations being
on the wrong side of the margin, and so the margin will be large. As C decreases,
the tolerance for observations being on the wrong side of the margin decreases,
and the margin narrows.

the within-class covariance matrix computed using all of the observations.
In contrast, logistic regression, unlike LDA, has very low sensitivity to ob-
servations far from the decision boundary. In fact we will see in Section 9.5
that the support vector classifier and logistic regression are closely related.
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FIGURE 9.8. Left: The observations fall into two classes, with a non-linear
boundary between them. Right: The support vector classifier seeks a linear bound-
ary, and consequently performs very poorly.

9.3 Support Vector Machines

We first discuss a general mechanism for converting a linear classifier into
one that produces non-linear decision boundaries. We then introduce the
support vector machine, which does this in an automatic way.

9.3.1 Classification with Non-Linear Decision Boundaries

The support vector classifier is a natural approach for classification in the
two-class setting, if the boundary between the two classes is linear. How-
ever, in practice we are sometimes faced with non-linear class boundaries.
For instance, consider the data in the left-hand panel of Figure 9.8. It is
clear that a support vector classifier or any linear classifier will perform
poorly here. Indeed, the support vector classifier shown in the right-hand
panel of Figure 9.8 is useless here.
In Chapter 7, we are faced with an analogous situation. We see there

that the performance of linear regression can suffer when there is a non-
linear relationship between the predictors and the outcome. In that case,
we consider enlarging the feature space using functions of the predictors,
such as quadratic and cubic terms, in order to address this non-linearity.
In the case of the support vector classifier, we could address the prob-
lem of possibly non-linear boundaries between classes in a similar way, by
enlarging the feature space using quadratic, cubic, and even higher-order
polynomial functions of the predictors. For instance, rather than fitting a
support vector classifier using p features

X1, X2, . . . , Xp,
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we could instead fit a support vector classifier using 2p features

X1, X
2
1 , X2, X

2
2 , . . . , Xp, X

2
p .

Then (9.12)–(9.15) would become

maximize
β0,β11,β12,...,βp1,βp2,ϵ1,...,ϵn,M

M (9.16)

subject to yi

⎛

⎝β0 +
p∑

j=1

βj1xij +
p∑

j=1

βj2x
2
ij

⎞

⎠ ≥M(1− ϵi),

n∑

i=1

ϵi ≤ C, ϵi ≥ 0,
p∑

j=1

2∑

k=1

β2
jk = 1.

Why does this lead to a non-linear decision boundary? In the enlarged
feature space, the decision boundary that results from (9.16) is in fact lin-
ear. But in the original feature space, the decision boundary is of the form
q(x) = 0, where q is a quadratic polynomial, and its solutions are gener-
ally non-linear. One might additionally want to enlarge the feature space
with higher-order polynomial terms, or with interaction terms of the form
XjXj′ for j ̸= j′. Alternatively, other functions of the predictors could
be considered rather than polynomials. It is not hard to see that there
are many possible ways to enlarge the feature space, and that unless we
are careful, we could end up with a huge number of features. Then compu-
tations would become unmanageable. The support vector machine, which
we present next, allows us to enlarge the feature space used by the support
vector classifier in a way that leads to efficient computations.

9.3.2 The Support Vector Machine

The support vector machine (SVM) is an extension of the support vector
support
vector
machine

classifier that results from enlarging the feature space in a specific way,
using kernels. We will now discuss this extension, the details of which are

kernelsomewhat complex and beyond the scope of this book. However, the main
idea is described in Section 9.3.1: we may want to enlarge our feature space
in order to accommodate a non-linear boundary between the classes. The
kernel approach that we describe here is simply an efficient computational
approach for enacting this idea.
We have not discussed exactly how the support vector classifier is com-

puted because the details become somewhat technical. However, it turns
out that the solution to the support vector classifier problem (9.12)–(9.15)
involves only the inner products of the observations (as opposed to the
observations themselves). The inner product of two r-vectors a and b is
defined as ⟨a, b⟩ =

∑r
i=1 aibi. Thus the inner product of two observations
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xi, xi′ is given by

⟨xi, xi′⟩ =
p∑

j=1

xijxi′j . (9.17)

It can be shown that

• The linear support vector classifier can be represented as

f(x) = β0 +
n∑

i=1

αi⟨x, xi⟩, (9.18)

where there are n parameters αi, i = 1, . . . , n, one per training
observation.

• To estimate the parameters α1, . . . ,αn and β0, all we need are the(n
2

)
inner products ⟨xi, xi′⟩ between all pairs of training observations.

(The notation
(n
2

)
means n(n − 1)/2, and gives the number of pairs

among a set of n items.)

Notice that in (9.18), in order to evaluate the function f(x), we need to
compute the inner product between the new point x and each of the training
points xi. However, it turns out that αi is nonzero only for the support
vectors in the solution—that is, if a training observation is not a support
vector, then its αi equals zero. So if S is the collection of indices of these
support points, we can rewrite any solution function of the form (9.18) as

f(x) = β0 +
∑

i∈S
αi⟨x, xi⟩, (9.19)

which typically involves far fewer terms than in (9.18).2

To summarize, in representing the linear classifier f(x), and in computing
its coefficients, all we need are inner products.
Now suppose that every time the inner product (9.17) appears in the

representation (9.18), or in a calculation of the solution for the support
vector classifier, we replace it with a generalization of the inner product of
the form

K(xi, xi′), (9.20)

where K is some function that we will refer to as a kernel. A kernel is a
kernel

function that quantifies the similarity of two observations. For instance, we
could simply take

K(xi, xi′) =
p∑

j=1

xijxi′j , (9.21)

2By expanding each of the inner products in (9.19), it is easy to see that f(x) is
a linear function of the coordinates of x. Doing so also establishes the correspondence
between the αi and the original parameters βj .
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which would just give us back the support vector classifier. Equation 9.21
is known as a linear kernel because the support vector classifier is linear
in the features; the linear kernel essentially quantifies the similarity of a
pair of observations using Pearson (standard) correlation. But one could
instead choose another form for (9.20). For instance, one could replace
every instance of

∑p
j=1 xijxi′j with the quantity

K(xi, xi′) = (1 +
p∑

j=1

xijxi′j)
d. (9.22)

This is known as a polynomial kernel of degree d, where d is a positive
polynomial
kernelinteger. Using such a kernel with d > 1, instead of the standard linear

kernel (9.21), in the support vector classifier algorithm leads to a much more
flexible decision boundary. It essentially amounts to fitting a support vector
classifier in a higher-dimensional space involving polynomials of degree d,
rather than in the original feature space. When the support vector classifier
is combined with a non-linear kernel such as (9.22), the resulting classifier is
known as a support vector machine. Note that in this case the (non-linear)
function has the form

f(x) = β0 +
∑

i∈S
αiK(x, xi). (9.23)

The left-hand panel of Figure 9.9 shows an example of an SVM with a
polynomial kernel applied to the non-linear data from Figure 9.8. The fit is
a substantial improvement over the linear support vector classifier. When
d = 1, then the SVM reduces to the support vector classifier seen earlier in
this chapter.
The polynomial kernel shown in (9.22) is one example of a possible

non-linear kernel, but alternatives abound. Another popular choice is the
radial kernel, which takes the form

radial kernel

K(xi, xi′) = exp(−γ
p∑

j=1

(xij − xi′j)
2). (9.24)

In (9.24), γ is a positive constant. The right-hand panel of Figure 9.9 shows
an example of an SVM with a radial kernel on this non-linear data; it also
does a good job in separating the two classes.
How does the radial kernel (9.24) actually work? If a given test obser-

vation x∗ = (x∗
1, . . . , x

∗
p)

T is far from a training observation xi in terms of
Euclidean distance, then

∑p
j=1(x

∗
j −xij)2 will be large, and so K(x∗, xi) =

exp(−γ
∑p

j=1(x
∗
j − xij)2) will be tiny. This means that in (9.23), xi will

play virtually no role in f(x∗). Recall that the predicted class label for the
test observation x∗ is based on the sign of f(x∗). In other words, training
observations that are far from x∗ will play essentially no role in the pre-
dicted class label for x∗. This means that the radial kernel has very local
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FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to
the non-linear data from Figure 9.8, resulting in a far more appropriate decision
rule. Right: An SVM with a radial kernel is applied. In this example, either kernel
is capable of capturing the decision boundary.

behavior, in the sense that only nearby training observations have an effect
on the class label of a test observation.
What is the advantage of using a kernel rather than simply enlarging

the feature space using functions of the original features, as in (9.16)? One
advantage is computational, and it amounts to the fact that using kernels,
one need only compute K(xi, x′

i) for all
(n
2

)
distinct pairs i, i′. This can be

done without explicitly working in the enlarged feature space. This is im-
portant because in many applications of SVMs, the enlarged feature space
is so large that computations are intractable. For some kernels, such as the
radial kernel (9.24), the feature space is implicit and infinite-dimensional,
so we could never do the computations there anyway!

9.3.3 An Application to the Heart Disease Data

In Chapter 8 we apply decision trees and related methods to the Heart data.
The aim is to use 13 predictors such as Age, Sex, and Chol in order to predict
whether an individual has heart disease. We now investigate how an SVM
compares to LDA on this data. After removing 6 missing observations, the
data consist of 297 subjects, which we randomly split into 207 training and
90 test observations.
We first fit LDA and the support vector classifier to the training data.

Note that the support vector classifier is equivalent to a SVM using a poly-
nomial kernel of degree d = 1. The left-hand panel of Figure 9.10 displays
ROC curves (described in Section 4.4.2) for the training set predictions for
both LDA and the support vector classifier. Both classifiers compute scores
of the form f̂(X) = β̂0 + β̂1X1 + β̂2X2 + · · · + β̂pXp for each observation.
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FIGURE 9.10. ROC curves for the Heart data training set. Left: The support
vector classifier and LDA are compared. Right: The support vector classifier is
compared to an SVM using a radial basis kernel with γ = 10−3, 10−2, and 10−1.

For any given cutoff t, we classify observations into the heart disease or
no heart disease categories depending on whether f̂(X) < t or f̂(X) ≥ t.
The ROC curve is obtained by forming these predictions and computing
the false positive and true positive rates for a range of values of t. An opti-
mal classifier will hug the top left corner of the ROC plot. In this instance
LDA and the support vector classifier both perform well, though there is a
suggestion that the support vector classifier may be slightly superior.
The right-hand panel of Figure 9.10 displays ROC curves for SVMs using

a radial kernel, with various values of γ. As γ increases and the fit becomes
more non-linear, the ROC curves improve. Using γ = 10−1 appears to give
an almost perfect ROC curve. However, these curves represent training
error rates, which can be misleading in terms of performance on new test
data. Figure 9.11 displays ROC curves computed on the 90 test observa-
tions. We observe some differences from the training ROC curves. In the
left-hand panel of Figure 9.11, the support vector classifier appears to have
a small advantage over LDA (although these differences are not statisti-
cally significant). In the right-hand panel, the SVM using γ = 10−1, which
showed the best results on the training data, produces the worst estimates
on the test data. This is once again evidence that while a more flexible
method will often produce lower training error rates, this does not neces-
sarily lead to improved performance on test data. The SVMs with γ = 10−2

and γ = 10−3 perform comparably to the support vector classifier, and all
three outperform the SVM with γ = 10−1.
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FIGURE 9.11. ROC curves for the test set of the Heart data. Left: The support
vector classifier and LDA are compared. Right: The support vector classifier is
compared to an SVM using a radial basis kernel with γ = 10−3, 10−2, and 10−1.

9.4 SVMs with More than Two Classes

So far, our discussion has been limited to the case of binary classification:
that is, classification in the two-class setting. How can we extend SVMs
to the more general case where we have some arbitrary number of classes?
It turns out that the concept of separating hyperplanes upon which SVMs
are based does not lend itself naturally to more than two classes. Though
a number of proposals for extending SVMs to the K-class case have been
made, the two most popular are the one-versus-one and one-versus-all
approaches. We briefly discuss those two approaches here.

9.4.1 One-Versus-One Classification

Suppose that we would like to perform classification using SVMs, and there
are K > 2 classes. A one-versus-one or all-pairs approach constructs

(K
2

)
one-versus-
oneSVMs, each of which compares a pair of classes. For example, one such

SVM might compare the kth class, coded as +1, to the k′th class, coded
as −1. We classify a test observation using each of the

(K
2

)
classifiers, and

we tally the number of times that the test observation is assigned to each
of the K classes. The final classification is performed by assigning the test
observation to the class to which it was most frequently assigned in these(K
2

)
pairwise classifications.

9.4.2 One-Versus-All Classification

The one-versus-all approach is an alternative procedure for applying SVMs one-versus-
allin the case of K > 2 classes. We fit K SVMs, each time comparing one of
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the K classes to the remaining K − 1 classes. Let β0k,β1k, . . . ,βpk denote
the parameters that result from fitting an SVM comparing the kth class
(coded as +1) to the others (coded as −1). Let x∗ denote a test observation.
We assign the observation to the class for which β0k+β1kx∗

1+β2kx∗
2+ · · ·+

βpkx∗
p is largest, as this amounts to a high level of confidence that the test

observation belongs to the kth class rather than to any of the other classes.

9.5 Relationship to Logistic Regression

When SVMs were first introduced in the mid-1990s, they made quite a
splash in the statistical and machine learning communities. This was due
in part to their good performance, good marketing, and also to the fact
that the underlying approach seemed both novel and mysterious. The idea
of finding a hyperplane that separates the data as well as possible, while al-
lowing some violations to this separation, seemed distinctly different from
classical approaches for classification, such as logistic regression and lin-
ear discriminant analysis. Moreover, the idea of using a kernel to expand
the feature space in order to accommodate non-linear class boundaries ap-
peared to be a unique and valuable characteristic.
However, since that time, deep connections between SVMs and other

more classical statistical methods have emerged. It turns out that one can
rewrite the criterion (9.12)–(9.15) for fitting the support vector classifier
f(X) = β0 + β1X1 + · · ·+ βpXp as

minimize
β0,β1,...,βp

⎧
⎨

⎩

n∑

i=1

max [0, 1− yif(xi)] + λ
p∑

j=1

β2
j

⎫
⎬

⎭ , (9.25)

where λ is a nonnegative tuning parameter. When λ is large then β1, . . . ,βp

are small, more violations to the margin are tolerated, and a low-variance
but high-bias classifier will result. When λ is small then few violations
to the margin will occur; this amounts to a high-variance but low-bias
classifier. Thus, a small value of λ in (9.25) amounts to a small value of C
in (9.15). Note that the λ

∑p
j=1 β

2
j term in (9.25) is the ridge penalty term

from Section 6.2.1, and plays a similar role in controlling the bias-variance
trade-off for the support vector classifier.
Now (9.25) takes the “Loss + Penalty” form that we have seen repeatedly

throughout this book:

minimize
β0,β1,...,βp

{L(X,y,β) + λP (β)} . (9.26)

In (9.26), L(X,y,β) is some loss function quantifying the extent to which
the model, parametrized by β, fits the data (X,y), and P (β) is a penalty
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function on the parameter vector β whose effect is controlled by a nonneg-
ative tuning parameter λ. For instance, ridge regression and the lasso both
take this form with

L(X,y,β) =
n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

xijβj

⎞

⎠
2

and with P (β) =
∑p

j=1 β
2
j for ridge regression and P (β) =

∑p
j=1 |βj | for

the lasso. In the case of (9.25) the loss function instead takes the form

L(X,y,β) =
n∑

i=1

max [0, 1− yi(β0 + β1xi1 + · · ·+ βpxip)] .

This is known as hinge loss, and is depicted in Figure 9.12. However, it
hinge loss

turns out that the hinge loss function is closely related to the loss function
used in logistic regression, also shown in Figure 9.12.
An interesting characteristic of the support vector classifier is that only

support vectors play a role in the classifier obtained; observations on the
correct side of the margin do not affect it. This is due to the fact that the
loss function shown in Figure 9.12 is exactly zero for observations for which
yi(β0 + β1xi1 + · · ·+ βpxip) ≥ 1; these correspond to observations that are
on the correct side of the margin.3 In contrast, the loss function for logistic
regression shown in Figure 9.12 is not exactly zero anywhere. But it is very
small for observations that are far from the decision boundary. Due to the
similarities between their loss functions, logistic regression and the support
vector classifier often give very similar results. When the classes are well
separated, SVMs tend to behave better than logistic regression; in more
overlapping regimes, logistic regression is often preferred.
When the support vector classifier and SVM were first introduced, it was

thought that the tuning parameter C in (9.15) was an unimportant “nui-
sance” parameter that could be set to some default value, like 1. However,
the “Loss + Penalty” formulation (9.25) for the support vector classifier
indicates that this is not the case. The choice of tuning parameter is very
important and determines the extent to which the model underfits or over-
fits the data, as illustrated, for example, in Figure 9.7.
We have established that the support vector classifier is closely related

to logistic regression and other preexisting statistical methods. Is the SVM
unique in its use of kernels to enlarge the feature space to accommodate
non-linear class boundaries? The answer to this question is “no”. We could
just as well perform logistic regression or many of the other classification
methods seen in this book using non-linear kernels; this is closely related to

3With this hinge-loss + penalty representation, the margin corresponds to the value
one, and the width of the margin is determined by

∑
β2
j .
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FIGURE 9.12. The SVM and logistic regression loss functions are compared,
as a function of yi(β0+β1xi1+ · · ·+βpxip). When yi(β0+β1xi1+ · · ·+βpxip) is
greater than 1, then the SVM loss is zero, since this corresponds to an observation
that is on the correct side of the margin. Overall, the two loss functions have quite
similar behavior.

some of the non-linear approaches seen in Chapter 7. However, for histor-
ical reasons, the use of non-linear kernels is much more widespread in the
context of SVMs than in the context of logistic regression or other methods.
Though we have not addressed it here, there is in fact an extension

of the SVM for regression (i.e. for a quantitative rather than a qualita-
tive response), called support vector regression. In Chapter 3, we saw that

support
vector
regression

least squares regression seeks coefficients β0,β1, . . . ,βp such that the sum
of squared residuals is as small as possible. (Recall from Chapter 3 that
residuals are defined as yi − β0 − β1xi1 − · · · − βpxip.) Support vector
regression instead seeks coefficients that minimize a different type of loss,
where only residuals larger in absolute value than some positive constant
contribute to the loss function. This is an extension of the margin used in
support vector classifiers to the regression setting.

9.6 Lab: Support Vector Machines

We use the e1071 library in R to demonstrate the support vector classifier
and the SVM. Another option is the LiblineaR library, which is useful for
very large linear problems.
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9.6.1 Support Vector Classifier

The e1071 library contains implementations for a number of statistical
learning methods. In particular, the svm() function can be used to fit a

svm()
support vector classifier when the argument kernel = "linear" is used.
This function uses a slightly different formulation from (9.14) and (9.25)
for the support vector classifier. A cost argument allows us to specify the
cost of a violation to the margin. When the cost argument is small, then
the margins will be wide and many support vectors will be on the margin
or will violate the margin. When the cost argument is large, then the mar-
gins will be narrow and there will be few support vectors on the margin or
violating the margin.
We now use the svm() function to fit the support vector classifier for a

given value of the cost parameter. Here we demonstrate the use of this
function on a two-dimensional example so that we can plot the resulting
decision boundary. We begin by generating the observations, which belong
to two classes, and checking whether the classes are linearly separable.

> set.seed (1)

> x <- matrix(rnorm (20 * 2), ncol = 2)

> y <- c(rep(-1, 10), rep(1, 10))

> x[y == 1, ] <- x[y == 1, ] + 1

> plot(x, col = (3 - y))

They are not. Next, we fit the support vector classifier. Note that in order
for the svm() function to perform classification (as opposed to SVM-based
regression), we must encode the response as a factor variable. We now
create a data frame with the response coded as a factor.

> dat <- data.frame(x = x, y = as.factor(y))

> library(e1071)

> svmfit <- svm(y ∼ ., data = dat , kernel = "linear",

cost = 10, scale = FALSE)

The argument scale = FALSE tells the svm() function not to scale each
feature to have mean zero or standard deviation one; depending on the
application, one might prefer to use scale = TRUE.
We can now plot the support vector classifier obtained:

> plot(svmfit , dat)

Note that the two arguments to the SVM plot() function are the output
of the call to svm(), as well as the data used in the call to svm(). The region
of feature space that will be assigned to the −1 class is shown in light
yellow, and the region that will be assigned to the +1 class is shown in
red. The decision boundary between the two classes is linear (because we
used the argument kernel = "linear"), though due to the way in which the
plotting function is implemented in this library the decision boundary looks
somewhat jagged in the plot. (Note that here the second feature is plotted
on the x-axis and the first feature is plotted on the y-axis, in contrast to
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the behavior of the usual plot() function in R.) The support vectors are
plotted as crosses and the remaining observations are plotted as circles;
we see here that there are seven support vectors. We can determine their
identities as follows:

> svmfit$index

[1] 1 2 5 7 14 16 17

We can obtain some basic information about the support vector classifier
fit using the summary() command:

> summary(svmfit)

Call:

svm(formula = y ∼ ., data = dat , kernel = "linear", cost = 10,

scale = FALSE)

Parameters:

SVM -Type: C-classification

SVM -Kernel: linear

cost: 10

Number of Support Vectors: 7

( 4 3 )

Number of Classes: 2

Levels:

-1 1

This tells us, for instance, that a linear kernel was used with cost = 10,
and that there were seven support vectors, four in one class and three in
the other.
What if we instead used a smaller value of the cost parameter?

> svmfit <- svm(y ∼ ., data = dat , kernel = "linear",

cost = 0.1, scale = FALSE)

> plot(svmfit , dat)

> svmfit$index

[1] 1 2 3 4 5 7 9 10 12 13 14 15 16 17 18 20

Now that a smaller value of the cost parameter is being used, we obtain a
larger number of support vectors, because the margin is now wider. Unfor-
tunately, the svm() function does not explicitly output the coefficients of
the linear decision boundary obtained when the support vector classifier is
fit, nor does it output the width of the margin.
The e1071 library includes a built-in function, tune(), to perform cross-

tune()
validation. By default, tune() performs ten-fold cross-validation on a set
of models of interest. In order to use this function, we pass in relevant
information about the set of models that are under consideration. The
following command indicates that we want to compare SVMs with a linear
kernel, using a range of values of the cost parameter.

> set.seed (1)

> tune.out <- tune(svm , y ∼ ., data = dat , kernel = "linear",

ranges = list(cost = c(0.001 , 0.01, 0.1, 1, 5, 10, 100)))
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We can easily access the cross-validation errors for each of these models
using the summary() command:

> summary(tune.out)

Parameter tuning of ‘svm ’:

- sampling method: 10-fold cross validation

- best parameters:

cost

0.1

- best performance: 0.05

- Detailed performance results:

cost error dispersion

1 1e-03 0.55 0.438

2 1e-02 0.55 0.438

3 1e-01 0.05 0.158

4 1e+00 0.15 0.242

5 5e+00 0.15 0.242

6 1e+01 0.15 0.242

7 1e+02 0.15 0.242

We see that cost = 0.1 results in the lowest cross-validation error rate. The
tune() function stores the best model obtained, which can be accessed as
follows:

> bestmod <- tune.out$best.model

> summary(bestmod)

The predict() function can be used to predict the class label on a set of
test observations, at any given value of the cost parameter. We begin by
generating a test data set.

> xtest <- matrix(rnorm (20 * 2), ncol = 2)

> ytest <- sample(c(-1, 1), 20, rep = TRUE)

> xtest[ytest == 1, ] <- xtest[ytest == 1, ] + 1

> testdat <- data.frame(x = xtest , y = as.factor(ytest))

Now we predict the class labels of these test observations. Here we use the
best model obtained through cross-validation in order to make predictions.

> ypred <- predict(bestmod , testdat)

> table(predict = ypred , truth = testdat$y)

truth

predict -1 1

-1 9 1

1 2 8

Thus, with this value of cost, 17 of the test observations are correctly
classified. What if we had instead used cost = 0.01?

> svmfit <- svm(y ∼ ., data = dat , kernel = "linear",

cost = .01, scale = FALSE)

> ypred <- predict(svmfit , testdat)

> table(predict = ypred , truth = testdat$y)

truth

predict -1 1
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-1 11 6

1 0 3

In this case three additional observations are misclassified.
Now consider a situation in which the two classes are linearly separable.

Then we can find a separating hyperplane using the svm() function. We
first further separate the two classes in our simulated data so that they are
linearly separable:

> x[y == 1, ] <- x[y == 1, ] + 0.5

> plot(x, col = (y + 5) / 2, pch = 19)

Now the observations are just barely linearly separable. We fit the support
vector classifier and plot the resulting hyperplane, using a very large value
of cost so that no observations are misclassified.

> dat <- data.frame(x = x, y = as.factor(y))

> svmfit <- svm(y ∼ ., data = dat , kernel = "linear",

cost = 1e5)

> summary(svmfit)

Call:

svm(formula = y ∼ ., data = dat , kernel = "linear", cost =

1e+05)

Parameters:

SVM -Type: C-classification

SVM -Kernel: linear

cost: 1e+05

Number of Support Vectors: 3

( 1 2 )

Number of Classes: 2

Levels:

-1 1

> plot(svmfit , dat)

No training errors were made and only three support vectors were used.
However, we can see from the figure that the margin is very narrow (because
the observations that are not support vectors, indicated as circles, are very
close to the decision boundary). It seems likely that this model will perform
poorly on test data. We now try a smaller value of cost:

> svmfit <- svm(y ∼ ., data = dat , kernel = "linear", cost = 1)

> summary(svmfit)

> plot(svmfit , dat)

Using cost = 1, we misclassify a training observation, but we also obtain a
much wider margin and make use of seven support vectors. It seems likely
that this model will perform better on test data than the model with
cost = 1e5.

9.6.2 Support Vector Machine

In order to fit an SVM using a non-linear kernel, we once again use the svm()

function. However, now we use a different value of the parameter kernel.
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To fit an SVM with a polynomial kernel we use kernel = "polynomial",
and to fit an SVM with a radial kernel we use kernel = "radial". In the
former case we also use the degree argument to specify a degree for the
polynomial kernel (this is d in (9.22)), and in the latter case we use gamma

to specify a value of γ for the radial basis kernel (9.24).
We first generate some data with a non-linear class boundary, as follows:

> set.seed (1)

> x <- matrix(rnorm (200 * 2), ncol = 2)

> x[1:100 , ] <- x[1:100 , ] + 2

> x[101:150 , ] <- x[101:150 , ] - 2

> y <- c(rep(1, 150), rep(2, 50))

> dat <- data.frame(x = x, y = as.factor(y))

Plotting the data makes it clear that the class boundary is indeed non-
linear:

> plot(x, col = y)

The data is randomly split into training and testing groups. We then fit
the training data using the svm() function with a radial kernel and γ = 1:

> train <- sample (200, 100)

> svmfit <- svm(y ∼ ., data = dat[train , ], kernel = "radial",

gamma = 1, cost = 1)

> plot(svmfit , dat[train , ])

The plot shows that the resulting SVM has a decidedly non-linear
boundary. The summary() function can be used to obtain some
information about the SVM fit:

> summary(svmfit)

Call:

svm(formula = y ∼ ., data = dat[train , ], kernel = "radial",

gamma = 1, cost = 1)

Parameters:

SVM -Type: C-classification

SVM -Kernel: radial

cost: 1

Number of Support Vectors: 31

( 16 15 )

Number of Classes: 2

Levels:

1 2

We can see from the figure that there are a fair number of training errors
in this SVM fit. If we increase the value of cost, we can reduce the number
of training errors. However, this comes at the price of a more irregular
decision boundary that seems to be at risk of overfitting the data.

> svmfit <- svm(y ∼ ., data = dat[train , ], kernel = "radial",

gamma = 1, cost = 1e5)

> plot(svmfit , dat[train , ])
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We can perform cross-validation using tune() to select the best choice of
γ and cost for an SVM with a radial kernel:

> set.seed (1)

> tune.out <- tune(svm , y ∼ ., data = dat[train , ],

kernel = "radial",

ranges = list(

cost = c(0.1, 1, 10, 100, 1000),

gamma = c(0.5, 1, 2, 3, 4)

)

)

> summary(tune.out)

Parameter tuning of ‘svm ’:

- sampling method: 10-fold cross validation

- best parameters:

cost gamma

1 0.5

- best performance: 0.07

- Detailed performance results:

cost gamma error dispersion

1 1e-01 0.5 0.26 0.158

2 1e+00 0.5 0.07 0.082

3 1e+01 0.5 0.07 0.082

4 1e+02 0.5 0.14 0.151

5 1e+03 0.5 0.11 0.074

6 1e-01 1.0 0.22 0.162

7 1e+00 1.0 0.07 0.082

. . .

Therefore, the best choice of parameters involves cost = 1 and gamma =

0.5. We can view the test set predictions for this model by applying the
predict() function to the data. Notice that to do this we subset the dataframe
dat using -train as an index set.

> table(

true = dat[-train , "y"],

pred = predict(

tune.out$best.model, newdata = dat[-train , ]

)

)

12% of test observations are misclassified by this SVM.

9.6.3 ROC Curves

The ROCR package can be used to produce ROC curves such as those in
Figures 9.10 and 9.11. We first write a short function to plot an ROC curve
given a vector containing a numerical score for each observation, pred, and
a vector containing the class label for each observation, truth.

> library(ROCR)

> rocplot <- function(pred , truth , ...) {

+ predob <- prediction(pred , truth)
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+ perf <- performance(predob , "tpr", "fpr")

+ plot(perf , ...)

+ }

SVMs and support vector classifiers output class labels for each observa-
tion. However, it is also possible to obtain fitted values for each observation,
which are the numerical scores used to obtain the class labels. For instance,
in the case of a support vector classifier, the fitted value for an observation
X = (X1, X2, . . . , Xp)T takes the form β̂0 + β̂1X1 + β̂2X2 + · · · + β̂pXp.
For an SVM with a non-linear kernel, the equation that yields the fitted
value is given in (9.23). In essence, the sign of the fitted value determines
on which side of the decision boundary the observation lies. Therefore, the
relationship between the fitted value and the class prediction for a given
observation is simple: if the fitted value exceeds zero then the observation
is assigned to one class, and if it is less than zero then it is assigned to the
other. In order to obtain the fitted values for a given SVM model fit, we use
decision.values = TRUE when fitting svm(). Then the predict() function
will output the fitted values.

> svmfit.opt <- svm(y ∼ ., data = dat[train , ],

kernel = "radial", gamma = 2, cost = 1,

decision.values = T)

> fitted <- attributes(

predict(svmfit.opt , dat[train , ], decision.values = TRUE)

)$decision.values

Now we can produce the ROC plot. Note we use the negative of the fitted
values so that negative values correspond to class 1 and positive values to
class 2.

> par(mfrow = c(1, 2))

> rocplot(-fitted , dat[train , "y"], main = "Training Data")

SVM appears to be producing accurate predictions. By increasing γ we can
produce a more flexible fit and generate further improvements in accuracy.

> svmfit.flex <- svm(y ∼ ., data = dat[train , ],

kernel = "radial", gamma = 50, cost = 1,

decision.values = T)

> fitted <- attributes(

predict(svmfit.flex , dat[train , ], decision.values = T)

)$decision.values

> rocplot(-fitted , dat[train , "y"], add = T, col = "red")

However, these ROC curves are all on the training data. We are really
more interested in the level of prediction accuracy on the test data. When
we compute the ROC curves on the test data, the model with γ = 2 appears
to provide the most accurate results.

> fitted <- attributes(

predict(svmfit.opt , dat[-train , ], decision.values = T)

)$decision.values
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> rocplot(-fitted , dat[-train , "y"], main = "Test Data")

> fitted <- attributes(

predict(svmfit.flex , dat[-train , ], decision.values = T)

)$decision.values

> rocplot(-fitted , dat[-train , "y"], add = T, col = "red")

9.6.4 SVM with Multiple Classes

If the response is a factor containing more than two levels, then the svm()

function will perform multi-class classification using the one-versus-one ap-
proach. We explore that setting here by generating a third class of obser-
vations.

> set.seed (1)

> x <- rbind(x, matrix(rnorm (50 * 2), ncol = 2))

> y <- c(y, rep(0, 50))

> x[y == 0, 2] <- x[y == 0, 2] + 2

> dat <- data.frame(x = x, y = as.factor(y))

> par(mfrow = c(1, 1))

> plot(x, col = (y + 1))

We now fit an SVM to the data:

> svmfit <- svm(y ∼ ., data = dat , kernel = "radial",

cost = 10, gamma = 1)

> plot(svmfit , dat)

The e1071 library can also be used to perform support vector regression,
if the response vector that is passed in to svm() is numerical rather than a
factor.

9.6.5 Application to Gene Expression Data

We now examine the Khan data set, which consists of a number of tissue
samples corresponding to four distinct types of small round blue cell tu-
mors. For each tissue sample, gene expression measurements are available.
The data set consists of training data, xtrain and ytrain, and testing data,
xtest and ytest.
We examine the dimension of the data:

> library(ISLR2)

> names(Khan)

[1] "xtrain" "xtest" "ytrain" "ytest"

> dim(Khan$xtrain)

[1] 63 2308

> dim(Khan$xtest)

[1] 20 2308

> length(Khan$ytrain)

[1] 63

> length(Khan$ytest)

[1] 20
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This data set consists of expression measurements for 2,308 genes.
The training and test sets consist of 63 and 20 observations respectively.

> table(Khan$ytrain)

1 2 3 4

8 23 12 20

> table(Khan$ytest)

1 2 3 4

3 6 6 5

We will use a support vector approach to predict cancer subtype using gene
expression measurements. In this data set, there are a very large number
of features relative to the number of observations. This suggests that we
should use a linear kernel, because the additional flexibility that will result
from using a polynomial or radial kernel is unnecessary.

> dat <- data.frame(

x = Khan$xtrain ,

y = as.factor(Khan$ytrain)

)

> out <- svm(y ∼ ., data = dat , kernel = "linear",

cost = 10)

> summary(out)

Call:

svm(formula = y ∼ ., data = dat , kernel = "linear",

cost = 10)

Parameters:

SVM -Type: C-classification

SVM -Kernel: linear

cost: 10

Number of Support Vectors: 58

( 20 20 11 7 )

Number of Classes: 4

Levels:

1 2 3 4

> table(out$fitted , dat$y)

1 2 3 4

1 8 0 0 0

2 0 23 0 0

3 0 0 12 0

4 0 0 0 20

We see that there are no training errors. In fact, this is not surprising,
because the large number of variables relative to the number of observations
implies that it is easy to find hyperplanes that fully separate the classes. We
are most interested not in the support vector classifier’s performance on the
training observations, but rather its performance on the test observations.

> dat.te <- data.frame(

x = Khan$xtest ,

y = as.factor(Khan$ytest))

> pred.te <- predict(out , newdata = dat.te)

> table(pred.te , dat.te$y)

pred.te 1 2 3 4

1 3 0 0 0
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2 0 6 2 0

3 0 0 4 0

4 0 0 0 5

We see that using cost = 10 yields two test set errors on this data.

9.7 Exercises

Conceptual

1. This problem involves hyperplanes in two dimensions.

(a) Sketch the hyperplane 1 + 3X1 − X2 = 0. Indicate the set of
points for which 1 + 3X1 −X2 > 0, as well as the set of points
for which 1 + 3X1 −X2 < 0.

(b) On the same plot, sketch the hyperplane −2 + X1 + 2X2 = 0.
Indicate the set of points for which −2 +X1 + 2X2 > 0, as well
as the set of points for which −2 +X1 + 2X2 < 0.

2. We have seen that in p = 2 dimensions, a linear decision boundary
takes the form β0+β1X1+β2X2 = 0. We now investigate a non-linear
decision boundary.

(a) Sketch the curve

(1 +X1)
2 + (2−X2)

2 = 4.

(b) On your sketch, indicate the set of points for which

(1 +X1)
2 + (2−X2)

2 > 4,

as well as the set of points for which

(1 +X1)
2 + (2−X2)

2 ≤ 4.

(c) Suppose that a classifier assigns an observation to the blue class
if

(1 +X1)
2 + (2−X2)

2 > 4,

and to the red class otherwise. To what class is the observation
(0, 0) classified? (−1, 1)? (2, 2)? (3, 8)?

(d) Argue that while the decision boundary in (c) is not linear in
terms of X1 and X2, it is linear in terms of X1, X2

1 , X2, and
X2

2 .

3. Here we explore the maximal margin classifier on a toy data set.



9.7 Exercises 399

(a) We are given n = 7 observations in p = 2 dimensions. For each
observation, there is an associated class label.

Obs. X1 X2 Y
1 3 4 Red
2 2 2 Red
3 4 4 Red
4 1 4 Red
5 2 1 Blue
6 4 3 Blue
7 4 1 Blue

Sketch the observations.

(b) Sketch the optimal separating hyperplane, and provide the equa-
tion for this hyperplane (of the form (9.1)).

(c) Describe the classification rule for the maximal margin classifier.
It should be something along the lines of “Classify to Red if
β0 + β1X1 + β2X2 > 0, and classify to Blue otherwise.” Provide
the values for β0, β1, and β2.

(d) On your sketch, indicate the margin for the maximal margin
hyperplane.

(e) Indicate the support vectors for the maximal margin classifier.

(f) Argue that a slight movement of the seventh observation would
not affect the maximal margin hyperplane.

(g) Sketch a hyperplane that is not the optimal separating hyper-
plane, and provide the equation for this hyperplane.

(h) Draw an additional observation on the plot so that the two
classes are no longer separable by a hyperplane.

Applied

4. Generate a simulated two-class data set with 100 observations and
two features in which there is a visible but non-linear separation be-
tween the two classes. Show that in this setting, a support vector
machine with a polynomial kernel (with degree greater than 1) or a
radial kernel will outperform a support vector classifier on the train-
ing data. Which technique performs best on the test data? Make
plots and report training and test error rates in order to back up
your assertions.

5. We have seen that we can fit an SVM with a non-linear kernel in order
to perform classification using a non-linear decision boundary. We will
now see that we can also obtain a non-linear decision boundary by
performing logistic regression using non-linear transformations of the
features.
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(a) Generate a data set with n = 500 and p = 2, such that the obser-
vations belong to two classes with a quadratic decision boundary
between them. For instance, you can do this as follows:

> x1 <- runif (500) - 0.5

> x2 <- runif (500) - 0.5

> y <- 1 * (x1^2 - x2^2 > 0)

(b) Plot the observations, colored according to their class labels.
Your plot should display X1 on the x-axis, and X2 on the y-
axis.

(c) Fit a logistic regression model to the data, using X1 and X2 as
predictors.

(d) Apply this model to the training data in order to obtain a pre-
dicted class label for each training observation. Plot the ob-
servations, colored according to the predicted class labels. The
decision boundary should be linear.

(e) Now fit a logistic regression model to the data using non-linear
functions of X1 and X2 as predictors (e.g. X2

1 , X1×X2, log(X2),
and so forth).

(f) Apply this model to the training data in order to obtain a pre-
dicted class label for each training observation. Plot the ob-
servations, colored according to the predicted class labels. The
decision boundary should be obviously non-linear. If it is not,
then repeat (a)-(e) until you come up with an example in which
the predicted class labels are obviously non-linear.

(g) Fit a support vector classifier to the data with X1 and X2 as
predictors. Obtain a class prediction for each training observa-
tion. Plot the observations, colored according to the predicted
class labels.

(h) Fit a SVM using a non-linear kernel to the data. Obtain a class
prediction for each training observation. Plot the observations,
colored according to the predicted class labels.

(i) Comment on your results.

6. At the end of Section 9.6.1, it is claimed that in the case of data that
is just barely linearly separable, a support vector classifier with a
small value of cost that misclassifies a couple of training observations
may perform better on test data than one with a huge value of cost
that does not misclassify any training observations. You will now
investigate this claim.

(a) Generate two-class data with p = 2 in such a way that the classes
are just barely linearly separable.
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(b) Compute the cross-validation error rates for support vector
classifiers with a range of cost values. How many training er-
rors are misclassified for each value of cost considered, and how
does this relate to the cross-validation errors obtained?

(c) Generate an appropriate test data set, and compute the test
errors corresponding to each of the values of cost considered.
Which value of cost leads to the fewest test errors, and how
does this compare to the values of cost that yield the fewest
training errors and the fewest cross-validation errors?

(d) Discuss your results.

7. In this problem, you will use support vector approaches in order to
predict whether a given car gets high or low gas mileage based on the
Auto data set.

(a) Create a binary variable that takes on a 1 for cars with gas
mileage above the median, and a 0 for cars with gas mileage
below the median.

(b) Fit a support vector classifier to the data with various values
of cost, in order to predict whether a car gets high or low gas
mileage. Report the cross-validation errors associated with dif-
ferent values of this parameter. Comment on your results. Note
you will need to fit the classifier without the gas mileage variable
to produce sensible results.

(c) Now repeat (b), this time using SVMs with radial and polyno-
mial basis kernels, with different values of gamma and degree and
cost. Comment on your results.

(d) Make some plots to back up your assertions in (b) and (c).

Hint: In the lab, we used the plot() function for svm objects
only in cases with p = 2. When p > 2, you can use the plot()

function to create plots displaying pairs of variables at a time.
Essentially, instead of typing

> plot(svmfit , dat)

where svmfit contains your fitted model and dat is a data frame
containing your data, you can type

> plot(svmfit , dat , x1 ∼ x4)

in order to plot just the first and fourth variables. However, you
must replace x1 and x4 with the correct variable names. To find
out more, type ?plot.svm.

8. This problem involves the OJ data set which is part of the ISLR2

package.
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(a) Create a training set containing a random sample of 800
observations, and a test set containing the remaining
observations.

(b) Fit a support vector classifier to the training data using
cost = 0.01, with Purchase as the response and the other vari-
ables as predictors. Use the summary() function to produce sum-
mary statistics, and describe the results obtained.

(c) What are the training and test error rates?

(d) Use the tune() function to select an optimal cost. Consider val-
ues in the range 0.01 to 10.

(e) Compute the training and test error rates using this new value
for cost.

(f) Repeat parts (b) through (e) using a support vector machine
with a radial kernel. Use the default value for gamma.

(g) Repeat parts (b) through (e) using a support vector machine
with a polynomial kernel. Set degree = 2.

(h) Overall, which approach seems to give the best results on this
data?



10
Deep Learning

This chapter covers the important topic of deep learning. At the time of
deep
learningwriting (2020), deep learning is a very active area of research in the machine

learning and artificial intelligence communities. The cornerstone of deep
learning is the neural network.

neural
networkNeural networks rose to fame in the late 1980s. There was a lot of excite-

ment and a certain amount of hype associated with this approach, and they
were the impetus for the popular Neural Information Processing Systems
meetings (NeurIPS, formerly NIPS) held every year, typically in exotic
places like ski resorts. This was followed by a synthesis stage, where the
properties of neural networks were analyzed by machine learners, math-
ematicians and statisticians; algorithms were improved, and the method-
ology stabilized. Then along came SVMs, boosting, and random forests,
and neural networks fell somewhat from favor. Part of the reason was that
neural networks required a lot of tinkering, while the new methods were
more automatic. Also, on many problems the new methods outperformed
poorly-trained neural networks. This was the status quo for the first decade
in the new millennium.
All the while, though, a core group of neural-network enthusiasts were

pushing their technology harder on ever-larger computing architectures and
data sets. Neural networks resurfaced after 2010 with the new name deep
learning, with new architectures, additional bells and whistles, and a string
of success stories on some niche problems such as image and video classifi-
cation, speech and text modeling. Many in the field believe that the major
reason for these successes is the availability of ever-larger training datasets,
made possible by the wide-scale use of digitization in science and industry.
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In this chapter we discuss the basics of neural networks and deep learning,
and then go into some of the specializations for specific problems, such as
convolutional neural networks (CNNs) for image classification, and recur-
rent neural networks (RNNs) for time series and other sequences. We will
also demonstrate these models using the R package keras, which interfaces
with the tensorflow deep-learning software developed at Google.1

The material in this chapter is slightly more challenging than elsewhere
in this book.

10.1 Single Layer Neural Networks

A neural network takes an input vector of p variables X = (X1, X2, . . . , Xp)
and builds a nonlinear function f(X) to predict the response Y . We have
built nonlinear prediction models in earlier chapters, using trees, boosting
and generalized additive models. What distinguishes neural networks from
these methods is the particular structure of the model. Figure 10.1 shows
a simple feed-forward neural network for modeling a quantitative response

feed-forward
neural
network

using p = 4 predictors. In the terminology of neural networks, the four fea-
tures X1, . . . , X4 make up the units in the input layer. The arrows indicate

input layerthat each of the inputs from the input layer feeds into each of the K hidden
units (we get to pick K; here we chose 5). The neural network model has

hidden units
the form

f(X) = β0 +
∑K

k=1 βkhk(X)

= β0 +
∑K

k=1 βkg(wk0 +
∑p

j=1 wkjXj).
(10.1)

It is built up here in two steps. First the K activations Ak, k = 1, . . . ,K, in
activations

the hidden layer are computed as functions of the input features X1, . . . , Xp,

Ak = hk(X) = g(wk0 +
∑p

j=1 wkjXj), (10.2)

where g(z) is a nonlinear activation function that is specified in advance.
activation
functionWe can think of each Ak as a different transformation hk(X) of the original

features, much like the basis functions of Chapter 7. These K activations
from the hidden layer then feed into the output layer, resulting in

f(X) = β0 +
K∑

k=1

βkAk, (10.3)

a linear regression model in the K = 5 activations. All the parameters
β0, . . . ,βK and w10, . . . , wKp need to be estimated from data. In the early

1For more information about keras, see Chollet et al. (2015) “Keras”, available
at https://keras.io. For more information about tensorflow, see Abadi et al. (2015)
“TensorFlow: Large-scale machine learning on heterogeneous distributed systems”, avail-
able at https://www.tensorflow.org/.

https://keras.io
https://www.tensorflow.org/
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FIGURE 10.1. Neural network with a single hidden layer. The hidden layer
computes activations Ak = hk(X) that are nonlinear transformations of linear
combinations of the inputs X1, X2, . . . , Xp. Hence these Ak are not directly ob-
served. The functions hk(·) are not fixed in advance, but are learned during the
training of the network. The output layer is a linear model that uses these acti-
vations Ak as inputs, resulting in a function f(X).

instances of neural networks, the sigmoid activation function was favored,
sigmoid

g(z) =
ez

1 + ez
=

1

1 + e−z
, (10.4)

which is the same function used in logistic regression to convert a linear
function into probabilities between zero and one (see Figure 10.2). The
preferred choice in modern neural networks is the ReLU (rectified linear

ReLU
unit) activation function, which takes the form

rectified
linear unit

g(z) = (z)+ =

{
0 if z < 0
z otherwise.

(10.5)

A ReLU activation can be computed and stored more efficiently than a
sigmoid activation. Although it thresholds at zero, because we apply it to a
linear function (10.2) the constant term wk0 will shift this inflection point.
So in words, the model depicted in Figure 10.1 derives five new features

by computing five different linear combinations of X, and then squashes
each through an activation function g(·) to transform it. The final model
is linear in these derived variables.
The name neural network originally derived from thinking of these hidden

units as analogous to neurons in the brain — values of the activations
Ak = hk(X) close to one are firing, while those close to zero are silent
(using the sigmoid activation function).
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FIGURE 10.2. Activation functions. The piecewise-linear ReLU function is pop-
ular for its efficiency and computability. We have scaled it down by a factor of
five for ease of comparison.

The nonlinearity in the activation function g(·) is essential, since without
it the model f(X) in (10.1) would collapse into a simple linear model in
X1, . . . , Xp. Moreover, having a nonlinear activation function allows the
model to capture complex nonlinearities and interaction effects. Consider
a very simple example with p = 2 input variables X = (X1, X2), and
K = 2 hidden units h1(X) and h2(X) with g(z) = z2. We specify the other
parameters as

β0 = 0, β1 = 1
4 , β2 = − 1

4 ,
w10 = 0, w11 = 1, w12 = 1,
w20 = 0, w21 = 1, w22 = −1.

(10.6)

From (10.2), this means that

h1(X) = (0 +X1 +X2)2,
h2(X) = (0 +X1 −X2)2.

(10.7)

Then plugging (10.7) into (10.1), we get

f(X) = 0 + 1
4 · (0 +X1 +X2)2 − 1

4 · (0 +X1 −X2)2

= 1
4

[
(X1 +X2)2 − (X1 −X2)2

]

= X1X2.
(10.8)

So the sum of two nonlinear transformations of linear functions can give
us an interaction! In practice we would not use a quadratic function for
g(z), since we would always get a second-degree polynomial in the original
coordinates X1, . . . , Xp. The sigmoid or ReLU activations do not have such
a limitation.
Fitting a neural network requires estimating the unknown parameters in

(10.1). For a quantitative response, typically squared-error loss is used, so
that the parameters are chosen to minimize

n∑

i=1

(yi − f(xi))
2 . (10.9)
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FIGURE 10.3. Examples of handwritten digits from the MNIST corpus. Each
grayscale image has 28× 28 pixels, each of which is an eight-bit number (0–255)
which represents how dark that pixel is. The first 3, 5, and 8 are enlarged to show
their 784 individual pixel values.

Details about how to perform this minimization are provided in Section 10.7.

10.2 Multilayer Neural Networks

Modern neural networks typically have more than one hidden layer, and
often many units per layer. In theory a single hidden layer with a large
number of units has the ability to approximate most functions. However,
the learning task of discovering a good solution is made much easier with
multiple layers each of modest size.
We will illustrate a large dense network on the famous and publicly

available MNIST handwritten digit dataset.2 Figure 10.3 shows examples of
these digits. The idea is to build a model to classify the images into their
correct digit class 0–9. Every image has p = 28 × 28 = 784 pixels, each
of which is an eight-bit grayscale value between 0 and 255 representing
the relative amount of the written digit in that tiny square.3 These pixels
are stored in the input vector X (in, say, column order). The output is
the class label, represented by a vector Y = (Y0, Y1, . . . , Y9) of 10 dummy
variables, with a one in the position corresponding to the label, and zeros
elsewhere. In the machine learning community, this is known as one-hot
encoding. There are 60,000 training images, and 10,000 test images.

one-hot
encodingOn a historical note, digit recognition problems were the catalyst that

accelerated the development of neural network technology in the late 1980s
at AT&T Bell Laboratories and elsewhere. Pattern recognition tasks of this

2See LeCun, Cortes, and Burges (2010) “The MNIST database of handwritten digits”,
available at http://yann.lecun.com/exdb/mnist.

3In the analog-to-digital conversion process, only part of the written numeral may
fall in the square representing a particular pixel.

http://yann.lecun.com/exdb/mnist
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kind are relatively simple for humans. Our visual system occupies a large
fraction of our brains, and good recognition is an evolutionary force for
survival. These tasks are not so simple for machines, and it has taken more
than 30 years to refine the neural-network architectures to match human
performance.
Figure 10.4 shows a multilayer network architecture that works well for

solving the digit-classification task. It differs from Figure 10.1 in several
ways:

• It has two hidden layers L1 (256 units) and L2 (128 units) rather
than one. Later we will see a network with seven hidden layers.

• It has ten output variables, rather than one. In this case the ten vari-
ables really represent a single qualitative variable and so are quite
dependent. (We have indexed them by the digit class 0–9 rather than
1–10, for clarity.) More generally, in multi-task learning one can pre-

multi-task
learningdict different responses simultaneously with a single network; they all

have a say in the formation of the hidden layers.

• The loss function used for training the network is tailored for the
multiclass classification task.

The first hidden layer is as in (10.2), with

A(1)
k = h(1)

k (X)

= g(w(1)
k0 +

∑p
j=1 w

(1)
kj Xj)

(10.10)

for k = 1, . . . ,K1. The second hidden layer treats the activations A(1)
k of

the first hidden layer as inputs and computes new activations

A(2)
ℓ = h(2)

ℓ (X)

= g(w(2)
ℓ0 +

∑K1

k=1 w
(2)
ℓk A(1)

k )
(10.11)

for ℓ = 1, . . . ,K2. Notice that each of the activations in the second layer

A(2)
ℓ = h(2)

ℓ (X) is a function of the input vector X. This is the case because

while they are explicitly a function of the activations A(1)
k from layer L1,

these in turn are functions of X. This would also be the case with more
hidden layers. Thus, through a chain of transformations, the network is
able to build up fairly complex transformations of X that ultimately feed
into the output layer as features.

We have introduced additional superscript notation such as h(2)
ℓ (X) and

w(2)
ℓj in (10.10) and (10.11) to indicate to which layer the activations and

weights (coefficients) belong, in this case layer 2. The notation W1 in Fig-
weights

ure 10.4 represents the entire matrix of weights that feed from the input
layer to the first hidden layer L1. This matrix will have 785×256 = 200,960
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FIGURE 10.4. Neural network diagram with two hidden layers and multiple
outputs, suitable for the MNIST handwritten-digit problem. The input layer has
p = 784 units, the two hidden layers K1 = 256 and K2 = 128 units respectively,
and the output layer 10 units. Along with intercepts (referred to as biases in the
deep-learning community) this network has 235,146 parameters (referred to as
weights).

elements; there are 785 rather than 784 because we must account for the
intercept or bias term.4

bias
Each element A(1)

k feeds to the second hidden layer L2 via the matrix of
weights W2 of dimension 257× 128 = 32,896.
We now get to the output layer, where we now have ten responses rather

than one. The first step is to compute ten different linear models similar
to our single model (10.1),

Zm = βm0 +
∑K2

ℓ=1 βmℓh
(2)
ℓ (X)

= βm0 +
∑K2

ℓ=1 βmℓA
(2)
ℓ ,

(10.12)

for m = 0, 1, . . . , 9. The matrix B stores all 129 × 10 = 1,290 of these
weights.

4The use of “weights” for coefficients and “bias” for the intercepts wk0 in (10.2) is
popular in the machine learning community; this use of bias is not to be confused with
the “bias-variance” usage elsewhere in this book.
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Method Test Error

Neural Network + Ridge Regularization 2.3%
Neural Network + Dropout Regularization 1.8%
Multinomial Logistic Regression 7.2%
Linear Discriminant Analysis 12.7%

TABLE 10.1. Test error rate on the MNIST data, for neural networks with two
forms of regularization, as well as multinomial logistic regression and linear dis-
criminant analysis. In this example, the extra complexity of the neural network
leads to a marked improvement in test error.

If these were all separate quantitative responses, we would simply set
each fm(X) = Zm and be done. However, we would like our estimates to
represent class probabilities fm(X) = Pr(Y = m|X), just like in multi-
nomial logistic regression in Section 4.3.5. So we use the special softmax

softmax
activation function (see (4.13) on page 141),

fm(X) = Pr(Y = m|X) =
eZm

∑9
ℓ=0 e

Zℓ
, (10.13)

for m = 0, 1, . . . , 9. This ensures that the 10 numbers behave like proba-
bilities (non-negative and sum to one). Even though the goal is to build
a classifier, our model actually estimates a probability for each of the 10
classes. The classifier then assigns the image to the class with the highest
probability.
To train this network, since the response is qualitative, we look for coef-

ficient estimates that minimize the negative multinomial log-likelihood

−
n∑

i=1

9∑

m=0

yim log(fm(xi)), (10.14)

also known as the cross-entropy. This is a generalization of the crite- cross-
entropyrion (4.5) for two-class logistic regression. Details on how to minimize this

objective are given in Section 10.7. If the response were quantitative, we
would instead minimize squared-error loss as in (10.9).
Table 10.1 compares the test performance of the neural network with

two simple models presented in Chapter 4 that make use of linear decision
boundaries: multinomial logistic regression and linear discriminant analysis.
The improvement of neural networks over both of these linear methods is
dramatic: the network with dropout regularization achieves a test error rate
below 2% on the 10,000 test images. (We describe dropout regularization in
Section 10.7.3.) In Section 10.9.2 of the lab, we present the code for fitting
this model, which runs in just over two minutes on a laptop computer.
Adding the number of coefficients in W1, W2 and B, we get 235,146 in

all, more than 33 times the number 785 × 9 = 7,065 needed for multino-
mial logistic regression. Recall that there are 60,000 images in the training
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FIGURE 10.5. A sample of images from the CIFAR100 database: a collection of
natural images from everyday life, with 100 different classes represented.

set. While this might seem like a large training set, there are almost four
times as many coefficients in the neural network model as there are ob-
servations in the training set! To avoid overfitting, some regularization is
needed. In this example, we used two forms of regularization: ridge regu-
larization, which is similar to ridge regression from Chapter 6, and dropout

dropout
regularization. We discuss both forms of regularization in Section 10.7.

10.3 Convolutional Neural Networks

Neural networks rebounded around 2010 with big successes in image classi-
fication. Around that time, massive databases of labeled images were being
accumulated, with ever-increasing numbers of classes. Figure 10.5 shows
75 images drawn from the CIFAR100 database.5 This database consists of
60,000 images labeled according to 20 superclasses (e.g. aquatic mammals),
with five classes per superclass (beaver, dolphin, otter, seal, whale). Each
image has a resolution of 32 × 32 pixels, with three eight-bit numbers per
pixel representing red, green and blue. The numbers for each image are
organized in a three-dimensional array called a feature map. The first two

feature map
axes are spatial (both are 32-dimensional), and the third is the channel

channel
axis,6 representing the three colors. There is a designated training set of
50,000 images, and a test set of 10,000.
A special family of convolutional neural networks (CNNs) has evolved for

convolutional
neural
networks

classifying images such as these, and has shown spectacular success on a
wide range of problems. CNNs mimic to some degree how humans classify
images, by recognizing specific features or patterns anywhere in the image

5See Chapter 3 of Krizhevsky (2009) “Learning multiple layers of fea-
tures from tiny images”, available at https://www.cs.toronto.edu/~kriz/

learning-features-2009-TR.pdf.
6The term channel is taken from the signal-processing literature. Each channel is a

distinct source of information.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
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FIGURE 10.6. Schematic showing how a convolutional neural network classifies
an image of a tiger. The network takes in the image and identifies local features.
It then combines the local features in order to create compound features, which in
this example include eyes and ears. These compound features are used to output
the label “tiger”.

that distinguish each particular object class. In this section we give a brief
overview of how they work.
Figure 10.6 illustrates the idea behind a convolutional neural network on

a cartoon image of a tiger.7

The network first identifies low-level features in the input image, such
as small edges, patches of color, and the like. These low-level features are
then combined to form higher-level features, such as parts of ears, eyes,
and so on. Eventually, the presence or absence of these higher-level features
contributes to the probability of any given output class.
How does a convolutional neural network build up this hierarchy? It com-

bines two specialized types of hidden layers, called convolution layers and
pooling layers. Convolution layers search for instances of small patterns in
the image, whereas pooling layers downsample these to select a prominent
subset. In order to achieve state-of-the-art results, contemporary neural-
network architectures make use of many convolution and pooling layers.
We describe convolution and pooling layers next.

10.3.1 Convolution Layers

A convolution layer is made up of a large number of convolution filters, each
convolution
layer

convolution
filter

of which is a template that determines whether a particular local feature is
present in an image. A convolution filter relies on a very simple operation,
called a convolution, which basically amounts to repeatedly multiplying
matrix elements and then adding the results.

7Thanks to Elena Tuzhilina for producing the diagram and https://www.

cartooning4kids.com/ for permission to use the cartoon tiger.

https://www.cartooning4kids.com/
https://www.cartooning4kids.com/
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To understand how a convolution filter works, consider a very simple
example of a 4× 3 image:

Original Image =

⎡

⎢⎢⎣

a b c
d e f
g h i
j k l

⎤

⎥⎥⎦ .

Now consider a 2× 2 filter of the form

Convolution Filter =

[
α β
γ δ

]
.

When we convolve the image with the filter, we get the result8

Convolved Image =

⎡

⎣
aα+ bβ + dγ + eδ bα+ cβ + eγ + fδ
dα+ eβ + gγ + hδ eα+ fβ + hγ + iδ
gα+ hβ + jγ + kδ hα+ iβ + kγ + lδ

⎤

⎦ .

For instance, the top-left element comes from multiplying each element in
the 2 × 2 filter by the corresponding element in the top left 2 × 2 portion
of the image, and adding the results. The other elements are obtained in
a similar way: the convolution filter is applied to every 2 × 2 submatrix
of the original image in order to obtain the convolved image. If a 2 × 2
submatrix of the original image resembles the convolution filter, then it will
have a large value in the convolved image; otherwise, it will have a small
value. Thus, the convolved image highlights regions of the original image
that resemble the convolution filter. We have used 2 × 2 as an example;
in general convolution filters are small ℓ1 × ℓ2 arrays, with ℓ1 and ℓ2 small
positive integers that are not necessarily equal.
Figure 10.7 illustrates the application of two convolution filters to a 192×

179 image of a tiger, shown on the left-hand side.9 Each convolution filter
is a 15 × 15 image containing mostly zeros (black), with a narrow strip
of ones (white) oriented either vertically or horizontally within the image.
When each filter is convolved with the image of the tiger, areas of the tiger
that resemble the filter (i.e. that have either horizontal or vertical stripes or
edges) are given large values, and areas of the tiger that do not resemble the
feature are given small values. The convolved images are displayed on the
right-hand side. We see that the horizontal stripe filter picks out horizontal
stripes and edges in the original image, whereas the vertical stripe filter
picks out vertical stripes and edges in the original image.

8The convolved image is smaller than the original image because its dimension is
given by the number of 2 × 2 submatrices in the original image. Note that 2 × 2 is the
dimension of the convolution filter. If we want the convolved image to have the same
dimension as the original image, then padding can be applied.

9The tiger image used in Figures 10.7–10.9 was obtained from the public domain
image resource https://www.needpix.com/.

https://www.needpix.com/
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FIGURE 10.7. Convolution filters find local features in an image, such as edges
and small shapes. We begin with the image of the tiger shown on the left, and
apply the two small convolution filters in the middle. The convolved images high-
light areas in the original image where details similar to the filters are found.
Specifically, the top convolved image highlights the tiger’s vertical stripes, whereas
the bottom convolved image highlights the tiger’s horizontal stripes. We can think
of the original image as the input layer in a convolutional neural network, and
the convolved images as the units in the first hidden layer.

We have used a large image and two large filters in Figure 10.7 for illus-
tration. For the CIFAR100 database there are 32×32 color pixels per image,
and we use 3× 3 convolution filters.
In a convolution layer, we use a whole bank of filters to pick out a variety

of differently-oriented edges and shapes in the image. Using predefined
filters in this way is standard practice in image processing. By contrast,
with CNNs the filters are learned for the specific classification task. We can
think of the filter weights as the parameters going from an input layer to a
hidden layer, with one hidden unit for each pixel in the convolved image.
This is in fact the case, though the parameters are highly structured and
constrained (see Exercise 4 for more details). They operate on localized
patches in the input image (so there are many structural zeros), and the
same weights in a given filter are reused for all possible patches in the image
(so the weights are constrained).10

We now give some additional details.

• Since the input image is in color, it has three channels represented
by a three-dimensional feature map (array). Each channel is a two-
dimensional (32× 32) feature map — one for red, one for green, and
one for blue. A single convolution filter will also have three channels,
one per color, each of dimension 3×3, with potentially different filter
weights. The results of the three convolutions are summed to form

10This used to be called weight sharing in the early years of neural networks.
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a two-dimensional output feature map. Note that at this point the
color information has been used, and is not passed on to subsequent
layers except through its role in the convolution.

• If we use K different convolution filters at this first hidden layer,
we get K two-dimensional output feature maps, which together are
treated as a single three-dimensional feature map. We view each of
the K output feature maps as a separate channel of information, so
now we have K channels in contrast to the three color channels of
the original input feature map. The three-dimensional feature map is
just like the activations in a hidden layer of a simple neural network,
except organized and produced in a spatially structured way.

• We typically apply the ReLU activation function (10.5) to the con-
volved image. This step is sometimes viewed as a separate layer in
the convolutional neural network, in which case it is referred to as a
detector layer.

detector
layer

10.3.2 Pooling Layers

A pooling layer provides a way to condense a large image into a smaller
pooling

summary image. While there are a number of possible ways to perform
pooling, the max pooling operation summarizes each non-overlapping 2× 2
block of pixels in an image using the maximum value in the block. This
reduces the size of the image by a factor of two in each direction, and it
also provides some location invariance: i.e. as long as there is a large value
in one of the four pixels in the block, the whole block registers as a large
value in the reduced image.
Here is a simple example of max pooling:

Max pool

⎡

⎢⎢⎣

1 2 5 3
3 0 1 2
2 1 3 4
1 1 2 0

⎤

⎥⎥⎦→
[
3 5
2 4

]
.

10.3.3 Architecture of a Convolutional Neural Network

So far we have defined a single convolution layer — each filter produces a
new two-dimensional feature map. The number of convolution filters in a
convolution layer is akin to the number of units at a particular hidden layer
in a fully-connected neural network of the type we saw in Section 10.2.
This number also defines the number of channels in the resulting three-
dimensional feature map. We have also described a pooling layer, which
reduces the first two dimensions of each three-dimensional feature map.
Deep CNNs have many such layers. Figure 10.8 shows a typical architecture
for a CNN for the CIFAR100 image classification task.
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FIGURE 10.8. Architecture of a deep CNN for the CIFAR100 classification task.
Convolution layers are interspersed with 2× 2 max-pool layers, which reduce the
size by a factor of 2 in both dimensions.

At the input layer, we see the three-dimensional feature map of a color
image, where the channel axis represents each color by a 32 × 32 two-
dimensional feature map of pixels. Each convolution filter produces a new
channel at the first hidden layer, each of which is a 32 × 32 feature map
(after some padding at the edges). After this first round of convolutions, we
now have a new “image”; a feature map with considerably more channels
than the three color input channels (six in the figure, since we used six
convolution filters).
This is followed by a max-pool layer, which reduces the size of the feature

map in each channel by a factor of four: two in each dimension.
This convolve-then-pool sequence is now repeated for the next two layers.

Some details are as follows:

• Each subsequent convolve layer is similar to the first. It takes as input
the three-dimensional feature map from the previous layer and treats
it like a single multi-channel image. Each convolution filter learned
has as many channels as this feature map.

• Since the channel feature maps are reduced in size after each pool
layer, we usually increase the number of filters in the next convolve
layer to compensate.

• Sometimes we repeat several convolve layers before a pool layer. This
effectively increases the dimension of the filter.

These operations are repeated until the pooling has reduced each channel
feature map down to just a few pixels in each dimension. At this point the
three-dimensional feature maps are flattened — the pixels are treated as
separate units — and fed into one or more fully-connected layers before
reaching the output layer, which is a softmax activation for the 100 classes
(as in (10.13)).
There are many tuning parameters to be selected in constructing such a

network, apart from the number, nature, and sizes of each layer. Dropout
learning can be used at each layer, as well as lasso or ridge regularization
(see Section 10.7). The details of constructing a convolutional neural net-
work can seem daunting. Fortunately, terrific software is available, with
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FIGURE 10.9. Data augmentation. The original image (leftmost) is distorted
in natural ways to produce different images with the same class label. These dis-
tortions do not fool humans, and act as a form of regularization when fitting the
CNN.

extensive examples and vignettes that provide guidance on sensible choices
for the parameters. For the CIFAR100 official test set, the best accuracy as
of this writing is just above 75%, but undoubtedly this performance will
continue to improve.

10.3.4 Data Augmentation

An additional important trick used with image modeling is data augment-
data aug-
mentationation. Essentially, each training image is replicated many times, with each

replicate randomly distorted in a natural way such that human recognition
is unaffected. Figure 10.9 shows some examples. Typical distortions are
zoom, horizontal and vertical shift, shear, small rotations, and in this case
horizontal flips. At face value this is a way of increasing the training set
considerably with somewhat different examples, and thus protects against
overfitting. In fact we can see this as a form of regularization: we build a
cloud of images around each original image, all with the same label. This
kind of fattening of the data is similar in spirit to ridge regularization.
We will see in Section 10.7.2 that the stochastic gradient descent al-

gorithms for fitting deep learning models repeatedly process randomly-
selected batches of, say, 128 training images at a time. This works hand-in-
glove with augmentation, because we can distort each image in the batch
on the fly, and hence do not have to store all the new images.

10.3.5 Results Using a Pretrained Classifier

Here we use an industry-level pretrained classifier to predict the class of
some new images. The resnet50 classifier is a convolutional neural network
that was trained using the imagenet data set, which consists of millions of
images that belong to an ever-growing number of categories.11 Figure 10.10

11For more information about resnet50, see He, Zhang, Ren, and Sun (2015) “Deep
residual learning for image recognition”, https://arxiv.org/abs/1512.03385. For de-
tails about imagenet, see Russakovsky, Deng, et al. (2015) “ImageNet Large Scale
Visual Recognition Challenge”, in International Journal of Computer Vision.

https://arxiv.org/abs/1512.03385
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flamingo Cooper’s hawk Cooper’s hawk
flamingo 0.83 kite 0.60 fountain 0.35
spoonbill 0.17 great grey owl 0.09 nail 0.12
white stork 0.00 robin 0.06 hook 0.07

Lhasa Apso cat Cape weaver
Tibetan terrier 0.56 Old English sheepdog 0.82 jacamar 0.28
Lhasa 0.32 Shih-Tzu 0.04 macaw 0.12
cocker spaniel 0.03 Persian cat 0.04 robin 0.12

FIGURE 10.10. Classification of six photographs using the resnet50 CNN
trained on the imagenet corpus. The table below the images displays the true
(intended) label at the top of each panel, and the top three choices of the classifier
(out of 100). The numbers are the estimated probabilities for each choice. (A kite
is a raptor, but not a hawk.)

demonstrates the performance of resnet50 on six photographs (private col-
lection of one of the authors).12 The CNN does a reasonable job classifying
the hawk in the second image. If we zoom out as in the third image, it
gets confused and chooses the fountain rather than the hawk. In the final
image a “jacamar” is a tropical bird from South and Central America with
similar coloring to the South African Cape Weaver. We give more details
on this example in Section 10.9.4.
Much of the work in fitting a CNN is in learning the convolution filters

at the hidden layers; these are the coefficients of a CNN. For models fit to
massive corpora such as imagenet with many classes, the output of these

12These resnet results can change with time, since the publicly-trained model gets
updated periodically.
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filters can serve as features for general natural-image classification prob-
lems. One can use these pretrained hidden layers for new problems with
much smaller training sets (a process referred to as weight freezing), and

weight
freezingjust train the last few layers of the network, which requires much less data.

The vignettes and book13 that accompany the keras package give more
details on such applications.

10.4 Document Classification

In this section we introduce a new type of example that has important
applications in industry and science: predicting attributes of documents.
Examples of documents include articles in medical journals, Reuters news
feeds, emails, tweets, and so on. Our example will be IMDb (Internet Movie
Database) ratings — short documents where viewers have written critiques
of movies.14 The response in this case is the sentiment of the review, which
will be positive or negative.
Here is the beginning of a rather amusing negative review:

This has to be one of the worst films of the 1990s. When my
friends & I were watching this film (being the target audience it
was aimed at) we just sat & watched the first half an hour with
our jaws touching the floor at how bad it really was. The rest
of the time, everyone else in the theater just started talking to
each other, leaving or generally crying into their popcorn . . .

Each review can be a different length, include slang or non-words, have
spelling errors, etc. We need to find a way to featurize such a document.

featurize
This is modern parlance for defining a set of predictors.
The simplest and most common featurization is the bag-of-words model.

bag-of-words
We score each document for the presence or absence of each of the words in
a language dictionary — in this case an English dictionary. If the dictionary
containsM words, that means for each document we create a binary feature
vector of length M , and score a 1 for every word present, and 0 otherwise.
That can be a very wide feature vector, so we limit the dictionary — in
this case to the 10,000 most frequently occurring words in the training
corpus of 25,000 reviews. Fortunately there are nice tools for doing this
automatically. Here is the beginning of a positive review that has been
redacted in this way:

⟨START ⟩ this film was just brilliant casting location scenery
story direction everyone’s really suited the part they played and

13Deep Learning with R by F. Chollet and J.J. Allaire, 2018, Manning Publications.
14For details, see Maas et al. (2011) “Learning word vectors for sentiment analysis”,

in Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages 142–150.
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FIGURE 10.11. Accuracy of the lasso and a two-hidden-layer neural network
on the IMDb data. For the lasso, the x-axis displays − log(λ), while for the neural
network it displays epochs (number of times the fitting algorithm passes through
the training set). Both show a tendency to overfit, and achieve approximately the
same test accuracy.

you could just imagine being there robert ⟨UNK ⟩ is an amazing
actor and now the same being director ⟨UNK ⟩ father came from
the same scottish island as myself so i loved . . .

Here we can see many words have been omitted, and some unknown words
(UNK) have been marked as such. With this reduction the binary feature
vector has length 10,000, and consists mostly of 0’s and a smattering of 1’s
in the positions corresponding to words that are present in the document.
We have a training set and test set, each with 25,000 examples, and each
balanced with regard to sentiment. The resulting training feature matrix X
has dimension 25,000×10,000, but only 1.3% of the binary entries are non-
zero. We call such a matrix sparse, because most of the values are the same
(zero in this case); it can be stored efficiently in sparse matrix format.15 sparse

matrix
format

There are a variety of ways to account for the document length; here we
only score a word as in or out of the document, but for example one could
instead record the relative frequency of words. We split off a validation set
of size 2,000 from the 25,000 training observations (for model tuning), and
fit two model sequences:

15Rather than store the whole matrix, we can store instead the location and values
for the nonzero entries. In this case, since the nonzero entries are all 1, just the locations
are stored.
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• A lasso logistic regression using the glmnet package;

• A two-class neural network with two hidden layers, each with 16
ReLU units.

Both methods produce a sequence of solutions. The lasso sequence is in-
dexed by the regularization parameter λ. The neural-net sequence is in-
dexed by the number of gradient-descent iterations used in the fitting,
as measured by training epochs or passes through the training set (Sec-
tion 10.7). Notice that the training accuracy in Figure 10.11 (black points)
increases monotonically in both cases. We can use the validation error to
pick a good solution from each sequence (blue points in the plots), which
would then be used to make predictions on the test data set.
Note that a two-class neural network amounts to a nonlinear logistic

regression model. From (10.12) and (10.13) we can see that

log

(
Pr(Y = 1|X)

Pr(Y = 0|X)

)
= Z1 − Z0 (10.15)

= (β10 − β00) +
K2∑

ℓ=1

(β1ℓ − β0ℓ)A
(2)
ℓ .

(This shows the redundancy in the softmax function; for K classes we
really only need to estimate K−1 sets of coefficients. See Section 4.3.5.) In
Figure 10.11 we show accuracy (fraction correct) rather than classification accuracy
error (fraction incorrect), the former being more popular in the machine
learning community. Both models achieve a test-set accuracy of about 88%.
The bag-of-words model summarizes a document by the words present,

and ignores their context. There are at least two popular ways to take the
context into account:

• The bag-of-n-grams model. For example, a bag of 2-grams records
bag-of-n-
gramsthe consecutive co-occurrence of every distinct pair of words. “Bliss-

fully long” can be seen as a positive phrase in a movie review, while
“blissfully short” a negative.

• Treat the document as a sequence, taking account of all the words in
the context of those that preceded and those that follow.

In the next section we explore models for sequences of data, which have
applications in weather forecasting, speech recognition, language transla-
tion, and time-series prediction, to name a few. We continue with this IMDb

example there.

10.5 Recurrent Neural Networks

Many data sources are sequential in nature, and call for special treatment
when building predictive models. Examples include:
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FIGURE 10.12. Schematic of a simple recurrent neural network. The input is a
sequence of vectors {Xℓ}L1 , and here the target is a single response. The network
processes the input sequence X sequentially; each Xℓ feeds into the hidden layer,
which also has as input the activation vector Aℓ−1 from the previous element in
the sequence, and produces the current activation vector Aℓ. The same collections
of weights W, U and B are used as each element of the sequence is processed. The
output layer produces a sequence of predictions Oℓ from the current activation Aℓ,
but typically only the last of these, OL, is of relevance. To the left of the equal
sign is a concise representation of the network, which is unrolled into a more
explicit version on the right.

• Documents such as book and movie reviews, newspaper articles, and
tweets. The sequence and relative positions of words in a document
capture the narrative, theme and tone, and can be exploited in tasks
such as topic classification, sentiment analysis, and language transla-
tion.

• Time series of temperature, rainfall, wind speed, air quality, and so
on. We may want to forecast the weather several days ahead, or cli-
mate several decades ahead.

• Financial time series, where we track market indices, trading volumes,
stock and bond prices, and exchange rates. Here prediction is often
difficult, but as we will see, certain indices can be predicted with
reasonable accuracy.

• Recorded speech, musical recordings, and other sound recordings. We
may want to give a text transcription of a speech, or perhaps a lan-
guage translation. We may want to assess the quality of a piece of
music, or assign certain attributes.

• Handwriting, such as doctor’s notes, and handwritten digits such as
zip codes. Here we want to turn the handwriting into digital text, or
read the digits (optical character recognition).

In a recurrent neural network (RNN), the input object X is a sequence.
recurrent
neural
network
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Consider a corpus of documents, such as the collection of IMDb movie re-
views. Each document can be represented as a sequence of L words, so
X = {X1, X2, . . . , XL}, where each Xℓ represents a word. The order of
the words, and closeness of certain words in a sentence, convey semantic
meaning. RNNs are designed to accommodate and take advantage of the
sequential nature of such input objects, much like convolutional neural net-
works accommodate the spatial structure of image inputs. The output Y
can also be a sequence (such as in language translation), but often is a
scalar, like the binary sentiment label of a movie review document.
Figure 10.12 illustrates the structure of a very basic RNN with a sequence

X = {X1, X2, . . . , XL} as input, a simple output Y , and a hidden-layer
sequence {Aℓ}L1 = {A1, A2, . . . , AL}. Each Xℓ is a vector; in the document
example Xℓ could represent a one-hot encoding for the ℓth word based on
the language dictionary for the corpus (see the top panel in Figure 10.13
for a simple example). As the sequence is processed one vector Xℓ at a
time, the network updates the activations Aℓ in the hidden layer, taking
as input the vector Xℓ and the activation vector Aℓ−1 from the previous
step in the sequence. Each Aℓ feeds into the output layer and produces a
prediction Oℓ for Y . OL, the last of these, is the most relevant.
In detail, suppose each vector Xℓ of the input sequence has p components

XT
ℓ = (Xℓ1, Xℓ2, . . . , Xℓp), and the hidden layer consists of K units AT

ℓ =
(Aℓ1, Aℓ2, . . . , AℓK). As in Figure 10.4, we represent the collection of K ×
(p+1) shared weights wkj for the input layer by a matrix W, and similarly
U is a K × K matrix of the weights uks for the hidden-to-hidden layers,
and B is a K + 1 vector of weights βk for the output layer. Then

Aℓk = g
(
wk0 +

p∑

j=1

wkjXℓj +
K∑

s=1

uksAℓ−1,s

)
, (10.16)

and the output Oℓ is computed as

Oℓ = β0 +
K∑

k=1

βkAℓk (10.17)

for a quantitative response, or with an additional sigmoid activation func-
tion for a binary response, for example. Here g(·) is an activation function
such as ReLU. Notice that the same weights W, U and B are used as we
process each element in the sequence, i.e. they are not functions of ℓ. This
is a form of weight sharing used by RNNs, and similar to the use of filters

weight
sharingin convolutional neural networks (Section 10.3.1.) As we proceed from be-

ginning to end, the activations Aℓ accumulate a history of what has been
seen before, so that the learned context can be used for prediction.
For regression problems the loss function for an observation (X,Y ) is

(Y −OL)
2, (10.18)
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which only references the final output OL = β0+
∑K

k=1 βkALk. Thus O1, O2,
. . . , OL−1 are not used. When we fit the model, each element Xℓ of the input
sequence X contributes to OL via the chain (10.16), and hence contributes
indirectly to learning the shared parameters W, U and B via the loss
(10.18). With n input sequence/response pairs (xi, yi), the parameters are
found by minimizing the sum of squares

n∑

i=1

(yi−oiL)2 =
n∑

i=1

(
yi−

(
β0+

K∑

k=1

βkg
(
wk0+

p∑

j=1

wkjxiLj+
K∑

s=1

uksai,L−1,s

)))2
.

(10.19)
Here we use lowercase letters for the observed yi and vector sequences
xi = {xi1, xi2, . . . , xiL},16 as well as the derived activations.
Since the intermediate outputs Oℓ are not used, one may well ask why

they are there at all. First of all, they come for free, since they use the same
output weightsB needed to produce OL, and provide an evolving prediction
for the output. Furthermore, for some learning tasks the response is also a
sequence, and so the output sequence {O1, O2, . . . , OL} is explicitly needed.
When used at full strength, recurrent neural networks can be quite com-

plex. We illustrate their use in two simple applications. In the first, we
continue with the IMDb sentiment analysis of the previous section, where
we process the words in the reviews sequentially. In the second application,
we illustrate their use in a financial time series forecasting problem.

10.5.1 Sequential Models for Document Classification

Here we return to our classification task with the IMDb reviews. Our ap-
proach in Section 10.4 was to use the bag-of-words model. Here the plan
is to use instead the sequence of words occurring in a document to make
predictions about the label for the entire document.
We have, however, a dimensionality problem: each word in our document

is represented by a one-hot-encoded vector (dummy variable) with 10,000
elements (one per word in the dictionary)! An approach that has become
popular is to represent each word in a much lower-dimensional embedding

embedding
space. This means that rather than representing each word by a binary
vector with 9,999 zeros and a single one in some position, we will represent
it instead by a set of m real numbers, none of which are typically zero. Here
m is the embedding dimension, and can be in the low 100s, or even less.
This means (in our case) that we need a matrix E of dimension m×10,000,
where each column is indexed by one of the 10,000 words in our dictionary,
and the values in that column give the m coordinates for that word in the
embedding space.

16This is a sequence of vectors; each element xiℓ is a p-vector.
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FIGURE 10.13. Depiction of a sequence of 20 words representing a single doc-
ument: one-hot encoded using a dictionary of 16 words (top panel) and embedded
in an m-dimensional space with m = 5 (bottom panel).

Figure 10.13 illustrates the idea (with a dictionary of 16 rather than
10,000, and m = 5). Where does E come from? If we have a large corpus
of labeled documents, we can have the neural network learn E as part
of the optimization. In this case E is referred to as an embedding layer,

embedding
layerand a specialized E is learned for the task at hand. Otherwise we can

insert a precomputed matrix E in the embedding layer, a process known
as weight freezing. Two pretrained embeddings, word2vec and GloVe, are

weight
freezing

word2vec
GloVe

widely used.17 These are built from a very large corpus of documents by
a variant of principal components analysis (Section 12.2). The idea is that
the positions of words in the embedding space preserve semantic meaning;
e.g. synonyms should appear near each other.
So far, so good. Each document is now represented as a sequence of m-

vectors that represents the sequence of words. The next step is to limit
each document to the last L words. Documents that are shorter than L
get padded with zeros upfront. So now each document is represented by a
series consisting of L vectors X = {X1, X2, . . . , XL}, and each Xℓ in the
sequence has m components.
We now use the RNN structure in Figure 10.12. The training corpus

consists of n separate series (documents) of length L, each of which gets
processed sequentially from left to right. In the process, a parallel series of
hidden activation vectors Aℓ, ℓ = 1, . . . , L is created as in (10.16) for each
document. Aℓ feeds into the output layer to produce the evolving prediction

17word2vec is described in Mikolov, Chen, Corrado, and Dean (2013), available
at https://code.google.com/archive/p/word2vec. GloVe is described in Pennington,
Socher, and Manning (2014), available at https://nlp.stanford.edu/projects/glove.

https://code.google.com/archive/p/word2vec
https://nlp.stanford.edu/projects/glove
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Oℓ. We use the final value OL to predict the response: the sentiment of the
review.
This is a simple RNN, and has relatively few parameters. If there are K

hidden units, the common weight matrix W has K × (m+ 1) parameters,
the matrix U has K×K parameters, and B has 2(K+1) for the two-class
logistic regression as in (10.15). These are used repeatedly as we process
the sequence X = {Xℓ}L1 from left to right, much like we use a single
convolution filter to process each patch in an image (Section 10.3.1). If the
embedding layer E is learned, that adds an additional m ×D parameters
(D = 10,000 here), and is by far the biggest cost.
We fit the RNN as described in Figure 10.12 and the accompaying text to

the IMDb data. The model had an embedding matrix E with m = 32 (which
was learned in training as opposed to precomputed), followed by a single
recurrent layer with K = 32 hidden units. The model was trained with
dropout regularization on the 25,000 reviews in the designated training
set, and achieved a disappointing 76% accuracy on the IMDb test data. A
network using the GloVe pretrained embedding matrix E performed slightly
worse.
For ease of exposition we have presented a very simple RNN. More elab-

orate versions use long term and short term memory (LSTM). Two tracks
of hidden-layer activations are maintained, so that when the activation Aℓ

is computed, it gets input from hidden units both further back in time,
and closer in time — a so-called LSTM RNN. With long sequences, this

LSTM RNN
overcomes the problem of early signals being washed out by the time they
get propagated through the chain to the final activation vector AL.
When we refit our model using the LSTM architecture for the hidden

layer, the performance improved to 87% on the IMDb test data. This is com-
parable with the 88% achieved by the bag-of-words model in Section 10.4.
We give details on fitting these models in Section 10.9.6.
Despite this added LSTM complexity, our RNN is still somewhat “entry

level”. We could probably achieve slightly better results by changing the
size of the model, changing the regularization, and including additional
hidden layers. However, LSTM models take a long time to train, which
makes exploring many architectures and parameter optimization tedious.
RNNs provide a rich framework for modeling data sequences, and they

continue to evolve. There have been many advances in the development
of RNNs — in architecture, data augmentation, and in the learning algo-
rithms. At the time of this writing (early 2020) the leading RNN configura-
tions report accuracy above 95% on the IMDb data. The details are beyond
the scope of this book.18

18An IMDb leaderboard can be found at https://paperswithcode.com/sota/

sentiment-analysis-on-imdb.

https://paperswithcode.com/sota/sentiment-analysis-on-imdb
https://paperswithcode.com/sota/sentiment-analysis-on-imdb
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10.5.2 Time Series Forecasting

Figure 10.14 shows historical trading statistics from the New York Stock
Exchange. Shown are three daily time series covering the period December
3, 1962 to December 31, 1986:19

• Log trading volume. This is the fraction of all outstanding shares that
are traded on that day, relative to a 100-day moving average of past
turnover, on the log scale.

• Dow Jones return. This is the difference between the log of the Dow
Jones Industrial Index on consecutive trading days.

• Log volatility. This is based on the absolute values of daily price
movements.

Predicting stock prices is a notoriously hard problem, but it turns out that
predicting trading volume based on recent past history is more manageable
(and is useful for planning trading strategies).
An observation here consists of the measurements (vt, rt, zt) on day t, in

this case the values for log volume, DJ return and log volatility. There are
a total of T = 6,051 such triples, each of which is plotted as a time series
in Figure 10.14. One feature that strikes us immediately is that the day-
to-day observations are not independent of each other. The series exhibit
auto-correlation — in this case values nearby in time tend to be similar

auto-
correlationto each other. This distinguishes time series from other data sets we have

encountered, in which observations can be assumed to be independent of
each other. To be clear, consider pairs of observations (vt, vt−ℓ), a lag of ℓ

lag
days apart. If we take all such pairs in the vt series and compute their corre-
lation coefficient, this gives the autocorrelation at lag ℓ. Figure 10.15 shows
the autocorrelation function for all lags up to 37, and we see considerable
correlation.
Another interesting characteristic of this forecasting problem is that the

response variable vt — log volume — is also a predictor! In particular, we
will use the past values of log volume to predict values in the future.

RNN forecaster

We wish to predict a value vt from past values vt−1, vt−2, . . ., and also to
make use of past values of the other series rt−1, rt−2, . . . and zt−1, zt−2, . . ..
Although our combined data is quite a long series with 6,051 trading
days, the structure of the problem is different from the previous document-
classification example.

• We only have one series of data, not 25,000.

19These data were assembled by LeBaron and Weigend (1998) IEEE Transactions on
Neural Networks, 9(1): 213–220.
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FIGURE 10.14. Historical trading statistics from the New York Stock Exchange.
Daily values of the normalized log trading volume, DJIA return, and log volatility
are shown for a 24-year period from 1962–1986. We wish to predict trading volume
on any day, given the history on all earlier days. To the left of the red bar (January
2, 1980) is training data, and to the right test data.

• We have an entire series of targets vt, and the inputs include past
values of this series.

How do we represent this problem in terms of the structure displayed in
Figure 10.12? The idea is to extract many short mini-series of input se-
quences X = {X1, X2, . . . , XL} with a predefined length L (called the lag

lag
in this context), and a corresponding target Y . They have the form

X1 =

⎛

⎝
vt−L

rt−L

zt−L

⎞

⎠ , X2 =

⎛

⎝
vt−L+1

rt−L+1

zt−L+1

⎞

⎠ , · · · , XL =

⎛

⎝
vt−1

rt−1

zt−1

⎞

⎠ , and Y = vt.

(10.20)
So here the target Y is the value of log volume vt at a single timepoint t,
and the input sequence X is the series of 3-vectors {Xℓ}L1 each consisting
of the three measurements log volume, DJ return and log volatility from
day t− L, t− L+ 1, up to t− 1. Each value of t makes a separate (X,Y )
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FIGURE 10.15. The autocorrelation function for log volume. We see that
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FIGURE 10.16. RNN forecast of log volume on the NYSE test data. The black
lines are the true volumes, and the superimposed orange the forecasts. The fore-
casted series accounts for 42% of the variance of log volume.

pair, for t running from L+ 1 to T . For the NYSE data we will use the past
five trading days to predict the next day’s trading volume. Hence, we use
L = 5. Since T = 6,051, we can create 6,046 such (X,Y ) pairs. Clearly L
is a parameter that should be chosen with care, perhaps using validation
data.
We fit this model with K = 12 hidden units using the 4,281 training

sequences derived from the data before January 2, 1980 (see Figure 10.14),
and then used it to forecast the 1,770 values of log volume after this date.
We achieve an R2 = 0.42 on the test data. Details are given in Sec-
tion 10.9.6. As a straw man,20 using yesterday’s value for log volume as
the prediction for today has R2 = 0.18. Figure 10.16 shows the forecast
results. We have plotted the observed values of the daily log volume for the

20A straw man here refers to a simple and sensible prediction that can be used as a
baseline for comparison.
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test period 1980–1986 in black, and superimposed the predicted series in
orange. The correspondence seems rather good.
In forecasting the value of log volume in the test period, we have to use

the test data itself in forming the input sequences X. This may feel like
cheating, but in fact it is not; we are always using past data to predict the
future.

Autoregression

The RNN we just fit has much in common with a traditional autoregression
auto-
regression(AR) linear model, which we present now for comparison. We first consider

the response sequence vt alone, and construct a response vector y and a
matrix M of predictors for least squares regression as follows:

y =

⎡

⎢⎢⎢⎢⎢⎣

vL+1

vL+2

vL+3
...
vT

⎤

⎥⎥⎥⎥⎥⎦
M =

⎡

⎢⎢⎢⎢⎢⎣

1 vL vL−1 · · · v1
1 vL+1 vL · · · v2
1 vL+2 vL+1 · · · v3
...

...
...

. . .
...

1 vT−1 vT−2 · · · vT−L

⎤

⎥⎥⎥⎥⎥⎦
. (10.21)

M and y each have T − L rows, one per observation. We see that the
predictors for any given response vt on day t are the previous L values
of the same series. Fitting a regression of y on M amounts to fitting the
model

v̂t = β̂0 + β̂1vt−1 + β̂2vt−2 + · · ·+ β̂Lvt−L, (10.22)

and is called an order-L autoregressive model, or simply AR(L). For the
NYSE data we can include lagged versions of DJ return and log volatility,
rt and zt, in the predictor matrix M, resulting in 3L+ 1 columns. An AR
model with L = 5 achieves a test R2 of 0.41, slightly inferior to the 0.42
achieved by the RNN.
Of course the RNN and AR models are very similar. They both use

the same response Y and input sequences X of length L = 5 and dimen-
sion p = 3 in this case. The RNN processes this sequence from left to
right with the same weights W (for the input layer), while the AR model
simply treats all L elements of the sequence equally as a vector of L × p
predictors — a process called flattening in the neural network literature.

flattening
Of course the RNN also includes the hidden layer activations Aℓ which
transfer information along the sequence, and introduces additional nonlin-
earity. From (10.19) with K = 12 hidden units, we see that the RNN has
13+12× (1+3+12) = 205 parameters, compared to the 16 for the AR(5)
model.
An obvious extension of the AR model is to use the set of lagged predic-

tors as the input vector to an ordinary feedforward neural network (10.1),
and hence add more flexibility. This achieved a test R2 = 0.42, slightly
better than the linear AR, and the same as the RNN.
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All the models can be improved by including the variable day of week

corresponding to the day t of the target vt (which can be learned from the
calendar dates supplied with the data); trading volume is often higher on
Mondays and Fridays. Since there are five trading days, this one-hot en-
codes to five binary variables. The performance of the AR model improved
to R2 = 0.46 as did the RNN, and the nonlinear AR model improved to
R2 = 0.47.
We used the most simple version of the RNN in our examples here.

Additional experiments with the LSTM extension of the RNN yielded small
improvements, typically of up to 1% in R2 in these examples.
We give details of how we fit all three models in Section 10.9.6.

10.5.3 Summary of RNNs

We have illustrated RNNs through two simple use cases, and have only
scratched the surface.
There are many variations and enhancements of the simple RNN we

used for sequence modeling. One approach we did not discuss uses a one-
dimensional convolutional neural network, treating the sequence of vectors
(say words, as represented in the embedding space) as an image. The con-
volution filter slides along the sequence in a one-dimensional fashion, with
the potential to learn particular phrases or short subsequences relevant to
the learning task.
One can also have additional hidden layers in an RNN. For example,

with two hidden layers, the sequence Aℓ is treated as an input sequence to
the next hidden layer in an obvious fashion.
The RNN we used scanned the document from beginning to end; alter-

native bidirectional RNNs scan the sequences in both directions.
bidirectional

In language translation the target is also a sequence of words, in a
language different from that of the input sequence. Both the input se-
quence and the target sequence are represented by a structure similar to
Figure 10.12, and they share the hidden units. In this so-called Seq2Seq

Seq2Seq
learning, the hidden units are thought to capture the semantic meaning
of the sentences. Some of the big breakthroughs in language modeling and
translation resulted from the relatively recent improvements in such RNNs.
Algorithms used to fit RNNs can be complex and computationally costly.

Fortunately, good software protects users somewhat from these complexi-
ties, and makes specifying and fitting these models relatively painless. Many
of the models that we enjoy in daily life (like Google Translate) use state-
of-the-art architectures developed by teams of highly skilled engineers, and
have been trained using massive computational and data resources.
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10.6 When to Use Deep Learning

The performance of deep learning in this chapter has been rather impres-
sive. It nailed the digit classification problem, and deep CNNs have really
revolutionized image classification. We see daily reports of new success sto-
ries for deep learning. Many of these are related to image classification
tasks, such as machine diagnosis of mammograms or digital X-ray images,
ophthalmology eye scans, annotations of MRI scans, and so on. Likewise
there are numerous successes of RNNs in speech and language translation,
forecasting, and document modeling. The question that then begs an an-
swer is: should we discard all our older tools, and use deep learning on every
problem with data? To address this question, we revisit our Hitters dataset
from Chapter 6.
This is a regression problem, where the goal is to predict the Salary of

a baseball player in 1987 using his performance statistics from 1986. After
removing players with missing responses, we are left with 263 players and
19 variables. We randomly split the data into a training set of 176 players
(two thirds), and a test set of 87 players (one third). We used three methods
for fitting a regression model to these data.

• A linear model was used to fit the training data, and make predictions
on the test data. The model has 20 parameters.

• The same linear model was fit with lasso regularization. The tuning
parameter was selected by 10-fold cross-validation on the training
data. It selected a model with 12 variables having nonzero coefficients.

• A neural network with one hidden layer consisting of 64 ReLU units
was fit to the data. This model has 1,409 parameters.21

Table 10.2 compares the results. We see similar performance for all three
models. We report the mean absolute error on the test data, as well as
the test R2 for each method, which are all respectable (see Exercise 5).
We spent a fair bit of time fiddling with the configuration parameters of
the neural network to achieve these results. It is possible that if we were to
spend more time, and got the form and amount of regularization just right,
that we might be able to match or even outperform linear regression and
the lasso. But with great ease we obtained linear models that work well.
Linear models are much easier to present and understand than the neural
network, which is essentially a black box. The lasso selected 12 of the 19
variables in making its prediction. So in cases like this we are much better
off following the Occam’s razor principle: when faced with several methods

Occam’s
razor

21The model was fit by stochastic gradient descent with a batch size of 32 for 1,000
epochs, and 10% dropout regularization. The test error performance flattened out and
started to slowly increase after 1,000 epochs. These fitting details are discussed in Sec-
tion 10.7.
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Model # Parameters Mean Abs. Error Test Set R2

Linear Regression 20 254.7 0.56
Lasso 12 252.3 0.51

Neural Network 1409 257.4 0.54

TABLE 10.2. Prediction results on the Hitters test data for linear models fit
by ordinary least squares and lasso, compared to a neural network fit by stochastic
gradient descent with dropout regularization.

Coefficient Std. error t-statistic p-value
Intercept -226.67 86.26 -2.63 0.0103
Hits 3.06 1.02 3.00 0.0036
Walks 0.181 2.04 0.09 0.9294
CRuns 0.859 0.12 7.09 < 0.0001
PutOuts 0.465 0.13 3.60 0.0005

TABLE 10.3. Least squares coefficient estimates associated with the regres-
sion of Salary on four variables chosen by lasso on the Hitters data set. This
model achieved the best performance on the test data, with a mean absolute error
of 224.8. The results reported here were obtained from a regression on the test
data, which was not used in fitting the lasso model.

that give roughly equivalent performance, pick the simplest.
After a bit more exploration with the lasso model, we identified an even

simpler model with four variables. We then refit the linear model with these
four variables to the training data (the so-called relaxed lasso), and achieved
a test mean absolute error of 224.8, the overall winner! It is tempting to
present the summary table from this fit, so we can see coefficients and p-
values; however, since the model was selected on the training data, there
would be selection bias. Instead, we refit the model on the test data, which
was not used in the selection. Table 10.3 shows the results.
We have a number of very powerful tools at our disposal, including neu-

ral networks, random forests and boosting, support vector machines and
generalized additive models, to name a few. And then we have linear mod-
els, and simple variants of these. When faced with new data modeling and
prediction problems, its tempting to always go for the trendy new methods.
Often they give extremely impressive results, especially when the datasets
are very large and can support the fitting of high-dimensional nonlinear
models. However, if we can produce models with the simpler tools that
perform as well, they are likely to be easier to fit and understand, and po-
tentially less fragile than the more complex approaches. Wherever possible,
it makes sense to try the simpler models as well, and then make a choice
based on the performance/complexity tradeoff.
Typically we expect deep learning to be an attractive choice when the

sample size of the training set is extremely large, and when interpretability
of the model is not a high priority.
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10.7 Fitting a Neural Network

Fitting neural networks is somewhat complex, and we give a briefoverview
here. The ideas generalize to much more complex networks. Readers who
find this material challenging can safely skip it. Fortunately, as we see in
the lab at the end of the chapter, good software is available to fit neural
network models in a relatively automated way, without worrying about the
technical details of the model-fitting procedure.
We start with the simple network depicted in Figure 10.1 in Section 10.1.

In model (10.1) the parameters are β = (β0,β1, . . . ,βK), as well as each of
the wk = (wk0, wk1, . . . , wkp), k = 1, . . . ,K.Given observations (xi, yi), i =
1, . . . , n, we could fit the model by solving a nonlinear least squares problem

minimize
{wk}K

1 , β

1

2

n∑

i=1

(yi − f(xi))
2, (10.23)

where

f(xi) = β0 +
K∑

k=1

βkg
(
wk0 +

p∑

j=1

wkjxij

)
. (10.24)

The objective in (10.23) looks simple enough, but because of the nested
arrangement of the parameters and the symmetry of the hidden units, it is
not straightforward to minimize. The problem is nonconvex in the param-
eters, and hence there are multiple solutions. As an example, Figure 10.17
shows a simple nonconvex function of a single variable θ; there are two
solutions: one is a local minimum and the other is a global minimum. Fur-

local
minimum
global
minimum

thermore, (10.1) is the very simplest of neural networks; in this chapter we
have presented much more complex ones where these problems are com-
pounded. To overcome some of these issues and to protect from overfitting,
two general strategies are employed when fitting neural networks.

• Slow Learning: the model is fit in a somewhat slow iterative fash-
ion, using gradient descent. The fitting process is then stopped when

gradient
descentoverfitting is detected.

• Regularization: penalties are imposed on the parameters, usually lasso
or ridge as discussed in Section 6.2.

Suppose we represent all the parameters in one long vector θ. Then we
can rewrite the objective in (10.23) as

R(θ) =
1

2

n∑

i=1

(yi − fθ(xi))
2, (10.25)

where we make explicit the dependence of f on the parameters. The idea
of gradient descent is very simple.
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FIGURE 10.17. Illustration of gradient descent for one-dimensional θ. The
objective function R(θ) is not convex, and has two minima, one at θ = −0.46
(local), the other at θ = 1.02 (global). Starting at some value θ0 (typically ran-
domly chosen), each step in θ moves downhill — against the gradient — until it
cannot go down any further. Here gradient descent reached the global minimum
in 7 steps.

1. Start with a guess θ0 for all the parameters in θ, and set t = 0.

2. Iterate until the objective (10.25) fails to decrease:

(a) Find a vector δ that reflects a small change in θ, such that θt+1 =
θt + δ reduces the objective; i.e. such that R(θt+1) < R(θt).

(b) Set t← t+ 1.

One can visualize (Figure 10.17) standing in a mountainous terrain, and
the goal is to get to the bottom through a series of steps. As long as each
step goes downhill, we must eventually get to the bottom. In this case we
were lucky, because with our starting guess θ0 we end up at the global
minimum. In general we can hope to end up at a (good) local minimum.

10.7.1 Backpropagation

How do we find the directions to move θ so as to decrease the objective
R(θ) in (10.25)? The gradient of R(θ), evaluated at some current value

gradient
θ = θm, is the vector of partial derivatives at that point:

∇R(θm) =
∂R(θ)

∂θ

∣∣∣
θ=θm

. (10.26)

The subscript θ = θm means that after computing the vector of derivatives,
we evaluate it at the current guess, θm. This gives the direction in θ-space
in which R(θ) increases most rapidly. The idea of gradient descent is to
move θ a little in the opposite direction (since we wish to go downhill):

θm+1 ← θm − ρ∇R(θm). (10.27)
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For a small enough value of the learning rate ρ, this step will decrease the
learning rate

objective R(θ); i.e. R(θm+1) ≤ R(θm). If the gradient vector is zero, then
we may have arrived at a minimum of the objective.
How complicated is the calculation (10.26)? It turns out that it is quite

simple here, and remains simple even for much more complex networks,
because of the chain rule of differentiation.

chain rule
Since R(θ) =

∑n
i=1 Ri(θ) =

1
2

∑n
i=1(yi − fθ(xi))2 is a sum, its gradient

is also a sum over the n observations, so we will just examine one of these
terms,

Ri(θ) =
1

2

(
yi − β0 −

K∑

k=1

βkg
(
wk0 +

p∑

j=1

wkjxij

))2
. (10.28)

To simplify the expressions to follow, we write zik = wk0 +
∑p

j=1 wkjxij .
First we take the derivative with respect to βk:

∂Ri(θ)

∂βk
=

∂Ri(θ)

∂fθ(xi)
· ∂fθ(xi)

∂βk

= −(yi − fθ(xi)) · g(zik). (10.29)

And now we take the derivative with respect to wkj :

∂Ri(θ)

∂wkj
=

∂Ri(θ)

∂fθ(xi)
· ∂fθ(xi)

∂g(zik)
· ∂g(zik)

∂zik
· ∂zik
∂wkj

= −(yi − fθ(xi)) · βk · g′(zik) · xij . (10.30)

Notice that both these expressions contain the residual yi − fθ(xi). In
(10.29) we see that a fraction of that residual gets attributed to each of
the hidden units according to the value of g(zik). Then in (10.30) we see
a similar attribution to input j via hidden unit k. So the act of differen-
tiation assigns a fraction of the residual to each of the parameters via the
chain rule — a process known as backpropagation in the neural network

backprop-
agationliterature. Although these calculations are straightforward, it takes careful

bookkeeping to keep track of all the pieces.

10.7.2 Regularization and Stochastic Gradient Descent

Gradient descent usually takes many steps to reach a local minimum. In
practice, there are a number of approaches for accelerating the process.
Also, when n is large, instead of summing (10.29)–(10.30) over all n ob-
servations, we can sample a small fraction or minibatch of them each time

minibatch
we compute a gradient step. This process is known as stochastic gradient
descent (SGD) and is the state of the art for learning deep neural networks.

stochastic
gradient
descent

Fortunately, there is very good software for setting up deep learning mod-
els, and for fitting them to data, so most of the technicalities are hidden
from the user.
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FIGURE 10.18. Evolution of training and validation errors for the MNIST neural
network depicted in Figure 10.4, as a function of training epochs. The objective
refers to the log-likelihood (10.14).

We now turn to the multilayer network (Figure 10.4) used in the digit
recognition problem. The network has over 235,000 weights, which is around
four times the number of training examples. Regularization is essential here
to avoid overfitting. The first row in Table 10.1 uses ridge regularization on
the weights. This is achieved by augmenting the objective function (10.14)
with a penalty term:

R(θ;λ) = −
n∑

i=1

9∑

m=0

yim log(fm(xi)) + λ
∑

j

θ2j . (10.31)

The parameter λ is often preset at a small value, or else it is found using the
validation-set approach of Section 5.3.1. We can also use different values of
λ for the groups of weights from different layers; in this case W1 and W2

were penalized, while the relatively few weights B of the output layer were
not penalized at all. Lasso regularization is also popular as an additional
form or regularization, or as an alternative to ridge.
Figure 10.18 shows some metrics that evolve during the training of the

network on the MNIST data. It turns out that SGD naturally enforces its
own form of approximately quadratic regularization.22 Here the minibatch
size was 128 observations per gradient update. The term epochs labeling the

epochs
horizontal axis in Figure 10.18 counts the number of times an equivalent of
the full training set has been processed. For this network, 20% of the 60,000
training observations were used as a validation set in order to determine
when training should stop. So in fact 48,000 observations were used for

22This and other properties of SGD for deep learning are the subject of much research
in the machine learning literature at the time of writing.
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FIGURE 10.19. Dropout Learning. Left: a fully connected network. Right: net-
work with dropout in the input and hidden layer. The nodes in grey are selected
at random, and ignored in an instance of training.

training, and hence there are 48,000/128 ≈ 375 minibatch gradient updates
per epoch. We see that the value of the validation objective actually starts
to increase by 30 epochs, so early stopping can also be used as an additional

early
stoppingform of regularization.

10.7.3 Dropout Learning

The second row in Table 10.1 is labeled dropout. This is a relatively new
dropout

and efficient form of regularization, similar in some respects to ridge reg-
ularization. Inspired by random forests (Section 8.2), the idea is to ran-
domly remove a fraction φ of the units in a layer when fitting the model.
Figure 10.19 illustrates this. This is done separately each time a training
observation is processed. The surviving units stand in for those missing,
and their weights are scaled up by a factor of 1/(1 − φ) to compensate.
This prevents nodes from becoming over-specialized, and can be seen as
a form of regularization. In practice dropout is achieved by randomly set-
ting the activations for the “dropped out” units to zero, while keeping the
architecture intact.

10.7.4 Network Tuning

The network in Figure 10.4 is considered to be relatively straightforward;
it nevertheless requires a number of choices that all have an effect on the
performance:

• The number of hidden layers, and the number of units per layer. Mod-
ern thinking is that the number of units per hidden layer can be large,
and overfitting can be controlled via the various forms of regulariza-
tion.



10.8 Interpolation and Double Descent 439

• Regularization tuning parameters. These include the dropout rate φ
and the strength λ of lasso and ridge regularization, and are typically
set separately at each layer.

• Details of stochastic gradient descent. These includes the batch size,
the number of epochs, and if used, details of data augmentation (Sec-
tion 10.3.4.)

Choices such as these can make a difference. In preparing this MNIST exam-
ple, we achieved a respectable 1.8% misclassification error after some trial
and error. Finer tuning and training of a similar network can get under
1% error on these data, but the tinkering process can be tedious, and can
result in overfitting if done carelessly.

10.8 Interpolation and Double Descent

Throughout this book, we have repeatedly discussed the bias-variance trade-
off, first presented in Section 2.2.2. This trade-off indicates that statistical
learning methods tend to perform the best, in terms of test-set error, for an
intermediate level of model complexity. In particular, if we plot “flexibility”
on the x-axis and error on the y-axis, then we generally expect to see that
test error has a U-shape, whereas training error decreases monotonically.
Two “typical” examples of this behavior can be seen in the right-hand
panel of Figure 2.9 on page 31, and in Figure 2.17 on page 42. One implica-
tion of the bias-variance trade-off is that it is generally not a good idea to
interpolate the training data — that is, to get zero training error — since

interpolate
that will often result in very high test error.
However, it turns out that in certain specific settings it can be possible for

a statistical learning method that interpolates the training data to perform
well — or at least, better than a slightly less complex model that does not
quite interpolate the data. This phenomenon is known as double descent,
and is displayed in Figure 10.20. “Double descent” gets its name from the
fact that the test error has a U-shape before the interpolation threshold is
reached, and then it descends again (for a while, at least) as an increasingly
flexible model is fit.
We now describe the set-up that resulted in Figure 10.20. We simulated

n = 20 observations from the model

Y = sin(X) + ϵ,

where X ∼ U [−5, 5] (uniform distribution), and ϵ ∼ N(0,σ2) with σ = 0.3.
We then fit a natural spline to the data, as described in Section 7.4, with d
degrees of freedom.23 Recall from Section 7.4 that fitting a natural spline

23This implies the choice of d knots, here chosen at d equi-probability quantiles of the
training data. When d > n, the quantiles are found by interpolation.
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FIGURE 10.20. Double descent phenomenon, illustrated using error plots for
a one-dimensional natural spline example. The horizontal axis refers to the num-
ber of spline basis functions on the log scale. The training error hits zero when
the degrees of freedom coincides with the sample size n = 20, the “interpolation
threshold”, and remains zero thereafter. The test error increases dramatically at
this threshold, but then descends again to a reasonable value before finally increas-
ing again.

with d degrees of freedom amounts to fitting a least-squares regression
of the response onto a set of d basis functions. The upper-left panel of
Figure 10.21 shows the data, the true function f(X), and f̂8(X), the fitted
natural spline with d = 8 degrees of freedom.
Next, we fit a natural spline with d = 20 degrees of freedom. Since n = 20,

this means that n = d, and we have zero training error; in other words, we
have interpolated the training data! We can see from the top-right panel of
Figure 10.21 that f̂20(X) makes wild excursions, and hence the test error
will be large.
We now continue to fit natural splines to the data, with increasing values

of d. For d > 20, the least squares regression of Y onto d basis functions
is not unique: there are an infinite number of least squares coefficient es-
timates that achieve zero error. To select among them, we choose the one
with the smallest sum of squared coefficients,

∑d
j=1 β̂

2
j . This is known as

the minimum-norm solution.
The two lower panels of Figure 10.21 show the minimum-norm natural

spline fits with d = 42 and d = 80 degrees of freedom. Incredibly, f̂42(X)
is quite a bit less less wild than f̂20(X), even though it makes use of more
degrees of freedom. And f̂80(X) is not much different. How can this be?
Essentially, f̂20(X) is very wild because there is just a single way to inter-
polate n = 20 observations using d = 20 basis functions, and that single
way results in a somewhat extreme fitted function. By contrast, there are an
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FIGURE 10.21. Fitted functions f̂d(X) (orange), true function f(X) (black)
and the observed 20 training data points. A different value of d (degrees of free-
dom) is used in each panel. For d ≥ 20 the orange curves all interpolate the
training points, and hence the training error is zero.

infinite number of ways to interpolate n = 20 observations using d = 42 or
d = 80 basis functions, and the smoothest of them — that is, the minimum
norm solution — is much less wild than f̂20(X)!
In Figure 10.20, we display the training error and test error associated

with f̂d(X), for a range of values of the degrees of freedom d. We see that
the training error drops to zero once d = 20 and beyond; i.e. once the
interpolation threshold is reached. By contrast, the test error shows a U -
shape for d ≤ 20, grows extremely large around d = 20, and then shows a
second region of descent for d > 20. For this example the signal-to-noise
ratio — Var(f(X))/σ2 — is 5.9, which is quite high (the data points are
close to the true curve). So an estimate that interpolates the data and does
not wander too far inbetween the observed data points will likely do well.
In Figures 10.20 and 10.21, we have illustrated the double descent phe-

nomenon in a simple one-dimensional setting using natural splines. How-
ever, it turns out that the same phenomenon can arise for deep learning.
Basically, when we fit neural networks with a huge number of parameters,
we are sometimes able to get good results with zero training error. This is
particularly true in problems with high signal-to-noise ratio, such as natural
image recognition and language translation, for example. This is because
the techniques used to fit neural networks, including stochastic gradient
descent, naturally lend themselves to selecting a “smooth” interpolating
model that has good test-set performance on these kinds of problems.
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Some points are worth emphasizing:

• The double-descent phenomenon does not contradict the bias-variance
trade-off, as presented in Section 2.2.2. Rather, the double-descent
curve seen in the right-hand side of Figure 10.20 is a consequence of
the fact that the x-axis displays the number of spline basis functions
used, which does not properly capture the true “flexibility” of models
that interpolate the training data. Stated another way, in this exam-
ple, the minimum-norm natural spline with d = 42 has lower variance
than the natural spline with d = 20.

• Most of the statistical learning methods seen in this book do not exhibit
double descent. For instance, regularization approaches typically do
not interpolate the training data, and thus double descent does not
occur. This is not a drawback of regularized methods: they can give
great results without interpolating the data !

In particular, in the examples here, if we had fit the natural splines
using ridge regression with an appropriately-chosen penalty rather
than least squares, then we would not have seen double descent, and
in fact would have obtained better test error results.

• In Chapter 9, we saw that maximal margin classifiers and SVMs that
have zero training error nonetheless often achieve very good test error.
This is in part because those methods seek smooth minimum norm
solutions. This is similar to the fact that the minimum-norm natural
spline can give good results with zero training error.

• The double-descent phenomenon has been used by the machine learn-
ing community to explain the successful practice of using an over-
parametrized neural network (many layers, and many hidden units),
and then fitting all the way to zero training error. However, fitting
to zero error is not always optimal, and whether it is advisable de-
pends on the signal-to-noise ratio. For instance, we may use ridge
regularization to avoid overfitting a neural network, as in (10.31). In
this case, provided that we use an appropriate choice for the tuning
parameter λ, we will never interpolate the training data, and thus
will not see the double descent phenomenon. Nonetheless we can get
very good test-set performance, likely much better than we would
have achieved had we interpolated the training data. Early stopping
during stochastic gradient descent can also serve as a form of regular-
ization that prevents us from interpolating the training data, while
still getting very good results on test data.

To summarize: though double descent can sometimes occur in neural net-
works, we typically do not want to rely on this behavior. Moreover, it is im-
portant to remember that the bias-variance trade-off always holds (though



10.9 Lab: Deep Learning 443

it is possible that test error as a function of flexibility may not exhibit a U-
shape, depending on how we have parametrized the notion of “flexibility”
on the x-axis).

10.9 Lab: Deep Learning

In this section, we show how to fit the examples discussed in the text. We
use the keras package, which interfaces to the tensorflow package which in
turn links to efficient python code. This code is impressively fast, and the
package is well-structured. A good companion is the text Deep Learning
with R24, and most of our code is adapted from there.
Getting keras up and running on your computer can be a challenge. The

book website www.statlearning.com gives step-by-step instructions on
how to achieve this.25 Guidance can also be found at keras.rstudio.com.

10.9.1 A Single Layer Network on the Hitters Data

We start by fitting the models in Section 10.6. We set up the data, and
separate out a training and test set.

> library(ISLR2)

> Gitters <- na.omit(Hitters)

> n <- nrow(Gitters)

> set.seed (13)

> ntest <- trunc(n / 3)

> testid <- sample (1:n, ntest)

The linear model should be familiar, but we present it anyway.

> lfit <- lm(Salary ∼ ., data = Gitters[-testid , ])

> lpred <- predict(lfit , Gitters[testid , ])

> with(Gitters[testid , ], mean(abs(lpred - Salary)))

[1] 254.6687

Notice the use of the with() command: the first argument is a dataframe,
with()

and the second an expression that can refer to elements of the dataframe
by name. In this instance the dataframe corresponds to the test data and
the expression computes the mean absolute prediction error on this data.
Next we fit the lasso using glmnet. Since this package does not use for-

mulas, we create x and y first.

> x <- scale(model.matrix(Salary ∼ . - 1, data = Gitters))

> y <- Gitters$Salary

24F. Chollet and J.J. Allaire, Deep Learning with R (2018), Manning Publications.
25Many thanks to Balasubramanian Narasimhan for preparing the keras installation

instructions.
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The first line makes a call to model.matrix(), which produces the same
matrix that was used by lm() (the -1 omits the intercept). This function
automatically converts factors to dummy variables. The scale() function
standardizes the matrix so each column has mean zero and variance one.

> library(glmnet)

> cvfit <- cv.glmnet(x[-testid , ], y[-testid],

type.measure = "mae")

> cpred <- predict(cvfit , x[testid , ], s = "lambda.min")

> mean(abs(y[testid] - cpred))

[1] 252.2994

To fit the neural network, we first set up a model structure that describes
the network.

> library(keras)

> modnn <- keras_model_sequential () %>%

+ layer_dense(units = 50, activation = "relu",

input_shape = ncol(x)) %>%

+ layer_dropout(rate = 0.4) %>%

+ layer_dense(units = 1)

We have created a vanilla model object called modnn, and have added de-
tails about the successive layers in a sequential manner, using the function
keras model sequential(). The pipe operator %>% passes the previous term

keras model

sequential

pipe

as the first argument to the next function, and returns the result. It allows
us to specify the layers of a neural network in a readable form.
We illustrate the use of the pipe operator on a simple example. Earlier,

we created x using the command

> x <- scale(model.matrix(Salary ∼ . - 1, data = Gitters))

We first make a matrix, and then we center each of the variables. Compound
expressions like this can be difficult to parse. We could have obtained the
same result using the pipe operator:

> x <- model.matrix(Salary ∼ . - 1, data = Gitters) %>% scale ()

Using the pipe operator makes it easier to follow the sequence of operations.
We now return to our neural network. The object modnn has a single hid-

den layer with 50 hidden units, and a ReLU activation function. It then has
a dropout layer, in which a random 40% of the 50 activations from the pre-
vious layer are set to zero during each iteration of the stochastic gradient
descent algorithm. Finally, the output layer has just one unit with no ac-
tivation function, indicating that the model provides a single quantitative
output.
Next we add details to modnn that control the fitting algorithm. Here we

have simply followed the examples given in the Keras book. We minimize
squared-error loss as in (10.23). The algorithm tracks the mean absolute
error on the training data, and on validation data if it is supplied.

> modnn %>% compile(loss = "mse",
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optimizer = optimizer_rmsprop (),

metrics = list("mean_absolute_error")

)

In the previous line, the pipe operator passes modnn as the first argument
to compile(). The compile() function does not actually change the R object

compile()
modnn, but it does communicate these specifications to the corresponding
python instance of this model that has been created along the way.
Now we fit the model. We supply the training data and two fitting pa-

rameters, epochs and batch size. Using 32 for the latter means that at each
step of SGD, the algorithm randomly selects 32 training observations for
the computation of the gradient. Recall from Sections 10.4 and 10.7 that
an epoch amounts to the number of SGD steps required to process n obser-
vations. Since the training set has n = 176, an epoch is 176/32 = 5.5 SGD
steps. The fit() function has an argument validation data; these data are
not used in the fitting, but can be used to track the progress of the model
(in this case reporting the mean absolute error). Here we actually supply
the test data so we can see the mean absolute error of both the training
data and test data as the epochs proceed. To see more options for fitting,
use ?fit.keras.engine.training.Model.

> history <- modnn %>% fit(

x[-testid , ], y[-testid], epochs = 1500, batch_size = 32,

validation_data = list(x[testid , ], y[testid ])

)

We can plot the history to display the mean absolute error for the training
and test data. For the best aesthetics, install the ggplot2 package before
calling the plot() function. If you have not installed ggplot2, then the code
below will still run, but the plot will be less attractive.

> plot(history)

It is worth noting that if you run the fit() command a second time in the
same R session, then the fitting process will pick up where it left off. Try
re-running the fit() command, and then the plot() command, to see!
Finally, we predict from the final model, and evaluate its performance

on the test data. Due to the use of SGD, the results vary slightly with each
fit. Unfortunately the set.seed() function does not ensure identical results
(since the fitting is done in python), so your results will differ slightly.

> npred <- predict(modnn , x[testid , ])

> mean(abs(y[testid] - npred))

[1] 257.43

10.9.2 A Multilayer Network on the MNIST Digit Data

The keras package comes with a number of example datasets, includ-
ing the MNIST digit data. Our first step is to load the MNIST data. The
dataset mnist() function is provided for this purpose.

dataset mnist()
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> mnist <- dataset_mnist ()

> x_train <- mnist$train$x

> g_train <- mnist$train$y

> x_test <- mnist$test$x

> g_test <- mnist$test$y

> dim(x_train)

[1] 60000 28 28

> dim(x_test)

[1] 10000 28 28

There are 60,000 images in the training data and 10,000 in the test data.
The images are 28×28, and stored as a three-dimensional array, so we need
to reshape them into a matrix. Also, we need to “one-hot” encode the class
label. Luckily keras has a lot of built-in functions that do this for us.

> x_train <- array_reshape(x_train , c(nrow(x_train), 784))

> x_test <- array_reshape(x_test , c(nrow(x_test), 784))

> y_train <- to_categorical(g_train , 10)

> y_test <- to_categorical(g_test , 10)

Neural networks are somewhat sensitive to the scale of the inputs. For
example, ridge and lasso regularization are affected by scaling. Here the
inputs are eight-bit26 grayscale values between 0 and 255, so we rescale to
the unit interval.

> x_train <- x_train / 255

> x_test <- x_test / 255

Now we are ready to fit our neural network.

> modelnn <- keras_model_sequential ()

> modelnn %>%

+ layer_dense(units = 256, activation = "relu",

input_shape = c(784)) %>%

+ layer_dropout(rate = 0.4) %>%

+ layer_dense(units = 128, activation = "relu") %>%

+ layer_dropout(rate = 0.3) %>%

+ layer_dense(units = 10, activation = "softmax")

The first layer goes from 28 × 28 = 784 input units to a hidden layer of
256 units, which uses the ReLU activation function. This is specified by a
call to layer dense(), which takes as input a modelnn object, and returns

layer dense()
a modified modelnn object. This is then piped through layer dropout() to

layer dropout()
perform dropout regularization. The second hidden layer comes next, with
128 hidden units, followed by a dropout layer. The final layer is the out-
put layer, with activation "softmax" (10.13) for the 10-class classification
problem, which defines the map from the second hidden layer to class prob-
abilities. Finally, we use summary() to summarize the model, and to make
sure we got it all right.

26Eight bits means 28, which equals 256. Since the convention is to start at 0, the
possible values range from 0 to 255.
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> summary(modelnn)

________________________________________________________________

Layer (type) Output Shape Param #

================================================================

dense (Dense) (None , 256) 200960

________________________________________________________________

dropout (Dropout) (None , 256) 0

________________________________________________________________

dense_1 (Dense) (None , 128) 32896

________________________________________________________________

dropout _1 (Dropout) (None , 128) 0

________________________________________________________________

dense_2 (Dense) (None , 10) 1290

================================================================

Total params: 235 ,146

Trainable params: 235 ,146

Non -trainable params: 0

The parameters for each layer include a bias term, which results in a
parameter count of 235,146. For example, the first hidden layer involves
(784 + 1)× 256 = 200,960 parameters.
Notice that the layer names such as dropout 1 and dense 2 have sub-

scripts. These may appear somewhat random; in fact, if you fit the same
model again, these will change. They are of no consequence: they vary be-
cause the model specification code is run in python, and these subscripts
are incremented every time keras model sequential() is called.
Next, we add details to the model to specify the fitting algorithm. We

fit the model by minimizing the cross-entropy function given by (10.14).

> modelnn %>% compile(loss = "categorical_crossentropy",

optimizer = optimizer_rmsprop (), metrics = c("accuracy")

)

Now we are ready to go. The final step is to supply training data, and
fit the model.

> system.time(

+ history <- modelnn %>%

+ fit(x_train , y_train , epochs = 30, batch_size = 128,

validation_split = 0.2)

+ )

> plot(history , smooth = FALSE)

We have suppressed the output here, which is a progress report on the
fitting of the model, grouped by epoch. This is very useful, since on large
datasets fitting can take time. Fitting this model took 144 seconds on a
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2.9 GHz MacBook Pro with 4 cores and 32 GB of RAM. Here we spec-
ified a validation split of 20%, so the training is actually performed on
80% of the 60,000 observations in the training set. This is an alternative
to actually supplying validation data, like we did in Section 10.9.1. See
?fit.keras.engine.training.Model for all the optional fitting arguments.
SGD uses batches of 128 observations in computing the gradient, and do-
ing the arithmetic, we see that an epoch corresponds to 375 gradient steps.
The last plot() command produces a figure similar to Figure 10.18.
To obtain the test error in Table 10.1, we first write a simple function

accuracy() that compares predicted and true class labels, and then use it
to evaluate our predictions.

> accuracy <- function(pred , truth)

+ mean(drop(pred) == drop(truth))

> modelnn %>% predict_classes(x_test) %>% accuracy(g_test)

[1] 0.9813

The table also reports LDA (Chapter 4) and multiclass logistic regression.
Although packages such as glmnet can handle multiclass logistic regression,
they are quite slow on this large dataset. It is much faster and quite easy
to fit such a model using the keras software. We just have an input layer
and output layer, and omit the hidden layers!

> modellr <- keras_model_sequential () %>%

+ layer_dense(input_shape = 784, units = 10,

activation = "softmax")

> summary(modellr)

________________________________________________________________

Layer (type) Output Shape Param #

================================================================

dense_6 (Dense) (None , 10) 7850

================================================================

Total params: 7,850

Trainable params: 7,850

Non -trainable params: 0

We fit the model just as before.

> modellr %>% compile(loss = "categorical_crossentropy",

optimizer = optimizer_rmsprop (), metrics = c("accuracy"))

> modellr %>% fit(x_train , y_train , epochs = 30,

batch_size = 128, validation_split = 0.2)

> modellr %>% predict_classes(x_test) %>% accuracy(g_test)

[1] 0.9286

10.9.3 Convolutional Neural Networks

In this section we fit a CNN to the CIFAR100 data, which is available in the
keras package. It is arranged in a similar fashion as the MNIST data.
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> cifar100 <- dataset_cifar100 ()

> names(cifar100)

[1] "train" "test"

> x_train <- cifar100$train$x

> g_train <- cifar100$train$y

> x_test <- cifar100$test$x

> g_test <- cifar100$test$y

> dim(x_train)

[1] 50000 32 32 3

> range(x_train[1,,, 1])

[1] 13 255

The array of 50,000 training images has four dimensions: each three-color
image is represented as a set of three channels, each of which consists of
32× 32 eight-bit pixels. We standardize as we did for the digits, but keep
the array structure. We one-hot encode the response factors to produce a
100-column binary matrix.

> x_train <- x_train / 255

> x_test <- x_test / 255

> y_train <- to_categorical(g_train , 100)

> dim(y_train)

[1] 50000 100

Before we start, we look at some of the training images using the jpeg
jpeg

package; similar code produced Figure 10.5 on page 411.

> library(jpeg)

> par(mar = c(0, 0, 0, 0), mfrow = c(5, 5))

> index <- sample(seq (50000) , 25)

> for (i in index) plot(as.raster(x_train[i,,, ]))

The as.raster() function converts the feature map so that it can be plotted
as.raster()

as a color image.
Here we specify a moderately-sized CNN for demonstration purposes,

similar in structure to Figure 10.8.

> model <- keras_model_sequential () %>%

+ layer_conv_2d(filters = 32, kernel_size = c(3, 3),

padding = "same", activation = "relu",

input_shape = c(32, 32, 3)) %>%

+ layer_max_pooling _2d(pool_size = c(2, 2)) %>%

+ layer_conv_2d(filters = 64, kernel_size = c(3, 3),

padding = "same", activation = "relu") %>%

+ layer_max_pooling _2d(pool_size = c(2, 2)) %>%

+ layer_conv_2d(filters = 128, kernel_size = c(3, 3),

padding = "same", activation = "relu") %>%

+ layer_max_pooling _2d(pool_size = c(2, 2)) %>%

+ layer_conv_2d(filters = 256, kernel_size = c(3, 3),

padding = "same", activation = "relu") %>%

+ layer_max_pooling _2d(pool_size = c(2, 2)) %>%

+ layer_flatten () %>%

+ layer_dropout(rate = 0.5) %>%

+ layer_dense(units = 512, activation = "relu") %>%
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+ layer_dense(units = 100, activation = "softmax")

> summary(model)

________________________________________________________________

Layer (type) Output Shape Param #

================================================================

conv2d (Conv2D) (None , 32, 32, 32) 896

________________________________________________________________

max_pooling2d (MaxPooling2D (None , 16, 16, 32) 0

________________________________________________________________

conv2d _1 (Conv2D) (None , 16, 16, 64) 18496

________________________________________________________________

max_pooling2d _1 (MaxPooling (None , 8, 8, 64) 0

________________________________________________________________

conv2d _2 (Conv2D) (None , 8, 8, 128) 73856

________________________________________________________________

max_pooling2d _2 (MaxPooling (None , 4, 4, 128) 0

________________________________________________________________

conv2d _3 (Conv2D) (None , 4, 4, 256) 295168

________________________________________________________________

max_pooling2d _3 (MaxPooling (None , 2, 2, 256) 0

________________________________________________________________

flatten (Flatten) (None , 1024) 0

________________________________________________________________

dropout (Dropout) (None , 1024) 0

________________________________________________________________

dense (Dense) (None , 512) 524800

________________________________________________________________

dense_1 (Dense) (None , 100) 51300

================================================================

Total params: 964 ,516

Trainable params: 964 ,516

Non -trainable params: 0

Notice that we used the padding = "same" argument to layer conv 2D(),
layer conv 2D()

which ensures that the output channels have the same dimension as the
input channels. There are 32 channels in the first hidden layer, in contrast
to the three channels in the input layer. We use a 3 × 3 convolution filter
for each channel in all the layers. Each convolution is followed by a max-
pooling layer over 2 × 2 blocks. By studying the summary, we can see
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that the channels halve in both dimensions after each of these max-pooling
operations. After the last of these we have a layer with 256 channels of
dimension 2 × 2. These are then flattened to a dense layer of size 1,024:
in other words, each of the 2 × 2 matrices is turned into a 4-vector, and
put side-by-side in one layer. This is followed by a dropout regularization
layer, then another dense layer of size 512, which finally reaches the softmax
output layer.
Finally, we specify the fitting algorithm, and fit the model.

> model %>% compile(loss = "categorical_crossentropy",

optimizer = optimizer_rmsprop (), metrics = c("accuracy"))

> history <- model %>% fit(x_train , y_train , epochs = 30,

batch_size = 128, validation_split = 0.2)

> model %>% predict_classes(x_test) %>% accuracy(g_test)

[1] 0.4561

This model takes 10 minutes to run and achieves 46% accuracy on the test
data. Although this is not terrible for 100-class data (a random classifier
gets 1% accuracy), searching the web we see results around 75%. Typically
it takes a lot of architecture carpentry, fiddling with regularization, and
time to achieve such results.

10.9.4 Using Pretrained CNN Models

We now show how to use a CNN pretrained on the imagenet database to
classify natural images, and demonstrate how we produced Figure 10.10.
We copied six jpeg images from a digital photo album into the directory
book images.27 We first read in the images, and convert them into the ar-
ray format expected by the keras software to match the specifications in
imagenet. Make sure that your working directory in R is set to the folder in
which the images are stored.

> img_dir <- "book_images"

> image_names <- list.files(img_dir)

> num_images <- length(image_names)

> x <- array(dim = c(num_images , 224, 224, 3))

> for (i in 1:num_images) {

+ img_path <- paste(img_dir , image_names[i], sep = "/")

+ img <- image_load(img_path, target_size = c(224, 224))

+ x[i,,, ] <- image_to_array(img)

+ }

> x <- imagenet_preprocess_input(x)

We then load the trained network. The model has 50 layers, with a fair bit
of complexity.

27These images are available from the data section of www.statlearning.com, the
ISL book website. Download book images.zip; when clicked it creates the book images

directory.
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> model <- application_resnet50(weights = "imagenet")

> summary(model)

Finally, we classify our six images, and return the top three class choices
in terms of predicted probability for each.

> pred6 <- model %>% predict(x) %>%

+ imagenet_decode_predictions(top = 3)

> names(pred6) <- image_names

> print(pred6)

10.9.5 IMDb Document Classification

Now we perform document classification (Section 10.4) on the IMDb dataset,
which is available as part of the keras package. We limit the dictionary size
to the 10,000 most frequently-used words and tokens.

> max_features <- 10000

> imdb <- dataset_imdb(num_words = max_features)

> c(c(x_train , y_train), c(x_test , y_test)) %<-% imdb

The third line is a shortcut for unpacking the list of lists. Each element
of x train is a vector of numbers between 0 and 9999 (the document),
referring to the words found in the dictionary. For example, the first training
document is the positive review on page 419. The indices of the first 12
words are given below.

> x_train [[1]][1:12]

[1] 1 14 22 16 43 530 973 1622 1385 65 458 4468

To see the words, we create a function, decode review(), that provides a
simple interface to the dictionary.

> word_index <- dataset_imdb_word_index ()

> decode_review <- function(text , word_index) {

+ word <- names(word_index)

+ idx <- unlist(word_index , use.names = FALSE)

+ word <- c("<PAD >", "<START >", "<UNK >", "<UNUSED >", word)

+ idx <- c(0:3, idx + 3)

+ words <- word[match(text, idx , 2)]

+ paste(words , collapse = " ")

+ }

> decode_review(x_train [[1]][1:12] , word_index)

[1] "<START > this film was just brilliant casting location

scenery story direction everyone ’s"

Next we write a function to “one-hot” encode each document in a list of
documents, and return a binary matrix in sparse-matrix format.

> library(Matrix)

> one_hot <- function(sequences , dimension) {

+ seqlen <- sapply(sequences , length)

+ n <- length(seqlen)
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+ rowind <- rep (1:n, seqlen)

+ colind <- unlist(sequences)

+ sparseMatrix(i = rowind , j = colind ,

dims = c(n, dimension))

+ }

To construct the sparse matrix, one supplies just the entries that are
nonzero. In the last line we call the function sparseMatrix() and supply
the row indices corresponding to each document and the column indices
corresponding to the words in each document, since we omit the values
they are taken to be all ones. Words that appear more than once in any
given document still get recorded as a one.

> x_train_1h <- one_hot(x_train , 10000)

> x_test_1h <- one_hot(x_test , 10000)

> dim(x_train_1h)

[1] 25000 10000

> nnzero(x_train _1h) / (25000 * 10000)

[1] 0.01316987

Only 1.3% of the entries are nonzero, so this amounts to considerable sav-
ings in memory. We create a validation set of size 2,000, leaving 23,000 for
training.

> set.seed (3)

> ival <- sample(seq(along = y_train), 2000)

First we fit a lasso logistic regression model using glmnet() on the training
data, and evaluate its performance on the validation data. Finally, we plot
the accuracy, acclmv, as a function of the shrinkage parameter, λ. Similar
expressions compute the performance on the test data, and were used to
produce the left plot in Figure 10.11. The code takes advantage of the
sparse-matrix format of x train 1h, and runs in about 5 seconds; in the
usual dense format it would take about 5 minutes.

> library(glmnet)

> fitlm <- glmnet(x_train_1h[-ival , ], y_train[-ival],

family = "binomial", standardize = FALSE)

> classlmv <- predict(fitlm , x_train_1h[ival , ]) > 0

> acclmv <- apply(classlmv , 2, accuracy , y_train[ival] > 0)

We applied the accuracy() function that we wrote in Lab 10.9.2 to every
column of the prediction matrix classlmv, and since this is a logical matrix
of TRUE/FALSE values, we supply the second argument truth as a logical
vector as well.
Before making a plot, we adjust the plotting window.

> par(mar = c(4, 4, 4, 4), mfrow = c(1, 1))

> plot(-log(fitlm$lambda), acclmv)

Next we fit a fully-connected neural network with two hidden layers, each
with 16 units and ReLU activation.
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> model <- keras_model_sequential () %>%

+ layer_dense(units = 16, activation = "relu",

input_shape = c(10000)) %>%

+ layer_dense(units = 16, activation = "relu") %>%

+ layer_dense(units = 1, activation = "sigmoid")

> model %>% compile(optimizer = "rmsprop",

loss = "binary_crossentropy", metrics = c("accuracy"))

> history <- model %>% fit(x_train _1h[-ival , ], y_train[-ival],

epochs = 20, batch_size = 512,

validation_data = list(x_train_1h[ival , ], y_train[ival]))

The history object has a metrics component that records both the training
and validation accuracy at each epoch. Figure 10.11 includes test accuracy
at each epoch as well. To compute the test accuracy, we rerun the entire
sequence above, replacing the last line with

> history <- model %>% fit(

x_train_1h[-ival , ], y_train[-ival], epochs = 20,

batch_size = 512, validation_data = list(x_test_1h, y_test)

)

10.9.6 Recurrent Neural Networks

In this lab we fit the models illustrated in Section 10.5.

Sequential Models for Document Classification

Here we fit a simple LSTM RNN for sentiment analysis with the IMDb

movie-review data, as discussed in Section 10.5.1. We showed how to input
the data in 10.9.5, so we will not repeat that here.
We first calculate the lengths of the documents.

> wc <- sapply(x_train , length)

> median(wc)

[1] 178

> sum(wc <= 500) / length(wc)

[1] 0.91568

We see that over 91% of the documents have fewer than 500 words. Our
RNN requires all the document sequences to have the same length. We
hence restrict the document lengths to the last L = 500 words, and pad
the beginning of the shorter ones with blanks.

> maxlen <- 500

> x_train <- pad_sequences(x_train , maxlen = maxlen)

> x_test <- pad_sequences(x_test , maxlen = maxlen)

> dim(x_train)

[1] 25000 500

> dim(x_test)

[1] 25000 500

> x_train[1, 490:500]

[1] 16 4472 113 103 32 15 16 5345 19 178 32
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The last expression shows the last few words in the first document. At this
stage, each of the 500 words in the document is represented using an integer
corresponding to the location of that word in the 10,000-word dictionary.
The first layer of the RNN is an embedding layer of size 32, which will be
learned during training. This layer one-hot encodes each document as a
matrix of dimension 500× 10, 000, and then maps these 10, 000 dimensions
down to 32.

> model <- keras_model_sequential () %>%

+ layer_embedding(input_dim = 10000, output_dim = 32) %>%

+ layer_lstm(units = 32) %>%

+ layer_dense(units = 1, activation = "sigmoid")

The second layer is an LSTM with 32 units, and the output layer is a single
sigmoid for the binary classification task.
The rest is now similar to other networks we have fit. We track the test

performance as the network is fit, and see that it attains 87% accuracy.

> model %>% compile(optimizer = "rmsprop",

loss = "binary_crossentropy", metrics = c("acc"))

> history <- model %>% fit(x_train , y_train , epochs = 10,

batch_size = 128, validation_data = list(x_test , y_test))

> plot(history)

> predy <- predict(model, x_test) > 0.5

> mean(abs(y_test == as.numeric(predy)))

[1] 0.8721

Time Series Prediction

We now show how to fit the models in Section 10.5.2 for time series pre-
diction. We first set up the data, and standardize each of the variables.

> library(ISLR2)

> xdata <- data.matrix(

NYSE[, c("DJ_return", "log_volume","log_volatility")]

)

> istrain <- NYSE[, "train"]

> xdata <- scale(xdata)

The variable istrain contains a TRUE for each year that is in the training
set, and a FALSE for each year in the test set.
We first write functions to create lagged versions of the three time series.

We start with a function that takes as input a data matrix and a lag L,
and returns a lagged version of the matrix. It simply inserts L rows of NA
at the top, and truncates the bottom.

> lagm <- function(x, k = 1) {

+ n <- nrow(x)

+ pad <- matrix(NA , k, ncol(x))

+ rbind(pad , x[1:(n - k), ])

+ }
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We now use this function to create a data frame with all the required lags,
as well as the response variable.

> arframe <- data.frame(log_volume = xdata[, "log_volume"],

L1 = lagm(xdata , 1), L2 = lagm(xdata , 2),

L3 = lagm(xdata , 3), L4 = lagm(xdata , 4),

L5 = lagm(xdata , 5)

)

If we look at the first five rows of this frame, we will see some missing
values in the lagged variables (due to the construction above). We remove
these rows, and adjust istrain accordingly.

> arframe <- arframe [ -(1:5), ]

> istrain <- istrain [ -(1:5)]

We now fit the linear AR model to the training data using lm(), and predict
on the test data.

> arfit <- lm(log_volume ∼ ., data = arframe[istrain , ])

> arpred <- predict(arfit , arframe [!istrain , ])

> V0 <- var(arframe [!istrain , "log_volume"])

> 1 - mean(( arpred - arframe [!istrain , "log_volume"])^2) / V0

[1] 0.4132

The last two lines compute the R2 on the test data, as defined in (3.17).
We refit this model, including the factor variable day of week.

> arframed <-

data.frame(day = NYSE [ -(1:5), "day_of_week"], arframe)

> arfitd <- lm(log_volume ∼ ., data = arframed[istrain , ])

> arpredd <- predict(arfitd , arframed [!istrain , ])

> 1 - mean(( arpredd - arframe [!istrain , "log_volume"])^2) / V0

[1] 0.4599

To fit the RNN, we need to reshape these data, since it expects a sequence
of L = 5 feature vectors X = {Xℓ}L1 for each observation, as in (10.20) on
page 428. These are lagged versions of the time series going back L time
points.

> n <- nrow(arframe)

> xrnn <- data.matrix(arframe[, -1])

> xrnn <- array(xrnn , c(n, 3, 5))

> xrnn <- xrnn[,, 5:1]

> xrnn <- aperm(xrnn , c(1, 3, 2))

> dim(xrnn)

[1] 6046 5 3

We have done this in four steps. The first simply extracts the n×15 matrix
of lagged versions of the three predictor variables from arframe. The second
converts this matrix to an n×3×5 array. We can do this by simply changing
the dimension attribute, since the new array is filled column wise. The third
step reverses the order of lagged variables, so that index 1 is furthest back
in time, and index 5 closest. The final step rearranges the coordinates of
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the array (like a partial transpose) into the format that the RNN module
in keras expects.
Now we are ready to proceed with the RNN, which uses 12 hidden units.

> model <- keras_model_sequential () %>%

+ layer_simple_rnn(units = 12,

input_shape = list(5, 3),

dropout = 0.1, recurrent_dropout = 0.1) %>%

+ layer_dense(units = 1)

> model %>% compile(optimizer = optimizer_rmsprop (),

loss = "mse")

We specify two forms of dropout for the units feeding into the hidden layer.
The first is for the input sequence feeding into this layer, and the second is
for the previous hidden units feeding into the layer. The output layer has
a single unit for the response.
We fit the model in a similar fashion to previous networks. We supply

the fit function with test data as validation data, so that when we monitor
its progress and plot the history function we can see the progress on the
test data. Of course we should not use this as a basis for early stopping,
since then the test performance would be biased.

> history <- model %>% fit(

xrnn[istrain ,, ], arframe[istrain , "log_volume"],

batch_size = 64, epochs = 200,

validation_data =

list(xrnn[!istrain ,, ], arframe [!istrain , "log_volume"])

)

> kpred <- predict(model, xrnn[!istrain ,, ])

> 1 - mean((kpred - arframe [!istrain , "log_volume"])^2) / V0

[1] 0.416

This model takes about one minute to train.
We could replace the keras model sequential() command above with the

following command:

> model <- keras_model_sequential () %>%

+ layer_flatten(input_shape = c(5, 3)) %>%

+ layer_dense(units = 1)

Here, layer flatten() simply takes the input sequence and turns it into
a long vector of predictors. This results in a linear AR model. To fit a
nonlinear AR model, we could add in a hidden layer.
However, since we already have the matrix of lagged variables from the

AR model that we fit earlier using the lm() command, we can actually fit
a nonlinear AR model without needing to perform flattening. We extract
the model matrix x from arframed, which includes the day of week variable.

> x <- model.matrix(log_volume ∼ . - 1, data = arframed)

> colnames(x)

[1] "dayfri" "daymon" "daythur"

[4] "daytues" "daywed" "L1.DJ_return"
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[7] "L1.log_volume" "L1.log_volatility" "L2.DJ_return"

[10] "L2.log_volume" "L2.log_volatility" "L3.DJ_return"

[13] "L3.log_volume" "L3.log_volatility" "L4.DJ_return"

[16] "L4.log_volume" "L4.log_volatility" "L5.DJ_return"

[19] "L5.log_volume" "L5.log_volatility"

The -1 in the formula avoids the creation of a column of ones for the inter-
cept. The variable day of week is a five-level factor (there are five trading
days), and the -1 results in five rather than four dummy variables.
The rest of the steps to fit a nonlinear AR model should by now be

familiar.

> arnnd <- keras_model_sequential () %>%

+ layer_dense(units = 32, activation = ’relu’,

input_shape = ncol(x)) %>%

+ layer_dropout(rate = 0.5) %>%

+ layer_dense(units = 1)

> arnnd %>% compile(loss = "mse",

optimizer = optimizer_rmsprop ())

> history <- arnnd %>% fit(

x[istrain , ], arframe[istrain , "log_volume"], epochs = 100,

batch_size = 32, validation_data =

list(x[!istrain , ], arframe [!istrain , "log_volume"])

)

> plot(history)

> npred <- predict(arnnd , x[!istrain , ])

> 1 - mean(( arframe [!istrain , "log_volume"] - npred)^2) / V0

[1] 0.4698

10.10 Exercises

Conceptual

1. Consider a neural network with two hidden layers: p = 4 input units,
2 units in the first hidden layer, 3 units in the second hidden layer,
and a single output.

(a) Draw a picture of the network, similar to Figures 10.1 or 10.4.

(b) Write out an expression for f(X), assuming ReLU activation
functions. Be as explicit as you can!

(c) Now plug in some values for the coefficients and write out the
value of f(X).

(d) How many parameters are there?

2. Consider the softmax function in (10.13) (see also (4.13) on page 141)
for modeling multinomial probabilities.

(a) In (10.13), show that if we add a constant c to each of the zℓ,
then the probability is unchanged.
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(b) In (4.13), show that if we add constants cj , j = 0, 1, . . . , p, to
each of the corresponding coefficients for each of the classes, then
the predictions at any new point x are unchanged.

This shows that the softmax function is over-parametrized. However, over-
parametrizedregularization and SGD typically constrain the solutions so that this

is not a problem.

3. Show that the negative multinomial log-likelihood (10.14) is equiva-
lent to the negative log of the likelihood expression (4.5) when there
are M = 2 classes.

4. Consider a CNN that takes in 32 × 32 grayscale images and has a
single convolution layer with three 5 × 5 convolution filters (without
boundary padding).

(a) Draw a sketch of the input and first hidden layer similar to
Figure 10.8.

(b) How many parameters are in this model?

(c) Explain how this model can be thought of as an ordinary feed-
forward neural network with the individual pixels as inputs, and
with constraints on the weights in the hidden units. What are
the constraints?

(d) If there were no constraints, then how many weights would there
be in the ordinary feed-forward neural network in (c)?

5. In Table 10.2 on page 433, we see that the ordering of the three
methods with respect to mean absolute error is different from the
ordering with respect to test set R2. How can this be?

Applied

6. Consider the simple function R(β) = sin(β) + β/10.

(a) Draw a graph of this function over the range β ∈ [−6, 6].
(b) What is the derivative of this function?

(c) Given β0 = 2.3, run gradient descent to find a local minimum
of R(β) using a learning rate of ρ = 0.1. Show each of β0,β1, . . .
in your plot, as well as the final answer.

(d) Repeat with β0 = 1.4.

7. Fit a neural network to the Default data. Use a single hidden layer
with 10 units, and dropout regularization. Have a look at Labs 10.9.1–
10.9.2 for guidance. Compare the classification performance of your
model with that of linear logistic regression.
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8. From your collection of personal photographs, pick 10 images of an-
imals (such as dogs, cats, birds, farm animals, etc.). If the subject
does not occupy a reasonable part of the image, then crop the image.
Now use a pretrained image classification CNN as in Lab 10.9.4 to
predict the class of each of your images, and report the probabilities
for the top five predicted classes for each image.

9. Fit a lag-5 autoregressive model to the NYSE data, as described in
the text and Lab 10.9.6. Refit the model with a 12-level factor repre-
senting the month. Does this factor improve the performance of the
model?

10. In Section 10.9.6, we showed how to fit a linear AR model to the
NYSE data using the lm() function. However, we also mentioned that
we can “flatten” the short sequences produced for the RNN model in
order to fit a linear AR model. Use this latter approach to fit a linear
AR model to the NYSE data. Compare the test R2 of this linear AR
model to that of the linear AR model that we fit in the lab. What
are the advantages/disadvantages of each approach?

11. Repeat the previous exercise, but now fit a nonlinear AR model by
“flattening” the short sequences produced for the RNN model.

12. Consider the RNN fit to the NYSE data in Section 10.9.6. Modify the
code to allow inclusion of the variable day of week, and fit the RNN.
Compute the test R2.

13. Repeat the analysis of Lab 10.9.5 on the IMDb data using a similarly
structured neural network. There we used a dictionary of size 10,000.
Consider the effects of varying the dictionary size. Try the values
1000, 3000, 5000, and 10,000, and compare the results.
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Survival Analysis and Censored Data

In this chapter, we will consider the topics of survival analysis and censored
survival
analysisdata. These arise in the analysis of a unique kind of outcome variable: the

censored
data

time until an event occurs.
For example, suppose that we have conducted a five-year medical study,

in which patients have been treated for cancer. We would like to fit a model
to predict patient survival time, using features such as baseline health mea-
surements or type of treatment. At first pass, this may sound like a regres-
sion problem of the kind discussed in Chapter 3. But there is an important
complication: hopefully some or many of the patients have survived until
the end of the study. Such a patient’s survival time is said to be censored: we
know that it is at least five years, but we do not know its true value. We do
not want to discard this subset of surviving patients, as the fact that they
survived at least five years amounts to valuable information. However, it is
not clear how to make use of this information using the techniques covered
thus far in this textbook.
Though the phrase “survival analysis” evokes a medical study, the ap-

plications of survival analysis extend far beyond medicine. For example,
consider a company that wishes to model churn, the process by which cus-
tomers cancel subscription to a service. The company might collect data on
customers over some time period, in order to model each customer’s time
to cancellation as a function of demographics or other predictors. However,
presumably not all customers will have canceled their subscription by the
end of this time period; for such customers, the time to cancellation is
censored.

© Springer Science+Business Media, LLC, part of Springer Nature 2021
G. James et al., An Introduction to Statistical Learning, Springer Texts in Statistics,
https://doi.org/10.1007/978-1-0716-1418-1_11

461

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-1418-1_11&domain=pdf


462 11. Survival Analysis and Censored Data

In fact, survival analysis is relevant even in application areas that are
unrelated to time. For instance, suppose we wish to model a person’s weight
as a function of some covariates, using a dataset with measurements for a
large number of people. Unfortunately, the scale used to weigh those people
is unable to report weights above a certain number. Then, any weights that
exceed that number are censored. The survival analysis methods presented
in this chapter could be used to analyze this dataset.
Survival analysis is a very well-studied topic within statistics, due to its

critical importance in a variety of applications, both in and out of medicine.
However, it has received relatively little attention in the machine learning
community.

11.1 Survival and Censoring Times

For each individual, we suppose that there is a true survival time, T , as well
survival time

as a true censoring time, C. (The survival time is also known as the failure
censoring
timetime or the event time.) The survival time represents the time at which the

failure time
event time

event of interest occurs: for instance, the time at which the patient dies,
or the customer cancels his or her subscription. By contrast, the censoring
time is the time at which censoring occurs: for example, the time at which
the patient drops out of the study or the study ends.
We observe either the survival time T or else the censoring time C.

Specifically, we observe the random variable

Y = min(T,C). (11.1)

In other words, if the event occurs before censoring (i.e. T < C) then we
observe the true survival time T ; however, if censoring occurs before the
event (T > C) then we observe the censoring time. We also observe a status
indicator,

δ =

{
1 if T ≤ C

0 if T > C.

Thus, δ = 1 if we observe the true survival time, and δ = 0 if we instead
observe the censoring time.
Now, suppose we observe n (Y, δ) pairs, which we denote as (y1, δ1), . . . ,

(yn, δn). Figure 11.1 displays an example from a (fictitious) medical study
in which we observe n = 4 patients for a 365-day follow-up period. For
patients 1 and 3, we observe the time to event (such as death or disease
relapse) T = ti. Patient 2 was alive when the study ended, and patient 4
dropped out of the study, or was “lost to follow-up”; for these patients we
observe C = ci. Therefore, y1 = t1, y3 = t3, y2 = c2, y4 = c4, δ1 = δ3 = 1,
and δ2 = δ4 = 0.
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FIGURE 11.1. Illustration of censored survival data. For patients 1 and 3, the
event was observed. Patient 2 was alive when the study ended. Patient 4 dropped
out of the study.

11.2 A Closer Look at Censoring

In order to analyze survival data, we need to make some assumptions about
why censoring has occurred. For instance, suppose that a number of patients
drop out of a cancer study early because they are very sick. An analysis that
does not take into consideration the reason why the patients dropped out
will likely overestimate the true average survival time. Similarly, suppose
that males who are very sick are more likely to drop out of the study than
females who are very sick. Then a comparison of male and female survival
times may wrongly suggest that males survive longer than females.
In general, we need to assume that the censoring mechanism is indepen-

dent: conditional on the features, the event time T is independent of the
censoring time C. The two examples above violate the assumption of inde-
pendent censoring. Typically, it is not possible to determine from the data
itself whether the censoring mechanism is independent. Instead, one has to
carefully consider the data collection process in order to determine whether
independent censoring is a reasonable assumption. In the remainder of this
chapter, we will assume that the censoring mechanism is independent.1

In this chapter, we focus on right censoring , which occurs when T ≥ Y ,
i.e. the true event time T is at least as large as the observed time Y .
(Notice that T ≥ Y is a consequence of (11.1). Right censoring derives its
name from the fact that time is typically displayed from left to right, as in
Figure 11.1.) However, other types of censoring are possible. For instance,
in left censoring, the true event time T is less than or equal to the observed

1The assumption of independent censoring can be relaxed somewhat using the notion
of non-informative censoring ; however, the definition of non-informative censoring is too
technical for this book.
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time Y . For example, in a study of pregnancy duration, suppose that we
survey patients 250 days after conception, when some have already had
their babies. Then we know that for those patients, pregnancy duration is
less than 250 days. More generally, interval censoring refers to the setting
in which we do not know the exact event time, but we know that it falls
in some interval. For instance, this setting arises if we survey patients once
per week in order to determine whether the event has occurred. While left
censoring and interval censoring can be accommodated using variants of
the ideas presented in this chapter, in what follows we focus specifically on
right censoring.

11.3 The Kaplan-Meier Survival Curve

The survival curve, or survival function, is defined as
survival
curve
survival
function

S(t) = Pr(T > t). (11.2)

This decreasing function quantifies the probability of surviving past time
t. For example, suppose that a company is interested in modeling customer
churn. Let T represent the time that a customer cancels a subscription to
the company’s service. Then S(t) represents the probability that a customer
cancels later than time t. The larger the value of S(t), the less likely that
the customer will cancel before time t.
In this section, we will consider the task of estimating the survival

curve. Our investigation is motivated by the BrainCancer dataset, which
contains the survival times for patients with primary brain tumors un-
dergoing treatment with stereotactic radiation methods.2 The predictors
are gtv (gross tumor volume, in cubic centimeters); sex (male or female);
diagnosis (meningioma, LG glioma, HG glioma, or other); loc (the tumor
location: either infratentorial or supratentorial); ki (Karnofsky index); and
stereo (stereotactic method: either stereotactic radiosurgery or fraction-
ated stereotactic radiotherapy, abbreviated as SRS and SRT, respectively).
Only 53 of the 88 patients were still alive at the end of the study.
Now, we consider the task of estimating the survival curve (11.2) for

these data. To estimate S(20) = Pr(T > 20), the probability that a patient
survives for at least t = 20 months, it is tempting to simply compute the
proportion of patients who are known to have survived past 20 months, i.e.
the proportion of patients for whom Y > 20. This turns out to be 48/88,
or approximately 55%. However, this does not seem quite right, since Y
and T represent different quantities. In particular, 17 of the 40 patients

2This dataset is described in the following paper: Selingerová et al. (2016) Survival
of patients with primary brain tumors: Comparison of two statistical approaches. PLoS
One, 11(2):e0148733.
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who did not survive to 20 months were actually censored, and this analysis
implicitly assumes that T < 20 for all of those censored patients; of course,
we do not know whether that is true.
Alternatively, to estimate S(20), we could consider computing the pro-

portion of patients for whom Y > 20, out of the 71 patients who were not
censored by time t = 20; this comes out to 48/71, or approximately 68%.
However, this is not quite right either, since it amounts to completely ig-
noring the patients who were censored before time t = 20, even though the
time at which they are censored is potentially informative. For instance, a
patient who was censored at time t = 19.9 likely would have survived past
t = 20 had he or she not been censored.
We have seen that estimating S(t) is complicated by the presence of

censoring. We now present an approach to overcome these challenges. We
let d1 < d2 < · · · < dK denote the K unique death times among the non-
censored patients, and we let qk denote the number of patients who died
at time dk. For k = 1, . . . ,K, we let rk denote the number of patients alive
and in the study just before dk; these are the at risk patients. The set of
patients that are at risk at a given time are referred to as the risk set.

risk set
By the law of total probability,3

Pr(T > dk) =Pr(T > dk|T > dk−1) Pr(T > dk−1)

+ Pr(T > dk|T ≤ dk−1) Pr(T ≤ dk−1).

The fact that dk−1 < dk implies that Pr(T > dk|T ≤ dk−1) = 0 (it is
impossible for a patient to survive past time dk if he or she did not survive
until an earlier time dk−1). Therefore,

S(dk) = Pr(T > dk) = Pr(T > dk|T > dk−1) Pr(T > dk−1).

Plugging in (11.2) again, we see that

S(dk) = Pr(T > dk|T > dk−1)S(dk−1).

This implies that

S(dk) = Pr(T > dk|T > dk−1)× · · ·× Pr(T > d2|T > d1) Pr(T > d1).

We now must simply plug in estimates of each of the terms on the right-
hand side of the previous equation. It is natural to use the estimator

P̂r(T > dj |T > dj−1) = (rj − qj)/rj ,

which is the fraction of the risk set at time dj who survived past time dj .
This leads to the Kaplan-Meier estimator of the survival curve:

Kaplan-
Meier
estimator3The law of total probability states that for any two events A and B, Pr(A) =

Pr(A|B) Pr(B) + Pr(A|Bc) Pr(Bc), where Bc is the complement of the event B, i.e. it
is the event that B does not hold.
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FIGURE 11.2. For the BrainCancer data, we display the Kaplan-Meier survival
curve (solid curve), along with standard error bands (dashed curves).

Ŝ(dk) =
k∏

j=1

(
rj − qj

rj

)
. (11.3)

For times t between dk and dk+1, we set Ŝ(t) = Ŝ(dk). Consequently, the
Kaplan-Meier survival curve has a step-like shape.
The Kaplan-Meier survival curve for the BrainCancer data is displayed

in Figure 11.2. Each point in the solid step-like curve shows the estimated
probability of surviving past the time indicated on the horizontal axis. The
estimated probability of survival past 20 months is 71%, which is quite a
bit higher than the naive estimates of 55% and 68% presented earlier.
The sequential construction of the Kaplan-Meier estimator — starting

at time zero and mapping out the observed events as they unfold in time —
is fundamental to many of the key techniques in survival analysis. These
include the log-rank test of Section 11.4, and Cox’s proportional hazard
model of Section 11.5.2.

11.4 The Log-Rank Test

We now continue our analysis of the BrainCancer data introduced in Sec-
tion 11.3. We wish to compare the survival of males to that of females.
Figure 11.3 shows the Kaplan-Meier survival curves for the two groups.
Females seem to fare a little better up to about 50 months, but then the
two curves both level off to about 50%. How can we carry out a formal test
of equality of the two survival curves?
At first glance, a two-sample t-test seems like an obvious choice: we could

test whether the mean survival time among the females equals the mean
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FIGURE 11.3. For the BrainCancer data, Kaplan-Meier survival curves for
males and females are displayed.

Group 1 Group 2 Total
Died q1k q2k qk
Survived r1k − q1k r2k − q2k rk − qk
Total r1k r2k rk

TABLE 11.1. Among the set of patients at risk at time dk, the number of patients
who died and survived in each of two groups is reported.

survival time among the males. But the presence of censoring again creates
a complication. To overcome this challenge, we will conduct a log-rank test,4

log-rank test
which examines how the events in each group unfold sequentially in time.
Recall from Section 11.3 that d1 < d2 < · · · < dK are the unique death

times among the non-censored patients, rk is the number of patients at
risk at time dk, and qk is the number of patients who died at time dk. We
further define r1k and r2k to be the number of patients in groups 1 and 2,
respectively, who are at risk at time dk. Similarly, we define q1k and q2k to
be the number of patients in groups 1 and 2, respectively, who died at time
dk. Note that r1k + r2k = rk and q1k + q2k = qk.
At each death time dk, we construct a 2× 2 table of counts of the form

shown in Table 11.1. Note that if the death times are unique (i.e. no two
individuals die at the same time), then one of q1k and q2k equals one, and
the other equals zero.
The main idea behind the log-rank test statistic is as follows. In order

to test H0 : E(X) = 0 for some random variable X, one approach is to

4The log-rank test is also known as the Mantel-Haenszel test or Cochran-Mantel-
Haenszel test.
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construct a test statistic of the form

W =
X − E(X)√

Var(X)
, (11.4)

where E(X) and Var(X) are the expectation and variance, respectively, of
X under H0. In order to construct the log-rank test statistic, we compute
a quantity that takes exactly the form (11.4), with X =

∑K
k=1 q1k, where

q1k is given in the top left of Table 11.1.
In greater detail, under the null hypothesis of no difference in survival

between the two groups, and conditioning on the row and column totals in
Table 11.1, the expected value of q1k is

E (q1k) =
r1k
rk

qk. (11.5)

Furthermore, it can be shown5 that the variance of q1k is

Var (q1k) =
qk(r1k/rk)(1− r1k/rk)(rk − qk)

rk − 1
. (11.6)

Though q11, . . . , q1K may be correlated, we nonetheless estimate

Var

(
K∑

k=1

q1k

)
≈

K∑

k=1

Var (q1k) =
K∑

k=1

qk(r1k/rk)(1− r1k/rk)(rk − qk)

rk − 1
.

(11.7)
Therefore, to compute the log-rank test statistic, we simply proceed as

in (11.4), with X =
∑K

k=1 q1k, making use of (11.5) and (11.7). That is, we
calculate

W =

∑K
k=1 (q1k − E(q1k))√∑K

k=1 Var (q1k)
=

∑K
k=1

(
q1k − qk

rk
r1k
)

√∑K
k=1

qk(r1k/rk)(1−r1k/rk)(rk−qk)
rk−1

. (11.8)

When the sample size is large, the log-rank test statistic W has ap-
proximately a standard normal distribution; this can be used to compute
a p-value for the null hypothesis that there is no difference between the
survival curves in the two groups.6

Comparing the survival times of females and males on the BrainCancer

data gives a log-rank test statistic of W = 1.2, which corresponds to a two-
sided p-value of 0.2 using the theoretical null distribution, and a p-value
of 0.25 using the permutation null distribution with 1,000 permutations.

5For details, see Exercise 7 at the end of this chapter.
6Alternatively, we can estimate the p-value via permutations, using ideas that will

be presented in Section 13.5. The permutation distribution is obtained by randomly
swapping the labels for the observations in the two groups.
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Thus, we cannot reject the null hypothesis of no difference in survival curves
between females and males.
The log-rank test is closely related to Cox’s proportional hazards model,

which we discuss in Section 11.5.2.

11.5 Regression Models With a Survival Response

We now consider the task of fitting a regression model to survival data.
As in Section 11.1, the observations are of the form (Y, δ), where Y =
min(T,C) is the (possibly censored) survival time, and δ is an indicator
variable that equals 1 if T ≤ C. Furthermore, X ∈ Rp is a vector of p
features. We wish to predict the true survival time T .
Since the observed quantity Y is positive and may have a long right

tail, we might be tempted to fit a linear regression of log(Y ) on X. But
as the reader will surely guess, censoring again creates a problem since
we are actually interested in predicting T and not Y . To overcome this
difficulty, we instead make use of a sequential construction, similar to the
constructions of the Kaplan-Meier survival curve in Section 11.3 and the
log-rank test in Section 11.4.

11.5.1 The Hazard Function

The hazard function or hazard rate — also known as the force of mortality
hazard
function— is formally defined as

h(t) = lim
∆t→0

Pr(t < T ≤ t+∆t|T > t)

∆t
, (11.9)

where T is the (unobserved) survival time. It is the death rate in the instant
after time t, given survival past that time.7 In (11.9), we take the limit as
∆t approaches zero, so we can think of ∆t as being an extremely tiny
number. Thus, more informally, (11.9) implies that

h(t) ≈ Pr(t < T ≤ t+∆t|T > t)

∆t

for some arbitrarily small ∆t.
Why should we care about the hazard function? First of all, it is closely

related to the survival curve (11.2), as we will see next. Second, it turns out

7Due to the ∆t in the denominator of (11.9), the hazard function is a rate of death,
rather than a probability of death. However, higher values of h(t) directly correspond
to a higher probability of death, just as higher values of a probability density function
correspond to more likely outcomes for a random variable. In fact, h(t) is the probability
density function for T conditional on T > t.
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that a key approach for modeling survival data as a function of covariates
relies heavily on the hazard function; we will introduce this approach —
Cox’s proportional hazards model — in Section 11.5.2.
We now consider the hazard function h(t) in a bit more detail. Recall

that for two events A and B, the probability of A given B can be expressed
as Pr(A | B) = Pr(A ∩ B)/Pr(B), i.e. the probability that A and B both
occur divided by the probability that B occurs. Furthermore, recall from
(11.2) that S(t) = Pr(T > t). Thus,

h(t) = lim
∆t→0

Pr ((t < T ≤ t+∆t) ∩ (T > t)) /∆t

Pr(T > t)

= lim
∆t→0

Pr(t < T ≤ t+∆t)/∆t

Pr(T > t)

=
f(t)

S(t)
, (11.10)

where

f(t) = lim
∆t→0

Pr(t < T ≤ t+∆t)

∆t
(11.11)

is the probability density function associated with T , i.e. it is the instanta-
probability
density
function

neous rate of death at time t. The second equality in (11.10) made use of
the fact that if t < T ≤ t+∆t, then it must be the case that T > t.
Equation 11.10 implies a relationship between the hazard function h(t),

the survival function S(t), and the probability density function f(t). In
fact, these are three equivalent ways8 of describing the distribution of T .
The likelihood associated with the ith observation is

Li =

{
f(yi) if the ith observation is not censored

S(yi) if the ith observation is censored

= f(yi)
δiS(yi)

1−δi . (11.12)

The intuition behind (11.12) is as follows: if Y = yi and the ith observation
is not censored, then the likelihood is the probability of dying in a tiny in-
terval around time yi. If the ith observation is censored, then the likelihood
is the probability of surviving at least until time yi. Assuming that the n
observations are independent, the likelihood for the data takes the form

L =
n∏

i=1

f(yi)
δiS(yi)

1−δi =
n∏

i=1

h(yi)
δiS(yi), (11.13)

where the second equality follows from (11.10).
We now consider the task of modeling the survival times. If we assume ex-

ponential survival, i.e. that the probability density function of the survival

8See Exercise 8.
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time T takes the form f(t) = λ exp(−λt), then estimating the parameter λ
by maximizing the likelihood in (11.13) is straightforward.9 Alternatively,
we could assume that the survival times are drawn from a more flexible
family of distributions, such as the Gamma or Weibull family. Another
possibility is to model the survival times non-parametrically, as was done
in Section 11.3 using the Kaplan-Meier estimator.
However, what we would really like to do is model the survival time as

a function of the covariates. To do this, it is convenient to work directly
with the hazard function, instead of the probability density function.10

One possible approach is to assume a functional form for the hazard func-

tion h(t|xi), such as h(t|xi) = exp
(
β0 +

∑p
j=1 βjxij

)
, where the exponent

function guarantees that the hazard function is non-negative. Note that
the exponential hazard function is special, in that it does not vary with
time.11 Given h(t|xi), we could calculate S(t|xi). Plugging these equations
into (11.13), we could then maximize the likelihood in order to estimate the
parameter β = (β0,β1, . . . ,βp)T . However, this approach is quite restric-
tive, in the sense that it requires us to make a very stringent assumption
on the form of the hazard function h(t|xi). In the next section, we will
consider a much more flexible approach.

11.5.2 Proportional Hazards

The Proportional Hazards Assumption

The proportional hazards assumption states that
proportional
hazards
assumption

h(t|xi) = h0(t) exp

⎛

⎝
p∑

j=1

xijβj

⎞

⎠ , (11.14)

where h0(t) ≥ 0 is an unspecified function, known as the baseline hazard. It
baseline
hazardis the hazard function for an individual with features xi1 = · · · = xip = 0.

The name “proportional hazards” arises from the fact that the hazard
function for an individual with feature vector xi is some unknown function

h0(t) times the factor exp
(∑p

j=1 xijβj

)
. The quantity exp

(∑p
j=1 xijβj

)

is called the relative risk for the feature vector xi = (xi1, . . . , xip)T , relative
to that for the feature vector xi = (0, . . . , 0)T .

9See Exercise 9.
10Given the close relationship between the hazard function h(t) and the density func-

tion f(t) explored in Exercise 8, posing an assumption about the form of the hazard
function is closely related to posing an assumption about the form of the density func-
tion, as was done in the previous paragraph.

11The notation h(t|xi) indicates that we are now considering the hazard function for
the ith observation conditional on the values of the covariates, xi.
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FIGURE 11.4. Top: In a simple example with p = 1 and a binary covariate
xi ∈ {0, 1}, the log hazard and the survival function under the model (11.14)
are shown (green for xi = 0 and black for xi = 1). Because of the proportional
hazards assumption (11.14), the log hazard functions differ by a constant, and the
survival functions do not cross. Bottom: Again we have a single binary covariate
xi ∈ {0, 1}. However, the proportional hazards assumption (11.14) does not hold.
The log hazard functions cross, as do the survival functions.

What does it mean that the baseline hazard function h0(t) in (11.14) is
unspecified? Basically, we make no assumptions about its functional form.
We allow the instantaneous probability of death at time t, given that one
has survived at least until time t, to take any form. This means that the
hazard function is very flexible and can model a wide range of relationships
between the covariates and survival time. Our only assumption is that a
one-unit increase in xij corresponds to an increase in h(t|xi) by a factor of
exp(βj).
An illustration of the proportional hazards assumption (11.14) is given in

Figure 11.4, in a simple setting with a single binary covariate xi ∈ {0, 1} (so
that p = 1). In the top row, the proportional hazards assumption (11.14)
holds. Thus, the hazard functions of the two groups are a constant multiple
of each other, so that on the log scale, the gap between them is constant.
Furthermore, the survival curves never cross, and in fact the gap between
the survival curves tends to (initially) increase over time. By contrast, in
the bottom row, (11.14) does not hold. We see that the log hazard functions
for the two groups cross, as do the survival curves.
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Cox’s Proportional Hazards Model

Because the form of h0(t) in the proportional hazards assumption (11.14)
is unknown, we cannot simply plug h(t|xi) into the likelihood (11.13) and
then estimate β = (β1, . . . ,βp)T by maximum likelihood. The magic of
Cox’s proportional hazards model lies in the fact that it is in fact possible

Cox’s
proportional
hazards
model

to estimate β without having to specify the form of h0(t).
To accomplish this, we make use of the same “sequential in time” logic

that we used to derive the Kaplan-Meier survival curve and the log-rank
test. For simplicity, assume that there are no ties among the failure, or
death, times: i.e. each failure occurs at a distinct time. Assume that δi =
1, i.e. the ith observation is uncensored, and thus yi is its failure time.
Then the hazard function for the ith observation at time yi is h(yi|xi) =

h0(yi) exp
(∑p

j=1 xijβj

)
, and the total hazard at time yi for the at risk

observations12 is

∑

i′:yi′≥yi

h0(yi) exp

⎛

⎝
p∑

j=1

xi′jβj

⎞

⎠ .

Therefore, the probability that the ith observation is the one to fail at time
yi (as opposed to one of the other observations in the risk set) is

h0(yi) exp
(∑p

j=1 xijβj

)

∑
i′:yi′≥yi

h0(yi) exp
(∑p

j=1 xi′jβj

) =
exp

(∑p
j=1 xijβj

)

∑
i′:yi′≥yi

exp
(∑p

j=1 xi′jβj

) .

(11.15)
Notice that the unspecified baseline hazard function h0(yi) cancels out of
the numerator and denominator!
The partial likelihood is simply the product of these probabilities over all

partial
likelihoodof the uncensored observations,

PL(β) =
∏

i:δi=1

exp
(∑p

j=1 xijβj

)

∑
i′:yi′≥yi

exp
(∑p

j=1 xi′jβj

) . (11.16)

Critically, the partial likelihood is valid regardless of the true value of h0(t),
making the model very flexible and robust.13

To estimate β, we simply maximize the partial likelihood (11.16) with
respect to β. As was the case for logistic regression in Chapter 4, no closed-
form solution is available, and so iterative algorithms are required.

12Recall that the “at risk” observations at time yi are those that are still at risk of
failure, i.e. those that have not yet failed or been censored before time yi.

13In general, the partial likelihood is used in settings where it is difficult to compute
the full likelihood for all of the parameters. Instead, we compute a likelihood for just the
parameters of primary interest: in this case, β1, . . . ,βp. It can be shown that maximizing
(11.16) provides good estimates for these parameters.
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In addition to estimating β, we can also obtain other model outputs that
we saw in the context of least squares regression in Chapter 3 and logistic
regression in Chapter 4. For example, we can obtain p-values corresponding
to particular null hypotheses (e.g. H0 : βj = 0), as well as confidence
intervals associated with the coefficients.

Connection With The Log-Rank Test

Suppose we have just a single predictor (p = 1), which we assume to be
binary, i.e. xi ∈ {0, 1}. In order to determine whether there is a difference
between the survival times of the observations in the group {i : xi = 0}
and those in the group {i : xi = 1}, we can consider taking two possible
approaches:

Approach #1: Fit a Cox proportional hazards model, and test the
null hypothesis H0 : β = 0. (Since p = 1, β is a scalar.)

Approach #2: Perform a log-rank test to compare the two groups, as
in Section 11.4.

Which one should we prefer?
In fact, there is a close relationship between these two approaches. In

particular, when taking Approach #1, there are a number of possible ways
to test H0. One way is known as a score test. It turns out that in the case of
a single binary covariate, the score test for H0 : β = 0 in Cox’s proportional
hazards model is exactly equal to the log-rank test. In other words, it does
not matter whether we take Approach #1 or Approach #2!

Additional Details

The discussion of Cox’s proportional hazards model glossed over a few
subtleties:

• There is no intercept in (11.14) and in the equations that follow,
because an intercept can be absorbed into the baseline hazard h0(t).

• We have assumed that there are no tied failure times. In the case
of ties, the exact form of the partial likelihood (11.16) is a bit more
complicated, and a number of computational approximations must
be used.

• (11.16) is known as the partial likelihood because it is not exactly a
likelihood. That is, it does not correspond exactly to the probability
of the data under the assumption (11.14). However, it is a very good
approximation.

• We have focused only on estimation of the coefficients β = (β1, . . . ,βp)T .
However, at times we may also wish to estimate the baseline hazard
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h0(t), for instance so that we can estimate the survival curve S(t|x)
for an individual with feature vector x. The details are beyond the
scope of this book. Estimation of h0(t) is implemented in the survival

package in R.

11.5.3 Example: Brain Cancer Data

Table 11.2 shows the result of fitting the proportional hazards model to
the BrainCancer data, which was originally described in Section 11.3. The
coefficient column displays β̂j . The results indicate, for instance, that the
estimated hazard for a male patient is e0.18 = 1.2 times greater than for
a female patient: in other words, with all other features held fixed, males
have a 1.2 times greater chance of dying than females, at any point in time.
However, the p-value is 0.61, which indicates that this difference between
males and females is not significant.
As another example, we also see that each one-unit increase in the

Karnofsky index corresponds to a multiplier of exp(−0.05) = 0.95 in the
instantaneous chance of dying. In other words, the higher the Karnofsky
index, the lower the chance of dying at any given point in time. This effect
is highly significant, with a p-value of 0.0027.

Coefficient Std. error z-statistic p-value
sex[Male] 0.18 0.36 0.51 0.61
diagnosis[LG Glioma] 0.92 0.64 1.43 0.15
diagnosis[HG Glioma] 2.15 0.45 4.78 0.00
diagnosis[Other] 0.89 0.66 1.35 0.18
loc[Supratentorial] 0.44 0.70 0.63 0.53
ki -0.05 0.02 -3.00 <0.01
gtv 0.03 0.02 1.54 0.12
stereo[SRT] 0.18 0.60 0.30 0.77

TABLE 11.2. Results for Cox’s proportional hazards model fit to the
BrainCancer data, which was first described in Section 11.3. The variable
diagnosis is qualitative with four levels: meningioma, LG glioma, HG glioma,
or other. The variables sex, loc, and stereo are binary.

11.5.4 Example: Publication Data

Next, we consider the dataset Publication involving the time to publica-
tion of journal papers reporting the results of clinical trials funded by the
National Heart, Lung, and Blood Institute.14 For 244 trials, the time in

14This dataset is described in the following paper: Gordon et al. (2013) Publication of
trials funded by the National Heart, Lung, and Blood Institute. New England Journal
of Medicine, 369(20):1926–1934.
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FIGURE 11.5. Survival curves for time until publication for the Publication
data described in Section 11.5.4, stratified by whether or not the study produced
a positive result.

months until publication is recorded. Of the 244 trials, only 156 were pub-
lished during the study period; the remaining studies were censored. The
covariates include whether the trial focused on a clinical endpoint (clinend),
whether the trial involved multiple centers (multi), the funding mechanism
within the National Institutes of Health (mech), trial sample size (sampsize),
budget (budget), impact (impact, related to the number of citations), and
whether the trial produced a positive (significant) result (posres). The last
covariate is particularly interesting, as a number of studies have suggested
that positive trials have a higher publication rate.
Figure 11.5 shows the Kaplan-Meier curves for the time until publication,

stratified by whether or not the study produced a positive result. We see
slight evidence that time until publication is lower for studies with a positive
result. However, the log-rank test yields a very unimpressive p-value of 0.36.
We now consider a more careful analysis that makes use of all of the

available predictors. The results of fitting Cox’s proportional hazards model
using all of the available features are shown in Table 11.3. We find that the
chance of publication of a study with a positive result is e0.55 = 1.74 times
higher than the chance of publication of a study with a negative result
at any point in time, holding all other covariates fixed. The very small
p-value associated with posres in Table 11.3 indicates that this result is
highly significant. This is striking, especially in light of our earlier finding
that a log-rank test comparing time to publication for studies with positive
versus negative results yielded a p-value of 0.36. How can we explain this
discrepancy? The answer stems from the fact that the log-rank test did not
consider any other covariates, whereas the results in Table 11.3 are based
on a Cox model using all of the available covariates. In other words, after
we adjust for all of the other covariates, then whether or not the study
yielded a positive result is highly predictive of the time to publication.
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Coefficient Std. error z-statistic p-value
posres[Yes] 0.55 0.18 3.02 0.00
multi[Yes] 0.15 0.31 0.47 0.64
clinend[Yes] 0.51 0.27 1.89 0.06
mech[K01] 1.05 1.06 1.00 0.32
mech[K23] -0.48 1.05 -0.45 0.65
mech[P01] -0.31 0.78 -0.40 0.69
mech[P50] 0.60 1.06 0.57 0.57
mech[R01] 0.10 0.32 0.30 0.76
mech[R18] 1.05 1.05 0.99 0.32
mech[R21] -0.05 1.06 -0.04 0.97
mech[R24,K24] 0.81 1.05 0.77 0.44
mech[R42] -14.78 3414.38 -0.00 1.00
mech[R44] -0.57 0.77 -0.73 0.46
mech[RC2] -14.92 2243.60 -0.01 0.99
mech[U01] -0.22 0.32 -0.70 0.48
mech[U54] 0.47 1.07 0.44 0.66
sampsize 0.00 0.00 0.19 0.85
budget 0.00 0.00 1.67 0.09
impact 0.06 0.01 8.23 0.00

TABLE 11.3. Results for Cox’s proportional hazards model fit to the
Publication data, using all of the available features. The features posres, multi,
and clinend are binary. The feature mech is qualitative with 14 levels; it is coded
so that the baseline level is Contract.

In order to gain more insight into this result, in Figure 11.6 we display
estimates of the survival curves associated with positive and negative re-
sults, adjusting for the other predictors. To produce these survival curves,
we estimated the underlying baseline hazard h0(t): this is implemented in
the survival package in R, although the details are beyond the scope of this
book. We also needed to select representative values for the other predic-
tors; we used the mean value for each predictor, except for the categorical
predictor mech, for which we used the most prevalent category (R01). Ad-
justing for the other predictors, we now see a clear difference in the survival
curves between studies with positive versus negative results.
Other interesting insights can be gleaned from Table 11.3. For example,

studies with a clinical endpoint are more likely to be published at any
given point in time than those with a non-clinical endpoint. The funding
mechanism did not appear to be significantly associated with time until
publication.
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FIGURE 11.6. For the Publication data, we display survival curves for time
until publication, stratified by whether or not the study produced a positive result,
after adjusting for all other covariates.

11.6 Shrinkage for the Cox Model

In this section, we illustrate that the shrinkage methods of Section 6.2
can be applied to the survival data setting. In particular, motivated by
the “loss+penalty” formulation of Section 6.2, we consider minimizing a
penalized version of the negative log partial likelihood in (11.16),

− log

⎛

⎝
∏

i:δi=1

exp
(∑p

j=1 xijβj

)

∑
i′:yi′≥yi

exp
(∑p

j=1 xi′jβj

)

⎞

⎠+ λP (β), (11.17)

with respect to β = (β1, . . . ,βp)T . We might take P (β) =
∑p

j=1 β
2
j , which

corresponds to a ridge penalty, or P (β) =
∑p

j=1 |βj |, which corresponds to
a lasso penalty.
In (11.17), λ is a non-negative tuning parameter; typically we will mini-

mize it over a range of values of λ. When λ = 0, then minimizing (11.17) is
equivalent to simply maximizing the usual Cox partial likelihood (11.16).
However, when λ > 0, then minimizing (11.17) yields a shrunken version of
the coefficient estimates. When λ is large, then using a ridge penalty will
give small coefficients that are not exactly equal to zero. By contrast, for a
sufficiently large value of λ, using a lasso penalty will give some coefficients
that are exactly equal to zero.
We now apply the lasso-penalized Cox model to the Publication data, de-

scribed in Section 11.5.4. We first randomly split the 244 trials into equally-
sized training and test sets. The cross-validation results from the training
set are shown in Figure 11.7. The “partial likelihood deviance”, shown on
the y-axis, is twice the cross-validated negative log partial likelihood; it
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FIGURE 11.7. For the Publication data described in Section 11.5.4, cross-val-
idation results for the lasso-penalized Cox model are shown. The y-axis displays
the partial likelihood deviance, which plays the role of the cross-validation error.
The x-axis displays the ℓ1 norm (that is, the sum of the absolute values) of the
coefficients of the lasso-penalized Cox model with tuning parameter λ, divided by
the ℓ1 norm of the coefficients of the unpenalized Cox model. The dashed line
indicates the minimum cross-validation error.

plays the role of the cross-validation error.15 Note the “U-shape” of the
partial likelihood deviance: just as we saw in previous chapters, the cross-
validation error is minimized for an intermediate level of model complexity.
Specifically, this occurs when just two predictors, budget and impact, have
non-zero estimated coefficients.
Now, how do we apply this model to the test set? This brings up an

important conceptual point: in essence, there is no simple way to compare
predicted survival times and true survival times on the test set. The first
problem is that some of the observations are censored, and so the true sur-
vival times for those observations are unobserved. The second issue arises
from the fact that in the Cox model, rather than predicting a single sur-
vival time given a covariate vector x, we instead estimate an entire survival
curve, S(t|x), as a function of t.
Therefore, to assess the model fit, we must take a different approach,

which involves stratifying the observations using the coefficient estimates.
In particular, for each test observation, we compute the “risk” score

budgeti · β̂budget + impacti · β̂impact,

where β̂budget and β̂impact are the coefficient estimates for these two features
from the training set. We then use these risk scores to categorize the obser-
vations based on their “risk”. For instance, the high risk group consists of

15Cross-validation for the Cox model is more involved than for linear or logistic re-
gression, because the objective function is not a sum over the observations.
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FIGURE 11.8. For the Publication data introduced in Section 11.5.4, we com-
pute tertiles of “risk” in the test set using coefficients estimated on the training
set. There is clear separation between the resulting survival curves.

the observations for which budgeti · β̂budget+impacti · β̂impact is largest; by
(11.14), we see that these are the observations for which the instantaneous
probability of being published at any moment in time is largest. In other
words, the high risk group consists of the trials that are likely to be pub-
lished sooner. On the Publication data, we stratify the observations into
tertiles of low, medium, and high risk. The resulting survival curves for
each of the three strata are displayed in Figure 11.8. We see that there is
clear separation between the three strata, and that the strata are correctly
ordered in terms of low, medium, and high risk of publication.

11.7 Additional Topics

11.7.1 Area Under the Curve for Survival Analysis

In Chapter 4, we introduced the area under the ROC curve — often referred
to as the “AUC”— as a way to quantify the performance of a two-class clas-
sifier. Define the score for the ith observation to be the classifier’s estimate
of Pr(Y = 1|X = xi). It turns out that if we consider all pairs consisting of
one observation in Class 1 and one observation in Class 2, then the AUC
is the fraction of pairs for which the score for the observation in Class 1
exceeds the score for the observation in Class 2.
This suggests a way to generalize the notion of AUC to survival anal-

ysis. We calculate an estimated risk score, η̂i = β̂1xi1 + · · · + β̂pxip, for
i = 1, . . . , n, using the Cox model coefficients. If η̂i′ > η̂i, then the model
predicts that the i′th observation has a larger hazard than the ith obser-
vation, and thus that the survival time ti will be greater than ti′ . Thus, it
is tempting to try to generalize AUC by computing the proportion of ob-
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servations for which ti > ti′ and η̂i′ > η̂i. However, things are not quite so
easy, because recall that we do not observe t1, . . . , tn; instead, we observe
the (possibly-censored) times y1, . . . , yn, as well as the censoring indicators
δ1, . . . , δn.
Therefore, Harrell’s concordance index (or C-index ) computes the pro-

Harrell’s
concordance
index

portion of observation pairs for which η̂i′ > η̂i and yi > yi′ :

C =

∑
i,i′:yi>yi′

I(η̂i′ > η̂i)δi′∑
i,i′:yi>yi′

δi′
,

where the indicator variable I(η̂i′ > η̂i) equals one if η̂i′ > η̂i, and equals
zero otherwise. The numerator and denominator are multiplied by the sta-
tus indicator δi′ , since if the i′th observation is uncensored (i.e. if δi′ = 1),
then yi > yi′ implies that ti > ti′ . By contrast, if δi′ = 0, then yi > yi′ does
not imply that ti > ti′ .
We fit a Cox proportional hazards model on the training set of the

Publication data, and computed the C-index on the test set. This yielded
C = 0.733. Roughly speaking, given two random papers from the test set,
the model can predict with 73.3% accuracy which will be published first.

11.7.2 Choice of Time Scale

In the examples considered thus far in this chapter, it has been fairly clear
how to define time. For example, in the Publication example, time zero for
each paper was defined to be the calendar time at the end of the study,
and the failure time was defined to be the number of months that elapsed
from the end of the study until the paper was published.
However, in other settings, the definitions of time zero and failure time

may be more subtle. For example, when examining the association between
risk factors and disease occurrence in an epidemiological study, one might
use the patient’s age to define time, so that time zero is the patient’s date
of birth. With this choice, the association between age and survival cannot
be measured; however, there is no need to adjust for age in the analysis.
When examining covariates associated with disease-free survival (i.e. the
amount of time elapsed between treatment and disease recurrence), one
might use the date of treatment as time zero.

11.7.3 Time-Dependent Covariates

A powerful feature of the proportional hazards model is its ability to handle
time-dependent covariates, predictors whose value may change over time.
For example, suppose we measure a patient’s blood pressure every week
over the course of a medical study. In this case, we can think of the blood
pressure for the ith observation not as xi, but rather as xi(t) at time t.
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Because the partial likelihood in (11.16) is constructed sequentially in
time, dealing with time-dependent covariates is straightforward. In partic-
ular, we simply replace xij and xi′j in (11.16) with xij(yi) and xi′j(yi),
respectively; these are the current values of the predictors at time yi. By
contrast, time-dependent covariates would pose a much greater challenge
within the context of a traditional parametric approach, such as (11.13).
One example of time-dependent covariates appears in the analysis of data

from the Stanford Heart Transplant Program. Patients in need of a heart
transplant were put on a waiting list. Some patients received a transplant,
but others died while still on the waiting list. The primary objective of the
analysis was to determine whether a transplant was associated with longer
patient survival.
A näıve approach would use a fixed covariate to represent transplant

status: that is, xi = 1 if the ith patient ever received a transplant, and xi =
0 otherwise. But this approach overlooks the fact that patients had to live
long enough to get a transplant, and hence, on average, healthier patients
received transplants. This problem can be solved by using a time-dependent
covariate for transplant: xi(t) = 1 if the patient received a transplant by
time t, and xi(t) = 0 otherwise.

11.7.4 Checking the Proportional Hazards Assumption

We have seen that Cox’s proportional hazards model relies on the propor-
tional hazards assumption (11.14). While results from the Cox model tend
to be fairly robust to violations of this assumption, it is still a good idea to
check whether it holds. In the case of a qualitative feature, we can plot the
log hazard function for each level of the feature. If (11.14) holds, then the
log hazard functions should just differ by a constant, as seen in the top-left
panel of Figure 11.4. In the case of a quantitative feature, we can take a
similar approach by stratifying the feature.

11.7.5 Survival Trees

In Chapter 8, we discussed flexible and adaptive learning procedures such as
trees, random forests, and boosting, which we applied in both the regression
and classification settings. Most of these approaches can be generalized to
the survival analysis setting. For example, survival trees are a modification

survival
treesof classification and regression trees that use a split criterion that maximizes

the difference between the survival curves in the resulting daughter nodes.
Survival trees can then be used to create random survival forests.
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11.8 Lab: Survival Analysis

In this lab, we perform survival analyses on three separate data sets. In
Section 11.8.1 we analyze the BrainCancer data that was first described
in Section 11.3. In Section 11.8.2, we examine the Publication data from
Section 11.5.4. Finally, Section 11.8.3 explores a simulated call center data
set.

11.8.1 Brain Cancer Data

We begin with the BrainCancer data set, which is part of the ISLR2 package.

> library(ISLR2)

The rows index the 88 patients, while the columns contain the 8 predictors.

> names(BrainCancer)

[1] "sex" "diagnosis" "loc" "ki" "gtv" "stereo"

[7] "status" "time"

We first briefly examine the data.

> attach(BrainCancer)

> table(sex)

sex

Female Male

45 43

> table(diagnosis)

Meningioma LG glioma HG glioma Other

42 9 22 14

> table(status)

status

0 1

53 35

Before beginning an analysis, it is important to know how the status vari-
able has been coded. Most software, including R, uses the convention that
status = 1 indicates an uncensored observation, and status = 0 indicates
a censored observation. But some scientists might use the opposite coding.
For the BrainCancer data set 35 patients died before the end of the study.
To begin the analysis, we re-create the Kaplan-Meier survival curve

shown in Figure 11.2, using the survfit() function within the R survival
survfit()

library. Here time corresponds to yi, the time to the ith event (either cen-
soring or death).

> library(survival)

> fit.surv <- survfit(Surv(time, status) ∼ 1)

> plot(fit.surv , xlab = "Months",

ylab = "Estimated Probability of Survival")

Next we create Kaplan-Meier survival curves that are stratified by sex, in
order to reproduce Figure 11.3.
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> fit.sex <- survfit(Surv(time, status) ∼ sex)

> plot(fit.sex , xlab = "Months",

ylab = "Estimated Probability of Survival", col = c(2,4))

> legend("bottomleft", levels(sex), col = c(2,4), lty = 1)

As discussed in Section 11.4, we can perform a log-rank test to compare
the survival of males to females, using the survdiff() function.

survdiff()
> logrank.test <- survdiff(Surv(time, status) ∼ sex)

> logrank.test

Call:

survdiff(formula = Surv(time, status) ∼ sex)

N Observed Expected (O-E)^2/E (O-E)^2/V

sex=Female 45 15 18.5 0.676 1.44

sex=Male 43 20 16.5 0.761 1.44

Chisq= 1.4 on 1 degrees of freedom , p= 0.23

The resulting p-value is 0.23, indicating no evidence of a difference in sur-
vival between the two sexes.
Next, we fit Cox proportional hazards models using the coxph() function.

coxph()
To begin, we consider a model that uses sex as the only predictor.

> fit.cox <- coxph(Surv(time, status) ∼ sex)

> summary(fit.cox)

Call:

coxph(formula = Surv(time, status) ∼ sex)

n= 88, number of events= 35

coef exp(coef) se(coef) z Pr(>|z|)

sexMale 0.4077 1.5033 0.3420 1.192 0.233

exp(coef) exp(-coef) lower .95 upper .95

sexMale 1.503 0.6652 0.769 2.939

Concordance= 0.565 (se = 0.045 )

Likelihood ratio test= 1.44 on 1 df, p=0.23

Wald test = 1.42 on 1 df, p=0.233

Score (logrank) test = 1.44 on 1 df , p=0.23

Note that the values of the likelihood ratio, Wald, and score tests have been
rounded. It is possible to display additional digits.

> summary(fit.cox)$logtest [1]

test

1.4388222

> summary(fit.cox)$waldtest [1]

test

1.4200000

> summary(fit.cox)$sctest [1]

test

1.44049511

Regardless of which test we use, we see that there is no clear evidence for
a difference in survival between males and females.
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> logrank.test$chisq

[1] 1.44049511

As we learned in this chapter, the score test from the Cox model is exactly
equal to the log rank test statistic!
Now we fit a model that makes use of additional predictors.

> fit.all <- coxph(

Surv(time, status) ∼ sex + diagnosis + loc + ki + gtv +

stereo)

> fit.all

Call:

coxph(formula = Surv(time, status) ∼ sex + diagnosis + loc +

ki + gtv + stereo)

coef exp(coef) se(coef) z p

sexMale 0.1837 1.2017 0.3604 0.51 0.6101

diagnosisLG glioma 0.9150 2.4968 0.6382 1.43 0.1516

diagnosisHG glioma 2.1546 8.6241 0.4505 4.78 1.7e-06

diagnosisOther 0.8857 2.4247 0.6579 1.35 0.1782

locSupratentorial 0.4412 1.5546 0.7037 0.63 0.5307

ki -0.0550 0.9465 0.0183 -3.00 0.0027

gtv 0.0343 1.0349 0.0223 1.54 0.1247

stereoSRT 0.1778 1.1946 0.6016 0.30 0.7676

Likelihood ratio test =41.4 on 8 df, p=1.78e-06

n= 87, number of events= 35

(1 observation deleted due to missingness)

The diagnosis variable has been coded so that the baseline corresponds to
meningioma. The results indicate that the risk associated with HG glioma
is more than eight times (i.e. e2.15 = 8.62) the risk associated with menin-
gioma. In other words, after adjusting for the other predictors, patients
with HG glioma have much worse survival compared to those with menin-
gioma. In addition, larger values of the Karnofsky index, ki, are associated
with lower risk, i.e. longer survival.
Finally, we plot survival curves for each diagnosis category, adjusting for

the other predictors. To make these plots, we set the values of the other
predictors equal to the mean for quantitative variables, and the modal value
for factors. We first create a data frame with four rows, one for each level
of diagnosis. The survfit() function will produce a curve for each of the
rows in this data frame, and one call to plot() will display them all in the
same plot.

> modaldata <- data.frame(

diagnosis = levels(diagnosis),

sex = rep("Female", 4),

loc = rep("Supratentorial", 4),

ki = rep(mean(ki), 4),

gtv = rep(mean(gtv), 4),

stereo = rep("SRT", 4)

)
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> survplots <- survfit(fit.all, newdata = modaldata)

> plot(survplots , xlab = "Months",

ylab = "Survival Probability", col = 2:5)

> legend("bottomleft", levels(diagnosis), col = 2:5, lty = 1)

11.8.2 Publication Data

The Publication data presented in Section 11.5.4 can be found in the ISLR2

library. We first reproduce Figure 11.5 by plotting the Kaplan-Meier curves
stratified on the posres variable, which records whether the study had a
positive or negative result.

> fit.posres <- survfit(

Surv(time, status) ∼ posres , data = Publication

)

> plot(fit.posres , xlab = "Months",

ylab = "Probability of Not Being Published", col = 3:4)

> legend("topright", c("Negative Result", "Positive Result"),

col = 3:4, lty = 1)

As discussed previously, the p-values from fitting Cox’s proportional haz-
ards model to the posres variable are quite large, providing no evidence of a
difference in time-to-publication between studies with positive versus neg-
ative results.

> fit.pub <- coxph(Surv(time, status) ∼ posres ,

data = Publication)

> fit.pub

Call:

coxph(formula = Surv(time, status) ∼ posres , data = Publication

)

coef exp(coef) se(coef) z p

posres 0.148 1.160 0.162 0.92 0.36

Likelihood ratio test =0.83 on 1 df, p=0.361

n= 244, number of events= 156

As expected, the log-rank test provides an identical conclusion.

> logrank.test <- survdiff(Surv(time, status) ∼ posres ,

data = Publication)

> logrank.test

Call:

survdiff(formula = Surv(time, status) ∼ posres ,data=Publication

)

N Observed Expected (O-E)^2/E (O-E)^2/V

posres =0 146 87 92.6 0.341 0.844

posres =1 98 69 63.4 0.498 0.844

Chisq= 0.8 on 1 degrees of freedom , p= 0.358
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However, the results change dramatically when we include other predic-
tors in the model. Here we have excluded the funding mechanism variable.

> fit.pub2 <- coxph(Surv(time, status) ∼ . - mech ,

data = Publication)

> fit.pub2

Call:

coxph(formula = Surv(time, status) ∼ . - mech , data=Publication

)

coef exp(coef) se(coef) z p

posres 0.571 1.770 0.176 3.24 0.0012

multi -0.041 0.960 0.251 -0.16 0.8708

clinend 0.546 1.727 0.262 2.08 0.0371

sampsize 0.000 1.000 0.000 0.32 0.7507

budget 0.004 1.004 0.002 1.78 0.0752

impact 0.058 1.060 0.007 8.74 <2e-16

Likelihood ratio test =149 on 6 df , p=0

n= 244, number of events= 156

We see that there are a number of statistically significant variables, in-
cluding whether the trial focused on a clinical endpoint, the impact of the
study, and whether the study had positive or negative results.

11.8.3 Call Center Data

In this section, we will simulate survival data using the sim.survdata()
sim.survdata()

function, which is part of the coxed library. Our simulated data will rep-
resent the observed wait times (in seconds) for 2,000 customers who have
phoned a call center. In this context, censoring occurs if a customer hangs
up before his or her call is answered.
There are three covariates: Operators (the number of call center operators

available at the time of the call, which can range from 5 to 15), Center

(either A, B, or C), and Time of day (Morning, Afternoon, or Evening). We
generate data for these covariates so that all possibilities are equally likely:
for instance, morning, afternoon and evening calls are equally likely, and
any number of operators from 5 to 15 is equally likely.

> set.seed (4)

> N <- 2000

> Operators <- sample (5:15, N, replace = T)

> Center <- sample(c("A", "B", "C"), N, replace = T)

> Time <- sample(c("Morn.", "After.", "Even."), N, replace = T)

> X <- model.matrix( ∼ Operators + Center + Time)[, -1]

It is worthwhile to take a peek at the design matrix X, so that we can be
sure that we understand how the variables have been coded.

> X[1:5, ]

Operators CenterB CenterC TimeEven. TimeMorn.

1 12 1 0 0 1
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2 15 0 0 0 0

3 7 0 1 1 0

4 7 0 0 0 0

5 11 0 1 0 1

Next, we specify the coefficients and the hazard function.

> true.beta <- c(0.04, -0.3, 0, 0.2, -0.2)

> h.fn <- function(x) return (0.00001 * x)

Here, we have set the coefficient associated with Operators to equal 0.04; in
other words, each additional operator leads to a e0.04 = 1.041-fold increase
in the “risk” that the call will be answered, given the Center and Time

covariates. This makes sense: the greater the number of operators at hand,
the shorter the wait time! The coefficient associated with Center = B is
−0.3, and Center = A is treated as the baseline. This means that the risk
of a call being answered at Center B is 0.74 times the risk that it will be
answered at Center A; in other words, the wait times are a bit longer at
Center B.
We are now ready to generate data under the Cox proportional hazards

model. The sim.survdata() function allows us to specify the maximum
possible failure time, which in this case corresponds to the longest possible
wait time for a customer; we set this to equal 1,000 seconds.

> library(coxed)

> queuing <- sim.survdata(N = N, T = 1000, X = X,

beta = true.beta, hazard.fun = h.fn)

> names(queuing)

[1] "data" "xdata" "baseline"

[4] "xb" "exp.xb" "betas"

[7] "ind.survive" "marg.effect" "marg.effect.data"

The “observed” data is stored in queuing$data, with y corresponding to
the event time and failed an indicator of whether the call was answered
(failed = T) or the customer hung up before the call was answered (failed
= F). We see that almost 90% of calls were answered.

> head(queuing$data)

Operators CenterB CenterC TimeEven. TimeMorn. y failed

1 12 1 0 0 1 344 TRUE

2 15 0 0 0 0 241 TRUE

3 7 0 1 1 0 187 TRUE

4 7 0 0 0 0 279 TRUE

5 11 0 1 0 1 954 TRUE

6 7 1 0 0 1 455 TRUE

> mean(queuing$data$failed)

[1] 0.89

We now plot Kaplan-Meier survival curves. First, we stratify by Center.

> par(mfrow = c(1, 2))

> fit.Center <- survfit(Surv(y, failed) ∼ Center ,

data = queuing$data)
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> plot(fit.Center , xlab = "Seconds",

ylab = "Probability of Still Being on Hold",

col = c(2, 4, 5))

> legend("topright",

c("Call Center A", "Call Center B", "Call Center C"),

col = c(2, 4, 5), lty = 1)

Next, we stratify by Time.

> fit.Time <- survfit(Surv(y, failed) ∼ Time ,

data = queuing$data)

> plot(fit.Time , xlab = "Seconds",

ylab = "Probability of Still Being on Hold",

col = c(2, 4, 5))

> legend("topright", c("Morning", "Afternoon", "Evening"),

col = c(5, 2, 4), lty = 1)

It seems that calls at Call Center B take longer to be answered than calls
at Centers A and C. Similarly, it appears that wait times are longest in the
morning and shortest in the evening hours. We can use a log-rank test to
determine whether these differences are statistically significant.

> survdiff(Surv(y, failed) ∼ Center , data = queuing$data)

Call:

survdiff(formula = Surv(y, failed)∼Center ,data = queuing$data)

N Observed Expected (O-E)^2/E (O-E)^2/V

Center=A 683 603 579 0.971 1.45

Center=B 667 600 701 14.641 24.64

Center=C 650 577 499 12.062 17.05

Chisq= 28.3 on 2 degrees of freedom , p= 7e-07

> survdiff(Surv(y, failed) ∼ Time , data = queuing$data)

Call:

survdiff(formula = Surv(y, failed) ∼ Time , data = queuing$data)

N Observed Expected (O-E)^2/E (O-E)^2/V

Time=After. 688 616 619 0.0135 0.021

Time=Even. 653 582 468 27.6353 38.353

Time=Morn. 659 582 693 17.7381 29.893

Chisq= 46.8 on 2 degrees of freedom , p= 7e-11

We find that differences between centers are highly significant, as are
differences between times of day.
Finally, we fit Cox’s proportional hazards model to the data.

> fit.queuing <- coxph(Surv(y, failed) ∼ .,

data = queuing$data)

> fit.queuing

Call:

coxph(formula = Surv(y, failed) ∼ ., data = queuing$data)

coef exp(coef) se(coef) z p

Operators 0.04174 1.04263 0.00759 5.500 3.8e-08
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CenterB -0.21879 0.80349 0.05793 -3.777 0.000159

CenterC 0.07930 1.08253 0.05850 1.356 0.175256

TimeEven. 0.20904 1.23249 0.05820 3.592 0.000328

TimeMorn. -0.17352 0.84070 0.05811 -2.986 0.002828

Likelihood ratio test =102.8 on 5 df, p=< 2.2e-16

n= 2000, number of events= 1780

The p-values for Center = B, Time = Even. and Time = Morn. are very small.
It is also clear that the hazard — that is, the instantaneous risk that a call
will be answered — increases with the number of operators. Since we gen-
erated the data ourselves, we know that the true coefficients for Operators,
Center = B, Center = C, Time = Even. and Time = Morn. are 0.04, −0.3, 0,
0.2, and −0.2, respectively. The coefficient estimates resulting from the Cox
model are fairly accurate.

11.9 Exercises

Conceptual

1. For each example, state whether or not the censoring mechanism is
independent. Justify your answer.

(a) In a study of disease relapse, due to a careless research scientist,
all patients whose phone numbers begin with the number “2”
are lost to follow up.

(b) In a study of longevity, a formatting error causes all patient ages
that exceed 99 years to be lost (i.e. we know that those patients
are more than 99 years old, but we do not know their exact
ages).

(c) Hospital A conducts a study of longevity. However, very sick
patients tend to be transferred to Hospital B, and are lost to
follow up.

(d) In a study of unemployment duration, the people who find work
earlier are less motivated to stay in touch with study investiga-
tors, and therefore are more likely to be lost to follow up.

(e) In a study of pregnancy duration, women who deliver their ba-
bies pre-term are more likely to do so away from their usual
hospital, and thus are more likely to be censored, relative to
women who deliver full-term babies.

(f) A researcher wishes to model the number of years of education
of the residents of a small town. Residents who enroll in college
out of town are more likely to be lost to follow up, and are
also more likely to attend graduate school, relative to those who
attend college in town.
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(g) Researchers conduct a study of disease-free survival (i.e. time
until disease relapse following treatment). Patients who have
not relapsed within five years are considered to be cured, and
thus their survival time is censored at five years.

(h) We wish to model the failure time for some electrical component.
This component can be manufactured in Iowa or in Pittsburgh,
with no difference in quality. The Iowa factory opened five years
ago, and so components manufactured in Iowa are censored at
five years. The Pittsburgh factory opened two years ago, so those
components are censored at two years.

(i) We wish to model the failure time of an electrical component
made in two different factories, one of which opened before the
other. We have reason to believe that the components manufac-
tured in the factory that opened earlier are of higher quality.

2. We conduct a study with n = 4 participants who have just purchased
cell phones, in order to model the time until phone replacement. The
first participant replaces her phone after 1.2 years. The second par-
ticipant still has not replaced her phone at the end of the two-year
study period. The third participant changes her phone number and is
lost to follow up (but has not yet replaced her phone) 1.5 years into
the study. The fourth participant replaces her phone after 0.2 years.

For each of the four participants (i = 1, . . . , 4), answer the following
questions using the notation introduced in Section 11.1:

(a) Is the participant’s cell phone replacement time censored?

(b) Is the value of ci known, and if so, then what is it?

(c) Is the value of ti known, and if so, then what is it?

(d) Is the value of yi known, and if so, then what is it?

(e) Is the value of δi known, and if so, then what is it?

3. For the example in Exercise 2, report the values of K, d1, . . . , dK ,
r1, . . . , rK , and q1, . . . , qK , where this notation was defined in Sec-
tion 11.3.

4. This problem makes use of the Kaplan-Meier survival curve displayed
in Figure 11.9. The raw data that went into plotting this survival
curve is given in Table 11.4. The covariate column of that table is
not needed for this problem.

(a) What is the estimated probability of survival past 50 days?

(b) Write out an analytical expression for the estimated survival
function. For instance, your answer might be something along
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Observation (Y ) Censoring Indicator (δ) Covariate (X)
26.5 1 0.1
37.2 1 11
57.3 1 -0.3
90.8 0 2.8
20.2 0 1.8
89.8 0 0.4

TABLE 11.4. Data used in Exercise 4.

the lines of

Ŝ(t) =

⎧
⎪⎨

⎪⎩

0.8 if t < 31

0.5 if 31 ≤ t < 77

0.22 if 77 ≤ t.

(The previous equation is for illustration only: it is not the cor-
rect answer!)

5. Sketch the survival function given by the equation

Ŝ(t) =

⎧
⎪⎨

⎪⎩

0.8 if t < 31

0.5 if 31 ≤ t < 77

0.22 if 77 ≤ t.

Your answer should look something like Figure 11.9.
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FIGURE 11.9. A Kaplan-Meier survival curve used in Exercise 4.

6. This problem makes use of the data displayed in Figure 11.1. In
completing this problem, you can refer to the observation times as
y1, . . . , y4. The ordering of these observation times can be seen from
Figure 11.1; their exact values are not required.
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(a) Report the values of δ1, . . . , δ4, K, d1, . . . , dK , r1, . . . , rK , and
q1, . . . , qK . The relevant notation is defined in Sections 11.1 and
11.3.

(b) Sketch the Kaplan-Meier survival curve corresponding to this
data set. (You do not need to use any software to do this — you
can sketch it by hand using the results obtained in (a).)

(c) Based on the survival curve estimated in (b), what is the proba-
bility that the event occurs within 200 days? What is the prob-
ability that the event does not occur within 310 days?

(d) Write out an expression for the estimated survival curve from
(b).

7. In this problem, we will derive (11.5) and (11.6), which are needed
for the construction of the log-rank test statistic (11.8). Recall the
notation in Table 11.1.

(a) Assume that there is no difference between the survival functions
of the two groups. Then we can think of q1k as the number of
failures if we draw r1k observations, without replacement, from
a risk set of rk observations that contains a total of qk failures.
Argue that q1k follows a hypergeometric distribution. Write the

hypergeometric
distributionparameters of this distribution in terms of r1k, rk, and qk.

(b) Given your previous answer, and the properties of the hyper-
geometric distribution, what are the mean and variance of q1k?
Compare your answer to (11.5) and (11.6).

8. Recall that the survival function S(t), the hazard function h(t), and
the density function f(t) are defined in (11.2), (11.9), and (11.11),
respectively. Furthermore, define F (t) = 1 − S(t). Show that the
following relationships hold:

f(t) = dF (t)/dt

S(t) = exp

(
−
∫ t

0
h(u)du

)
.

9. In this exercise, we will explore the consequences of assuming that
the survival times follow an exponential distribution.

(a) Suppose that a survival time follows an Exp(λ) distribution,
so that its density function is f(t) = λ exp(−λt). Using the
relationships provided in Exercise 8, show that S(t) = exp(−λt).

(b) Now suppose that each of n independent survival times follows
an Exp(λ) distribution. Write out an expression for the likeli-
hood function (11.13).



494 11. Survival Analysis and Censored Data

(c) Show that the maximum likelihood estimator for λ is

λ̂ =
n∑

i=1

δi/
n∑

i=1

yi.

(d) Use your answer to (c) to derive an estimator of the mean sur-
vival time.

Hint: For (d), recall that the mean of an Exp(λ) random variable is
1/λ.

Applied

10. This exercise focuses on the brain tumor data, which is included in
the ISLR2 R library.

(a) Plot the Kaplan-Meier survival curve with ±1 standard error
bands, using the survfit() function in the survival package.

(b) Draw a bootstrap sample of size n = 88 from the pairs (yi, δi),
and compute the resulting Kaplan-Meier survival curve. Repeat
this process B = 200 times. Use the results to obtain an estimate
of the standard error of the Kaplan-Meier survival curve at each
timepoint. Compare this to the standard errors obtained in (a).

(c) Fit a Cox proportional hazards model that uses all of the pre-
dictors to predict survival. Summarize the main findings.

(d) Stratify the data by the value of ki. (Since only one observation
has ki=40, you can group that observation together with the ob-
servations that have ki=60.) Plot Kaplan-Meier survival curves
for each of the five strata, adjusted for the other predictors.

11. This example makes use of the data in Table 11.4.

(a) Create two groups of observations. In Group 1, X < 2, whereas
in Group 2, X ≥ 2. Plot the Kaplan-Meier survival curves corre-
sponding to the two groups. Be sure to label the curves so that
it is clear which curve corresponds to which group. By eye, does
there appear to be a difference between the two groups’ survival
curves?

(b) Fit Cox’s proportional hazards model, using the group indicator
as a covariate. What is the estimated coefficient? Write a sen-
tence providing the interpretation of this coefficient, in terms
of the hazard or the instantaneous probability of the event. Is
there evidence that the true coefficient value is non-zero?
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(c) Recall from Section 11.5.2 that in the case of a single binary
covariate, the log-rank test statistic should be identical to the
score statistic for the Cox model. Conduct a log-rank test to de-
termine whether there is a difference between the survival curves
for the two groups. How does the p-value for the log-rank test
statistic compare to the p-value for the score statistic for the
Cox model from (b)?



12
Unsupervised Learning

Most of this book concerns supervised learning methods such as
regression and classification. In the supervised learning setting, we typically
have access to a set of p features X1, X2, . . . , Xp, measured on n obser-
vations, and a response Y also measured on those same n observations.
The goal is then to predict Y using X1, X2, . . . , Xp.
This chapter will instead focus on unsupervised learning, a set of sta-

tistical tools intended for the setting in which we have only a set of fea-
tures X1, X2, . . . , Xp measured on n observations. We are not interested
in prediction, because we do not have an associated response variable Y .
Rather, the goal is to discover interesting things about the measurements
on X1, X2, . . . , Xp. Is there an informative way to visualize the data? Can
we discover subgroups among the variables or among the observations?
Unsupervised learning refers to a diverse set of techniques for answering
questions such as these. In this chapter, we will focus on two particu-
lar types of unsupervised learning: principal components analysis, a tool
used for data visualization or data pre-processing before supervised tech-
niques are applied, and clustering, a broad class of methods for discovering
unknown subgroups in data.

12.1 The Challenge of Unsupervised Learning

Supervised learning is a well-understood area. In fact, if you have read
the preceding chapters in this book, then you should by now have a good
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grasp of supervised learning. For instance, if you are asked to predict a
binary outcome from a data set, you have a very well developed set of tools
at your disposal (such as logistic regression, linear discriminant analysis,
classification trees, support vector machines, and more) as well as a clear
understanding of how to assess the quality of the results obtained (using
cross-validation, validation on an independent test set, and so forth).
In contrast, unsupervised learning is often much more challenging. The

exercise tends to be more subjective, and there is no simple goal for the
analysis, such as prediction of a response. Unsupervised learning is often
performed as part of an exploratory data analysis. Furthermore, it can be

exploratory
data
analysis

hard to assess the results obtained from unsupervised learning methods,
since there is no universally accepted mechanism for performing cross-
validation or validating results on an independent data set. The reason
for this difference is simple. If we fit a predictive model using a supervised
learning technique, then it is possible to check our work by seeing how
well our model predicts the response Y on observations not used in fitting
the model. However, in unsupervised learning, there is no way to check our
work because we don’t know the true answer—the problem is unsupervised.
Techniques for unsupervised learning are of growing importance in a

number of fields. A cancer researcher might assay gene expression levels in
100 patients with breast cancer. He or she might then look for subgroups
among the breast cancer samples, or among the genes, in order to obtain
a better understanding of the disease. An online shopping site might try
to identify groups of shoppers with similar browsing and purchase histo-
ries, as well as items that are of particular interest to the shoppers within
each group. Then an individual shopper can be preferentially shown the
items in which he or she is particularly likely to be interested, based on
the purchase histories of similar shoppers. A search engine might choose
which search results to display to a particular individual based on the click
histories of other individuals with similar search patterns. These statistical
learning tasks, and many more, can be performed via unsupervised learning
techniques.

12.2 Principal Components Analysis

Principal components are discussed in Section 6.3.1 in the context of
principal components regression. When faced with a large set of corre-
lated variables, principal components allow us to summarize this set with
a smaller number of representative variables that collectively explain most
of the variability in the original set. The principal component directions
are presented in Section 6.3.1 as directions in feature space along which
the original data are highly variable. These directions also define lines and
subspaces that are as close as possible to the data cloud. To perform
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principal components regression, we simply use principal components as
predictors in a regression model in place of the original larger set of vari-
ables.
Principal components analysis (PCA) refers to the process by which prin-

principal
components
analysis

cipal components are computed, and the subsequent use of these compo-
nents in understanding the data. PCA is an unsupervised approach, since
it involves only a set of features X1, X2, . . . , Xp, and no associated response
Y . Apart from producing derived variables for use in supervised learning
problems, PCA also serves as a tool for data visualization (visualization of
the observations or visualization of the variables). It can also be used as a
tool for data imputation — that is, for filling in missing values in a data
matrix.
We now discuss PCA in greater detail, focusing on the use of PCA as

a tool for unsupervised data exploration, in keeping with the topic of this
chapter.

12.2.1 What Are Principal Components?

Suppose that we wish to visualize n observations with measurements on a
set of p features, X1, X2, . . . , Xp, as part of an exploratory data analysis.
We could do this by examining two-dimensional scatterplots of the data,
each of which contains the n observations’ measurements on two of the
features. However, there are

(p
2

)
= p(p−1)/2 such scatterplots; for example,

with p = 10 there are 45 plots! If p is large, then it will certainly not be
possible to look at all of them; moreover, most likely none of them will
be informative since they each contain just a small fraction of the total
information present in the data set. Clearly, a better method is required to
visualize the n observations when p is large. In particular, we would like to
find a low-dimensional representation of the data that captures as much of
the information as possible. For instance, if we can obtain a two-dimensional
representation of the data that captures most of the information, then we
can plot the observations in this low-dimensional space.
PCA provides a tool to do just this. It finds a low-dimensional represen-

tation of a data set that contains as much as possible of the variation. The
idea is that each of the n observations lives in p-dimensional space, but not
all of these dimensions are equally interesting. PCA seeks a small number
of dimensions that are as interesting as possible, where the concept of in-
teresting is measured by the amount that the observations vary along each
dimension. Each of the dimensions found by PCA is a linear combination
of the p features. We now explain the manner in which these dimensions,
or principal components, are found.
The first principal component of a set of features X1, X2, . . . , Xp is the

normalized linear combination of the features

Z1 = φ11X1 + φ21X2 + · · ·+ φp1Xp (12.1)
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that has the largest variance. By normalized, we mean that
∑p

j=1 φ
2
j1 = 1.

We refer to the elements φ11, . . . ,φp1 as the loadings of the first principal
loading

component; together, the loadings make up the principal component load-
ing vector, φ1 = (φ11 φ21 . . . φp1)T . We constrain the loadings so that
their sum of squares is equal to one, since otherwise setting these elements
to be arbitrarily large in absolute value could result in an arbitrarily large
variance.
Given a n × p data set X, how do we compute the first principal com-

ponent? Since we are only interested in variance, we assume that each of
the variables in X has been centered to have mean zero (that is, the col-
umn means of X are zero). We then look for the linear combination of the
sample feature values of the form

zi1 = φ11xi1 + φ21xi2 + · · ·+ φp1xip (12.2)

that has largest sample variance, subject to the constraint that
∑p

j=1 φ
2
j1=1.

In other words, the first principal component loading vector solves the op-
timization problem

maximize
φ11,...,φp1

⎧
⎪⎨

⎪⎩
1

n

n∑

i=1

⎛

⎝
p∑

j=1

φj1xij

⎞

⎠
2
⎫
⎪⎬

⎪⎭
subject to

p∑

j=1

φ2
j1 = 1. (12.3)

From (12.2) we can write the objective in (12.3) as 1
n

∑n
i=1 z

2
i1. Since

1
n

∑n
i=1 xij = 0, the average of the z11, . . . , zn1 will be zero as well. Hence

the objective that we are maximizing in (12.3) is just the sample variance of
the n values of zi1. We refer to z11, . . . , zn1 as the scores of the first princi- score
pal component. Problem (12.3) can be solved via an eigen decomposition,

eigen de-
compositiona standard technique in linear algebra, but details are outside of the scope

of this book.1

There is a nice geometric interpretation for the first principal component.
The loading vector φ1 with elements φ11,φ21, . . . ,φp1 defines a direction in
feature space along which the data vary the most. If we project the n data
points x1, . . . , xn onto this direction, the projected values are the princi-
pal component scores z11, . . . , zn1 themselves. For instance, Figure 6.14 on
page 253 displays the first principal component loading vector (green solid
line) on an advertising data set. In these data, there are only two features,
and so the observations as well as the first principal component loading
vector can be easily displayed. As can be seen from (6.19), in that data set
φ11 = 0.839 and φ21 = 0.544.
After the first principal component Z1 of the features has been deter-

mined, we can find the second principal component Z2. The second prin-

1As an alternative to the eigen decomposition, a related technique called the singular
value decomposition can be used. This will be explored in the lab at the end of this
chapter.
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cipal component is the linear combination of X1, . . . , Xp that has maximal
variance out of all linear combinations that are uncorrelated with Z1. The
second principal component scores z12, z22, . . . , zn2 take the form

zi2 = φ12xi1 + φ22xi2 + · · ·+ φp2xip, (12.4)

where φ2 is the second principal component loading vector, with elements
φ12,φ22, . . . ,φp2. It turns out that constraining Z2 to be uncorrelated with
Z1 is equivalent to constraining the direction φ2 to be orthogonal (perpen-
dicular) to the direction φ1. In the example in Figure 6.14, the observations
lie in two-dimensional space (since p = 2), and so once we have found φ1,
there is only one possibility for φ2, which is shown as a blue dashed line.
(From Section 6.3.1, we know that φ12 = 0.544 and φ22 = −0.839.) But in
a larger data set with p > 2 variables, there are multiple distinct principal
components, and they are defined in a similar manner. To find φ2, we solve
a problem similar to (12.3) with φ2 replacing φ1, and with the additional
constraint that φ2 is orthogonal to φ1.2

Once we have computed the principal components, we can plot them
against each other in order to produce low-dimensional views of the data.
For instance, we can plot the score vector Z1 against Z2, Z1 against Z3,
Z2 against Z3, and so forth. Geometrically, this amounts to projecting
the original data down onto the subspace spanned by φ1, φ2, and φ3, and
plotting the projected points.
We illustrate the use of PCA on the USArrests data set. For each of the

50 states in the United States, the data set contains the number of arrests
per 100, 000 residents for each of three crimes: Assault, Murder, and Rape.
We also record UrbanPop (the percent of the population in each state living
in urban areas). The principal component score vectors have length n = 50,
and the principal component loading vectors have length p = 4. PCA was
performed after standardizing each variable to have mean zero and standard
deviation one. Figure 12.1 plots the first two principal components of these
data. The figure represents both the principal component scores and the
loading vectors in a single biplot display. The loadings are also given in

biplot
Table 12.1.
In Figure 12.1, we see that the first loading vector places approximately

equal weight on Assault, Murder, and Rape, but with much less weight on
UrbanPop. Hence this component roughly corresponds to a measure of overall
rates of serious crimes. The second loading vector places most of its weight
on UrbanPop and much less weight on the other three features. Hence, this
component roughly corresponds to the level of urbanization of the state.
Overall, we see that the crime-related variables (Murder, Assault, and Rape)
are located close to each other, and that the UrbanPop variable is far from the

2On a technical note, the principal component directions φ1, φ2, φ3, . . . are the
ordered sequence of eigenvectors of the matrix XTX, and the variances of the com-
ponents are the eigenvalues. There are at most min(n− 1, p) principal components.
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FIGURE 12.1. The first two principal components for the USArrests data. The
blue state names represent the scores for the first two principal components. The
orange arrows indicate the first two principal component loading vectors (with
axes on the top and right). For example, the loading for Rape on the first com-
ponent is 0.54, and its loading on the second principal component 0.17 (the word
Rape is centered at the point (0.54, 0.17)). This figure is known as a biplot, be-
cause it displays both the principal component scores and the principal component
loadings.

other three. This indicates that the crime-related variables are correlated
with each other—states with high murder rates tend to have high assault
and rape rates—and that the UrbanPop variable is less correlated with the
other three.
We can examine differences between the states via the two principal com-

ponent score vectors shown in Figure 12.1. Our discussion of the loading
vectors suggests that states with large positive scores on the first compo-
nent, such as California, Nevada and Florida, have high crime rates, while
states like North Dakota, with negative scores on the first component, have
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PC1 PC2
Murder 0.5358995 −0.4181809
Assault 0.5831836 −0.1879856
UrbanPop 0.2781909 0.8728062
Rape 0.5434321 0.1673186

TABLE 12.1. The principal component loading vectors, φ1 and φ2, for the
USArrests data. These are also displayed in Figure 12.1.

low crime rates. California also has a high score on the second component,
indicating a high level of urbanization, while the opposite is true for states
like Mississippi. States close to zero on both components, such as Indiana,
have approximately average levels of both crime and urbanization.

12.2.2 Another Interpretation of Principal Components

The first two principal component loading vectors in a simulated three-
dimensional data set are shown in the left-hand panel of Figure 12.2; these
two loading vectors span a plane along which the observations have the
highest variance.
In the previous section, we describe the principal component loading vec-

tors as the directions in feature space along which the data vary the most,
and the principal component scores as projections along these directions.
However, an alternative interpretation for principal components can also be
useful: principal components provide low-dimensional linear surfaces that
are closest to the observations. We expand upon that interpretation here.3

The first principal component loading vector has a very special property:
it is the line in p-dimensional space that is closest to the n observations
(using average squared Euclidean distance as a measure of closeness). This
interpretation can be seen in the left-hand panel of Figure 6.15; the dashed
lines indicate the distance between each observation and the line defined
by the first principal component loading vector. The appeal of this inter-
pretation is clear: we seek a single dimension of the data that lies as close
as possible to all of the data points, since such a line will likely provide a
good summary of the data.
The notion of principal components as the dimensions that are clos-

est to the n observations extends beyond just the first principal com-
ponent. For instance, the first two principal components of a data set
span the plane that is closest to the n observations, in terms of average
squared Euclidean distance. An example is shown in the left-hand panel
of Figure 12.2. The first three principal components of a data set span

3In this section, we continue to assume that each column of the data matrix X has
been centered to have mean zero—that is, the column mean has been subtracted from
each column.
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FIGURE 12.2. Ninety observations simulated in three dimensions. The observa-
tions are displayed in color for ease of visualization. Left: the first two principal
component directions span the plane that best fits the data. The plane is posi-
tioned to minimize the sum of squared distances to each point. Right: the first
two principal component score vectors give the coordinates of the projection of the
90 observations onto the plane.

the three-dimensional hyperplane that is closest to the n observations, and
so forth.
Using this interpretation, together the first M principal component score

vectors and the first M principal component loading vectors provide the
best M -dimensional approximation (in terms of Euclidean distance) to
the ith observation xij . This representation can be written as

xij ≈
M∑

m=1

zimφjm. (12.5)

We can state this more formally by writing down an optimization prob-
lem. Suppose the data matrix X is column-centered. Out of all approxima-
tions of the form xij ≈

∑M
m=1 aimbjm, we could ask for the one with the

smallest residual sum of squares:

minimize
A∈Rn×M ,B∈Rp×M

⎧
⎨

⎩

p∑

j=1

n∑

i=1

(
xij −

M∑

m=1

aimbjm

)2
⎫
⎬

⎭ . (12.6)

Here, A is a n×M matrix whose (i,m) element is aim, and B is a p×M
element whose (j,m) element is bjm.
It can be shown that for any value of M , the columns of the matrices

Â and B̂ that solve (12.6) are in fact the first M principal components
score and loading vectors. In other words, if Â and B̂ solve (12.6), then



12.2 Principal Components Analysis 505

âim = zim and b̂jm = φjm.4 This means that the smallest possible value of
the objective in (12.6) is

p∑

j=1

n∑

i=1

(
xij −

M∑

m=1

zimφjm

)2

. (12.7)

In summary, together the M principal component score vectors and M
principal component loading vectors can give a good approximation to the
data when M is sufficiently large. When M = min(n − 1, p), then the

representation is exact: xij =
∑M

m=1 zimφjm.

12.2.3 The Proportion of Variance Explained

In Figure 12.2, we performed PCA on a three-dimensional data set (left-
hand panel) and projected the data onto the first two principal component
loading vectors in order to obtain a two-dimensional view of the data (i.e.
the principal component score vectors; right-hand panel). We see that this
two-dimensional representation of the three-dimensional data does success-
fully capture the major pattern in the data: the orange, green, and cyan
observations that are near each other in three-dimensional space remain
nearby in the two-dimensional representation. Similarly, we have seen on
the USArrests data set that we can summarize the 50 observations and 4
variables using just the first two principal component score vectors and the
first two principal component loading vectors.
We can now ask a natural question: how much of the information in

a given data set is lost by projecting the observations onto the first few
principal components? That is, how much of the variance in the data is not
contained in the first few principal components? More generally, we are
interested in knowing the proportion of variance explained (PVE) by each

proportion
of variance
explained

principal component. The total variance present in a data set (assuming
that the variables have been centered to have mean zero) is defined as

p∑

j=1

Var(Xj) =
p∑

j=1

1

n

n∑

i=1

x2
ij , (12.8)

and the variance explained by the mth principal component is

1

n

n∑

i=1

z2im =
1

n

n∑

i=1

⎛

⎝
p∑

j=1

φjmxij

⎞

⎠
2

. (12.9)

4Technically, the solution to (12.6) is not unique. Thus, it is more precise to state
that any solution to (12.6) can be easily transformed to yield the principal components.
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Therefore, the PVE of the mth principal component is given by

∑n
i=1 z

2
im∑p

j=1

∑n
i=1 x

2
ij

=

∑n
i=1

(∑p
j=1 φjmxij

)2

∑p
j=1

∑n
i=1 x

2
ij

. (12.10)

The PVE of each principal component is a positive quantity. In order to
compute the cumulative PVE of the first M principal components, we can
simply sum (12.10) over each of the first M PVEs. In total, there are
min(n− 1, p) principal components, and their PVEs sum to one.
In Section 12.2.2, we showed that the first M principal component load-

ing and score vectors can be interpreted as the best M -dimensional approx-
imation to the data, in terms of residual sum of squares. It turns out that
the variance of the data can be decomposed into the variance of the first M
principal components plus the mean squared error of this M -dimensional
approximation, as follows:

p∑

j=1

1
n

n∑

i=1

x2
ij

︸ ︷︷ ︸
Var. of data

=
M∑

m=1

1
n

n∑

i=1

z2im

︸ ︷︷ ︸
Var. of first M PCs

+
1
n

p∑

j=1

n∑

i=1

(
xij −

M∑

m=1

zimφjm

)2

︸ ︷︷ ︸
MSE of M-dimensional approximation

(12.11)

The three terms in this decomposition are discussed in (12.8), (12.9), and
(12.7), respectively. Since the first term is fixed, we see that by maximizing
the variance of the first M principal components, we minimize the mean
squared error of the M -dimensional approximation, and vice versa. This ex-
plains why principal components can be equivalently viewed as minimizing
the approximation error (as in Section 12.2.2) or maximizing the variance
(as in Section 12.2.1).
Moreover, we can use (12.11) to see that the PVE defined in (12.10)

equals

1−

∑p
j=1

∑n
i=1

(
xij −

∑M
m=1 zimφjm

)2

∑p
j=1

∑n
i=1 x

2
ij

= 1− RSS

TSS
,

where TSS represents the total sum of squared elements of X, and RSS
represents the residual sum of squares of the M -dimensional approxima-
tion given by the principal components. Recalling the definition of R2 from
(3.17), this means that we can interpret the PVE as the R2 of the approx-
imation for X given by the first M principal components.
In the USArrests data, the first principal component explains 62.0% of

the variance in the data, and the next principal component explains 24.7%
of the variance. Together, the first two principal components explain almost
87% of the variance in the data, and the last two principal components
explain only 13% of the variance. This means that Figure 12.1 provides a
pretty accurate summary of the data using just two dimensions. The PVE
of each principal component, as well as the cumulative PVE, is shown
in Figure 12.3. The left-hand panel is known as a scree plot, and will be

scree plot
discussed later in this chapter.
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FIGURE 12.3. Left: a scree plot depicting the proportion of variance explained
by each of the four principal components in the USArrests data. Right: the cu-
mulative proportion of variance explained by the four principal components in the
USArrests data.

12.2.4 More on PCA

Scaling the Variables

We have already mentioned that before PCA is performed, the variables
should be centered to have mean zero. Furthermore, the results obtained
when we perform PCA will also depend on whether the variables have been
individually scaled (each multiplied by a different constant). This is in
contrast to some other supervised and unsupervised learning techniques,
such as linear regression, in which scaling the variables has no effect. (In
linear regression, multiplying a variable by a factor of c will simply lead to
multiplication of the corresponding coefficient estimate by a factor of 1/c,
and thus will have no substantive effect on the model obtained.)
For instance, Figure 12.1 was obtained after scaling each of the variables

to have standard deviation one. This is reproduced in the left-hand plot in
Figure 12.4. Why does it matter that we scaled the variables? In these data,
the variables are measured in different units; Murder, Rape, and Assault are
reported as the number of occurrences per 100, 000 people, and UrbanPop is
the percentage of the state’s population that lives in an urban area. These
four variables have variances of 18.97, 87.73, 6945.16, and 209.5, respec-
tively. Consequently, if we perform PCA on the unscaled variables, then
the first principal component loading vector will have a very large loading
for Assault, since that variable has by far the highest variance. The right-
hand plot in Figure 12.4 displays the first two principal components for the
USArrests data set, without scaling the variables to have standard devia-
tion one. As predicted, the first principal component loading vector places
almost all of its weight on Assault, while the second principal component
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FIGURE 12.4. Two principal component biplots for the USArrests data. Left:
the same as Figure 12.1, with the variables scaled to have unit standard deviations.
Right: principal components using unscaled data. Assault has by far the largest
loading on the first principal component because it has the highest variance among
the four variables. In general, scaling the variables to have standard deviation one
is recommended.

loading vector places almost all of its weight on UrpanPop. Comparing this
to the left-hand plot, we see that scaling does indeed have a substantial
effect on the results obtained.
However, this result is simply a consequence of the scales on which the

variables were measured. For instance, if Assault were measured in units
of the number of occurrences per 100 people (rather than number of oc-
currences per 100, 000 people), then this would amount to dividing all of
the elements of that variable by 1, 000. Then the variance of the variable
would be tiny, and so the first principal component loading vector would
have a very small value for that variable. Because it is undesirable for the
principal components obtained to depend on an arbitrary choice of scaling,
we typically scale each variable to have standard deviation one before we
perform PCA.
In certain settings, however, the variables may be measured in the same

units. In this case, we might not wish to scale the variables to have stan-
dard deviation one before performing PCA. For instance, suppose that the
variables in a given data set correspond to expression levels for p genes.
Then since expression is measured in the same “units” for each gene, we
might choose not to scale the genes to each have standard deviation one.
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Uniqueness of the Principal Components

Each principal component loading vector is unique, up to a sign flip. This
means that two different software packages will yield the same principal
component loading vectors, although the signs of those loading vectors
may differ. The signs may differ because each principal component loading
vector specifies a direction in p-dimensional space: flipping the sign has no
effect as the direction does not change. (Consider Figure 6.14—the principal
component loading vector is a line that extends in either direction, and
flipping its sign would have no effect.) Similarly, the score vectors are unique
up to a sign flip, since the variance of Z is the same as the variance of −Z.
It is worth noting that when we use (12.5) to approximate xij we multiply
zim by φjm. Hence, if the sign is flipped on both the loading and score
vectors, the final product of the two quantities is unchanged.

Deciding How Many Principal Components to Use

In general, a n × p data matrix X has min(n − 1, p) distinct principal
components. However, we usually are not interested in all of them; rather,
we would like to use just the first few principal components in order to
visualize or interpret the data. In fact, we would like to use the smallest
number of principal components required to get a good understanding of the
data. How many principal components are needed? Unfortunately, there is
no single (or simple!) answer to this question.
We typically decide on the number of principal components required

to visualize the data by examining a scree plot, such as the one shown
in the left-hand panel of Figure 12.3. We choose the smallest number of
principal components that are required in order to explain a sizable amount
of the variation in the data. This is done by eyeballing the scree plot, and
looking for a point at which the proportion of variance explained by each
subsequent principal component drops off. This drop is often referred to
as an elbow in the scree plot. For instance, by inspection of Figure 12.3,
one might conclude that a fair amount of variance is explained by the first
two principal components, and that there is an elbow after the second
component. After all, the third principal component explains less than ten
percent of the variance in the data, and the fourth principal component
explains less than half that and so is essentially worthless.
However, this type of visual analysis is inherently ad hoc. Unfortunately,

there is no well-accepted objective way to decide how many principal com-
ponents are enough. In fact, the question of how many principal compo-
nents are enough is inherently ill-defined, and will depend on the specific
area of application and the specific data set. In practice, we tend to look
at the first few principal components in order to find interesting patterns
in the data. If no interesting patterns are found in the first few principal
components, then further principal components are unlikely to be of inter-
est. Conversely, if the first few principal components are interesting, then
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we typically continue to look at subsequent principal components until no
further interesting patterns are found. This is admittedly a subjective ap-
proach, and is reflective of the fact that PCA is generally used as a tool for
exploratory data analysis.
On the other hand, if we compute principal components for use in a

supervised analysis, such as the principal components regression presented
in Section 6.3.1, then there is a simple and objective way to determine how
many principal components to use: we can treat the number of principal
component score vectors to be used in the regression as a tuning parameter
to be selected via cross-validation or a related approach. The comparative
simplicity of selecting the number of principal components for a supervised
analysis is one manifestation of the fact that supervised analyses tend to
be more clearly defined and more objectively evaluated than unsupervised
analyses.

12.2.5 Other Uses for Principal Components

We saw in Section 6.3.1 that we can perform regression using the principal
component score vectors as features. In fact, many statistical techniques,
such as regression, classification, and clustering, can be easily adapted to
use the n ×M matrix whose columns are the first M ≪ p principal com-
ponent score vectors, rather than using the full n × p data matrix. This
can lead to less noisy results, since it is often the case that the signal (as
opposed to the noise) in a data set is concentrated in its first few principal
components.

12.3 Missing Values and Matrix Completion

Often datasets have missing values, which can be a nuisance. For example,
suppose that we wish to analyze the USArrests data, and discover that 20
of the 200 values have been randomly corrupted and marked as missing.
Unfortunately, the statistical learning methods that we have seen in this
book cannot handle missing values. How should we proceed?
We could remove the rows that contain missing observations and per-

form our data analysis on the complete rows. But this seems wasteful, and
depending on the fraction missing, unrealistic. Alternatively, if xij is miss-
ing, then we could replace it by the mean of the jth column (using the
non-missing entries to compute the mean). Although this is a common and
convenient strategy, often we can do better by exploiting the correlation
between the variables.
In this section we show how principal components can be used to impute

impute

imputation
the missing values, through a process known as matrix completion. The

matrix
completion
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completed matrix can then be used in a statistical learning method, such
as linear regression or LDA.
This approach for imputing missing data is appropriate if the missingness

is random. For example, it is suitable if a patient’s weight is missing because
missing at
randomthe battery of the electronic scale was flat at the time of his exam. By

contrast, if the weight is missing because the patient was too heavy to
climb on the scale, then this is not missing at random; the missingness is
informative, and the approach described here for handling missing data is
not suitable.
Sometimes data is missing by necessity. For example, if we form a matrix

of the ratings (on a scale from 1 to 5) that n customers have given to the
entire Netflix catalog of p movies, then most of the matrix will be missing,
since no customer will have seen and rated more than a tiny fraction of the
catalog. If we can impute the missing values well, then we will have an idea
of what each customer will think of movies they have not yet seen. Hence
matrix completion can be used to power recommender systems.

recommender
systems

Principal Components with Missing Values

In Section 12.2.2, we showed that the first M principal component score
and loading vectors provide the “best” approximation to the data matrix
X, in the sense of (12.6). Suppose that some of the observations xij are
missing. We now show how one can both impute the missing values and
solve the principal component problem at the same time. We return to a
modified form of the optimization problem (12.6),

minimize
A∈Rn×M ,B∈Rp×M

⎧
⎨

⎩
∑

(i,j)∈O

(
xij −

M∑

m=1

aimbjm

)2
⎫
⎬

⎭ , (12.12)

where O is the set of all observed pairs of indices (i, j), a subset of the
possible n× p pairs.
Once we solve this problem:

• we can estimate a missing observation xij using x̂ij =
∑M

m=1 âimb̂jm,

where âim and b̂jm are the (i,m) and (j,m) elements, respectively,

of the matrices Â and B̂ that solve (12.12); and

• we can (approximately) recover the M principal component scores
and loadings, as we did when the data were complete.

It turns out that solving (12.12) exactly is difficult, unlike in the case of
complete data: the eigen decomposition no longer applies. But the sim-
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Algorithm 12.1 Iterative Algorithm for Matrix Completion

1. Create a complete data matrix X̃ of dimension n × p of which the
(i, j) element equals

x̃ij =

{
xij if (i, j) ∈ O
x̄j if (i, j) /∈ O,

where x̄j is the average of the observed values for the jth variable in
the incomplete data matrix X. Here, O indexes the observations that
are observed in X.

2. Repeat steps (a)–(c) until the objective (12.14) fails to decrease:

(a) Solve

minimize
A∈Rn×M ,B∈Rp×M

⎧
⎨

⎩

p∑

j=1

n∑

i=1

(
x̃ij −

M∑

m=1

aimbjm

)2
⎫
⎬

⎭ (12.13)

by computing the principal components of X̃.

(b) For each element (i, j) /∈ O, set x̃ij ←
∑M

m=1 âimb̂jm.

(c) Compute the objective

∑

(i,j)∈O

(
xij −

M∑

m=1

âimb̂jm

)2

. (12.14)

3. Return the estimated missing entries x̃ij , (i, j) /∈ O.

ple iterative approach in Algorithm 12.1, which is demonstrated in Sec-
tion 12.5.2, typically provides a good solution.56

We illustrate Algorithm 12.1 on the USArrests data. There are p = 4
variables and n = 50 observations (states). We first standardized the data
so each variable has mean zero and standard deviation one. We then ran-
domly selected 20 of the 50 states, and then for each of these we randomly
set one of the four variables to be missing. Thus, 10% of the elements of the
data matrix were missing. We applied Algorithm 12.1 with M = 1 princi-
pal component. Figure 12.5 shows that the recovery of the missing elements

5This algorithm is referred to as “Hard-Impute” in Mazumder, Hastie, and Tibshi-
rani (2010) “Spectral regularization algorithms for learning large incomplete matrices”,
published in Journal of Machine Learning Research, pages 2287–2322.

6Each iteration of Step 2 of this algorithm decreases the objective (12.14). However,
the algorithm is not guaranteed to achieve the global optimum of (12.12).
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FIGURE 12.5. Missing value imputation on the USArrests data. Twenty values
(10% of the total number of matrix elements) were artificially set to be missing,
and then imputed via Algorithm 12.1 with M = 1. The figure displays the true
value xij and the imputed value x̂ij for all twenty missing values. For each of the
twenty missing values, the color indicates the variable, and the label indicates the
state. The correlation between the true and imputed values is around 0.63.

is pretty accurate. Over 100 random runs of this experiment, the average
correlation between the true and imputed values of the missing elements
is 0.63, with a standard deviation of 0.11. Is this good performance? To
answer this question, we can compare this correlation to what we would
have gotten if we had estimated these 20 values using the complete data
— that is, if we had simply computed x̂ij = zi1φj1, where zi1 and φj1 are
elements of the first principal component score and loading vectors of the
complete data.7 Using the complete data in this way results in an average
correlation of 0.79 between the true and estimated values for these 20 el-
ements, with a standard deviation of 0.08. Thus, our imputation method
does worse than the method that uses all of the data (0.63 ± 0.11 versus
0.79 ± 0.08), but its performance is still pretty good. (And of course, the

7This is an unattainable gold standard, in the sense that with missing data, we of
course cannot compute the principal components of the complete data.
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FIGURE 12.6. As described in the text, in each of 100 trials, we left out 20
elements of the USArrests dataset. In each trial, we applied Algorithm 12.1 with
M = 1 to impute the missing elements and compute the principal components.
Left: For each of the 50 states, the imputed first principal component scores (av-
eraged over 100 trials, and displayed with a standard deviation bar) are plotted
against the first principal component scores computed using all the data. Right:
The imputed principal component loadings (averaged over 100 trials, and dis-
played with a standard deviation bar) are plotted against the true principal com-
ponent loadings.

method that uses all of the data cannot be applied in a real-world setting
with missing data.)
Figure 12.6 further indicates that Algorithm 12.1 performs fairly well on

this dataset.
We close with a few observations:

• The USArrests data has only four variables, which is on the low end
for methods like Algorithm 12.1 to work well. For this reason, for this
demonstration we randomly set at most one variable per state to be
missing, and only used M = 1 principal component.

• In general, in order to apply Algorithm 12.1, we must select M , the
number of principal components to use for the imputation. One ap-
proach is to randomly leave out a few additional elements from the
matrix, and select M based on how well those known values are re-
covered. This is closely related to the validation-set approach seen in
Chapter 5.

Recommender Systems

Digital streaming services like Netflix and Amazon use data about the con-
tent that a customer has viewed in the past, as well as data from other
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Customer 1 • • • • 4 • • • • • · · ·
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Customer 4 3 • • • • • • • • • · · ·
Customer 5 5 1 • • 4 • • • • • · · ·
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Customer 8 • • • • • • • • • • · · ·
Customer 9 3 • • • 5 • • 1 • • · · ·

...
...

...
...

...
...

...
...

...
...

...
. . .

TABLE 12.2. Excerpt of the Netflix movie rating data. The movies are rated
from 1 (worst) to 5 (best). The symbol • represents a missing value: a movie that
was not rated by the corresponding customer.

customers, to suggest other content for the customer. As a concrete ex-
ample, some years back, Netflix had customers rate each movie that they
had seen with a score from 1–5. This resulted in a very big n × p matrix
for which the (i, j) element is the rating given by the ith customer to the
jth movie. One specific early example of this matrix had n = 480,189 cus-
tomers and p = 17,770 movies. However, on average each customer had seen
around 200 movies, so 99% of the matrix had missing elements. Table 12.3
illustrates the setup.
In order to suggest a movie that a particular customer might like, Netflix

needed a way to impute the missing values of this data matrix. The key idea
is as follows: the set of movies that the ith customer has seen will overlap
with those that other customers have seen. Furthermore, some of those
other customers will have similar movie preferences to the ith customer.
Thus, it should be possible to use similar customers’ ratings of movies that
the ith customer has not seen to predict whether the ith customer will like
those movies.
More concretely, by applying Algorithm 12.1, we can predict the ith cus-

tomer’s rating for the jth movie using x̂ij =
∑M

m=1 âimb̂jm. Furthermore,
we can interpret the M components in terms of “cliques” and “genres”:

• âim represents the strength with which the ith user belongs to the
mth clique, where a clique is a group of customers that enjoys movies
of the mth genre;

• b̂jm represents the strength with which the jth movie belongs to the
mth genre.
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Examples of genres include Romance, Western, and Action.
Principal component models similar to Algorithm 12.1 are at the heart

of many recommender systems. Although the data matrices involved are
typically massive, algorithms have been developed that can exploit the high
level of missingness in order to perform efficient computations.

12.4 Clustering Methods

Clustering refers to a very broad set of techniques for finding subgroups, or
clustering

clusters, in a data set. When we cluster the observations of a data set, we
seek to partition them into distinct groups so that the observations within
each group are quite similar to each other, while observations in different
groups are quite different from each other. Of course, to make this concrete,
we must define what it means for two or more observations to be similar
or different. Indeed, this is often a domain-specific consideration that must
be made based on knowledge of the data being studied.
For instance, suppose that we have a set of n observations, each with p

features. The n observations could correspond to tissue samples for patients
with breast cancer, and the p features could correspond to measurements
collected for each tissue sample; these could be clinical measurements, such
as tumor stage or grade, or they could be gene expression measurements.
We may have a reason to believe that there is some heterogeneity among
the n tissue samples; for instance, perhaps there are a few different un-
known subtypes of breast cancer. Clustering could be used to find these
subgroups. This is an unsupervised problem because we are trying to dis-
cover structure—in this case, distinct clusters—on the basis of a data set.
The goal in supervised problems, on the other hand, is to try to predict
some outcome vector such as survival time or response to drug treatment.
Both clustering and PCA seek to simplify the data via a small number

of summaries, but their mechanisms are different:

• PCA looks to find a low-dimensional representation of the observa-
tions that explain a good fraction of the variance;

• Clustering looks to find homogeneous subgroups among the observa-
tions.

Another application of clustering arises in marketing. We may have ac-
cess to a large number of measurements (e.g. median household income,
occupation, distance from nearest urban area, and so forth) for a large
number of people. Our goal is to perform market segmentation by identify-
ing subgroups of people who might be more receptive to a particular form
of advertising, or more likely to purchase a particular product. The task of
performing market segmentation amounts to clustering the people in the
data set.
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Since clustering is popular in many fields, there exist a great number of
clustering methods. In this section we focus on perhaps the two best-known
clustering approaches: K-means clustering and hierarchical clustering. In

K-means
clustering

hierarchical
clustering

K-means clustering, we seek to partition the observations into a pre-specified
number of clusters. On the other hand, in hierarchical clustering, we do
not know in advance how many clusters we want; in fact, we end up with
a tree-like visual representation of the observations, called a dendrogram,

dendrogram
that allows us to view at once the clusterings obtained for each possible
number of clusters, from 1 to n. There are advantages and disadvantages
to each of these clustering approaches, which we highlight in this chapter.
In general, we can cluster observations on the basis of the features in

order to identify subgroups among the observations, or we can cluster fea-
tures on the basis of the observations in order to discover subgroups among
the features. In what follows, for simplicity we will discuss clustering obser-
vations on the basis of the features, though the converse can be performed
by simply transposing the data matrix.

12.4.1 K-Means Clustering

K-means clustering is a simple and elegant approach for partitioning a
data set into K distinct, non-overlapping clusters. To perform K-means
clustering, we must first specify the desired number of clusters K; then the
K-means algorithm will assign each observation to exactly one of the K
clusters. Figure 12.7 shows the results obtained from performing K-means
clustering on a simulated example consisting of 150 observations in two
dimensions, using three different values of K.
The K-means clustering procedure results from a simple and intuitive

mathematical problem. We begin by defining some notation. Let C1, . . . , CK

denote sets containing the indices of the observations in each cluster. These
sets satisfy two properties:

1. C1 ∪ C2 ∪ . . . ∪ CK = {1, . . . , n}. In other words, each observation
belongs to at least one of the K clusters.

2. Ck ∩ Ck′ = ∅ for all k ̸= k′. In other words, the clusters are non-
overlapping: no observation belongs to more than one cluster.

For instance, if the ith observation is in the kth cluster, then i ∈ Ck. The
idea behindK-means clustering is that a good clustering is one for which the
within-cluster variation is as small as possible. The within-cluster variation
for cluster Ck is a measure W (Ck) of the amount by which the observations
within a cluster differ from each other. Hence we want to solve the problem

minimize
C1,...,CK

{
K∑

k=1

W (Ck)

}
. (12.15)



518 12. Unsupervised Learning

K=2 K=3 K=4

FIGURE 12.7. A simulated data set with 150 observations in two-dimensional
space. Panels show the results of applying K-means clustering with different val-
ues of K, the number of clusters. The color of each observation indicates the clus-
ter to which it was assigned using the K-means clustering algorithm. Note that
there is no ordering of the clusters, so the cluster coloring is arbitrary. These
cluster labels were not used in clustering; instead, they are the outputs of the
clustering procedure.

In words, this formula says that we want to partition the observations into
K clusters such that the total within-cluster variation, summed over all K
clusters, is as small as possible.
Solving (12.15) seems like a reasonable idea, but in order to make it

actionable we need to define the within-cluster variation. There are many
possible ways to define this concept, but by far the most common choice
involves squared Euclidean distance. That is, we define

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2, (12.16)

where |Ck| denotes the number of observations in the kth cluster. In other
words, the within-cluster variation for the kth cluster is the sum of all of
the pairwise squared Euclidean distances between the observations in the
kth cluster, divided by the total number of observations in the kth cluster.
Combining (12.15) and (12.16) gives the optimization problem that defines
K-means clustering,

minimize
C1,...,CK

⎧
⎨

⎩

K∑

k=1

1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2

⎫
⎬

⎭ . (12.17)

Now, we would like to find an algorithm to solve (12.17)—that is, a
method to partition the observations into K clusters such that the objective
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of (12.17) is minimized. This is in fact a very difficult problem to solve
precisely, since there are almost Kn ways to partition n observations into K
clusters. This is a huge number unless K and n are tiny! Fortunately, a very
simple algorithm can be shown to provide a local optimum—a pretty good
solution—to the K-means optimization problem (12.17). This approach is
laid out in Algorithm 12.2.

Algorithm 12.2 K-Means Clustering

1. Randomly assign a number, from 1 to K, to each of the observations.
These serve as initial cluster assignments for the observations.

2. Iterate until the cluster assignments stop changing:

(a) For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for the
observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).

Algorithm 12.2 is guaranteed to decrease the value of the objective
(12.17) at each step. To understand why, the following identity is illu-
minating:

1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2 = 2

∑

i∈Ck

p∑

j=1

(xij − x̄kj)
2, (12.18)

where x̄kj = 1
|Ck|

∑
i∈Ck

xij is the mean for feature j in cluster Ck.

In Step 2(a) the cluster means for each feature are the constants that
minimize the sum-of-squared deviations, and in Step 2(b), reallocating the
observations can only improve (12.18). This means that as the algorithm
is run, the clustering obtained will continually improve until the result no
longer changes; the objective of (12.17) will never increase. When the result
no longer changes, a local optimum has been reached. Figure 12.8 shows
the progression of the algorithm on the toy example from Figure 12.7.
K-means clustering derives its name from the fact that in Step 2(a), the
cluster centroids are computed as the mean of the observations assigned to
each cluster.
Because the K-means algorithm finds a local rather than a global opti-

mum, the results obtained will depend on the initial (random) cluster as-
signment of each observation in Step 1 of Algorithm 12.2. For this reason,
it is important to run the algorithm multiple times from different random
initial configurations. Then one selects the best solution, i.e. that for which
the objective (12.17) is smallest. Figure 12.9 shows the local optima ob-
tained by running K-means clustering six times using six different initial
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Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

FIGURE 12.8. The progress of the K-means algorithm on the example of Fig-
ure 12.7 with K=3. Top left: the observations are shown. Top center: in Step 1
of the algorithm, each observation is randomly assigned to a cluster. Top right:
in Step 2(a), the cluster centroids are computed. These are shown as large col-
ored disks. Initially the centroids are almost completely overlapping because the
initial cluster assignments were chosen at random. Bottom left: in Step 2(b),
each observation is assigned to the nearest centroid. Bottom center: Step 2(a) is
once again performed, leading to new cluster centroids. Bottom right: the results
obtained after ten iterations.

cluster assignments, using the toy data from Figure 12.7. In this case, the
best clustering is the one with an objective value of 235.8.
As we have seen, to perform K-means clustering, we must decide how

many clusters we expect in the data. The problem of selecting K is far from
simple. This issue, along with other practical considerations that arise in
performing K-means clustering, is addressed in Section 12.4.3.
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320.9 235.8 235.8

235.8 235.8 310.9

FIGURE 12.9. K-means clustering performed six times on the data from Fig-
ure 12.7 with K = 3, each time with a different random assignment of the ob-
servations in Step 1 of the K-means algorithm. Above each plot is the value of
the objective (12.17). Three different local optima were obtained, one of which
resulted in a smaller value of the objective and provides better separation between
the clusters. Those labeled in red all achieved the same best solution, with an
objective value of 235.8.

12.4.2 Hierarchical Clustering

One potential disadvantage of K-means clustering is that it requires us to
pre-specify the number of clusters K. Hierarchical clustering is an alter-
native approach which does not require that we commit to a particular
choice of K. Hierarchical clustering has an added advantage over K-means
clustering in that it results in an attractive tree-based representation of the
observations, called a dendrogram.
In this section, we describe bottom-up or agglomerative clustering.

bottom-up

agglomerative
This is the most common type of hierarchical clustering, and refers to
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FIGURE 12.10. Forty-five observations generated in two-dimensional space. In
reality there are three distinct classes, shown in separate colors. However, we will
treat these class labels as unknown and will seek to cluster the observations in
order to discover the classes from the data.

the fact that a dendrogram (generally depicted as an upside-down tree; see
Figure 12.11) is built starting from the leaves and combining clusters up to
the trunk. We will begin with a discussion of how to interpret a dendrogram
and then discuss how hierarchical clustering is actually performed—that is,
how the dendrogram is built.

Interpreting a Dendrogram

We begin with the simulated data set shown in Figure 12.10, consisting of
45 observations in two-dimensional space. The data were generated from a
three-class model; the true class labels for each observation are shown in
distinct colors. However, suppose that the data were observed without the
class labels, and that we wanted to perform hierarchical clustering of the
data. Hierarchical clustering (with complete linkage, to be discussed later)
yields the result shown in the left-hand panel of Figure 12.11. How can we
interpret this dendrogram?
In the left-hand panel of Figure 12.11, each leaf of the dendrogram rep-

resents one of the 45 observations in Figure 12.10. However, as we move
up the tree, some leaves begin to fuse into branches. These correspond to
observations that are similar to each other. As we move higher up the tree,
branches themselves fuse, either with leaves or other branches. The earlier
(lower in the tree) fusions occur, the more similar the groups of observa-
tions are to each other. On the other hand, observations that fuse later
(near the top of the tree) can be quite different. In fact, this statement
can be made precise: for any two observations, we can look for the point in
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FIGURE 12.11. Left: dendrogram obtained from hierarchically clustering the
data from Figure 12.10 with complete linkage and Euclidean distance. Center:
the dendrogram from the left-hand panel, cut at a height of nine (indicated by the
dashed line). This cut results in two distinct clusters, shown in different colors.
Right: the dendrogram from the left-hand panel, now cut at a height of five. This
cut results in three distinct clusters, shown in different colors. Note that the colors
were not used in clustering, but are simply used for display purposes in this figure.

the tree where branches containing those two observations are first fused.
The height of this fusion, as measured on the vertical axis, indicates how
different the two observations are. Thus, observations that fuse at the very
bottom of the tree are quite similar to each other, whereas observations
that fuse close to the top of the tree will tend to be quite different.
This highlights a very important point in interpreting dendrograms that

is often misunderstood. Consider the left-hand panel of Figure 12.12, which
shows a simple dendrogram obtained from hierarchically clustering nine
observations. One can see that observations 5 and 7 are quite similar to
each other, since they fuse at the lowest point on the dendrogram. Obser-
vations 1 and 6 are also quite similar to each other. However, it is tempting
but incorrect to conclude from the figure that observations 9 and 2 are
quite similar to each other on the basis that they are located near each
other on the dendrogram. In fact, based on the information contained in
the dendrogram, observation 9 is no more similar to observation 2 than it
is to observations 8, 5, and 7. (This can be seen from the right-hand panel
of Figure 12.12, in which the raw data are displayed.) To put it mathe-
matically, there are 2n−1 possible reorderings of the dendrogram, where n
is the number of leaves. This is because at each of the n− 1 points where
fusions occur, the positions of the two fused branches could be swapped
without affecting the meaning of the dendrogram. Therefore, we cannot
draw conclusions about the similarity of two observations based on their
proximity along the horizontal axis. Rather, we draw conclusions about
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FIGURE 12.12. An illustration of how to properly interpret a dendrogram with
nine observations in two-dimensional space. Left: a dendrogram generated using
Euclidean distance and complete linkage. Observations 5 and 7 are quite similar
to each other, as are observations 1 and 6. However, observation 9 is no more
similar to observation 2 than it is to observations 8, 5, and 7, even though obser-
vations 9 and 2 are close together in terms of horizontal distance. This is because
observations 2, 8, 5, and 7 all fuse with observation 9 at the same height, approx-
imately 1.8. Right: the raw data used to generate the dendrogram can be used to
confirm that indeed, observation 9 is no more similar to observation 2 than it is
to observations 8, 5, and 7.

the similarity of two observations based on the location on the vertical axis
where branches containing those two observations first are fused.
Now that we understand how to interpret the left-hand panel of Fig-

ure 12.11, we can move on to the issue of identifying clusters on the basis
of a dendrogram. In order to do this, we make a horizontal cut across the
dendrogram, as shown in the center and right-hand panels of Figure 12.11.
The distinct sets of observations beneath the cut can be interpreted as clus-
ters. In the center panel of Figure 12.11, cutting the dendrogram at a height
of nine results in two clusters, shown in distinct colors. In the right-hand
panel, cutting the dendrogram at a height of five results in three clusters.
Further cuts can be made as one descends the dendrogram in order to ob-
tain any number of clusters, between 1 (corresponding to no cut) and n
(corresponding to a cut at height 0, so that each observation is in its own
cluster). In other words, the height of the cut to the dendrogram serves
the same role as the K in K-means clustering: it controls the number of
clusters obtained.
Figure 12.11 therefore highlights a very attractive aspect of hierarchical

clustering: one single dendrogram can be used to obtain any number of
clusters. In practice, people often look at the dendrogram and select by eye
a sensible number of clusters, based on the heights of the fusion and the
number of clusters desired. In the case of Figure 12.11, one might choose
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to select either two or three clusters. However, often the choice of where to
cut the dendrogram is not so clear.
The term hierarchical refers to the fact that clusters obtained by cutting

the dendrogram at a given height are necessarily nested within the clusters
obtained by cutting the dendrogram at any greater height. However, on
an arbitrary data set, this assumption of hierarchical structure might be
unrealistic. For instance, suppose that our observations correspond to a
group of men and women, evenly split among Americans, Japanese, and
French. We can imagine a scenario in which the best division into two
groups might split these people by gender, and the best division into three
groups might split them by nationality. In this case, the true clusters are
not nested, in the sense that the best division into three groups does not
result from taking the best division into two groups and splitting up one
of those groups. Consequently, this situation could not be well-represented
by hierarchical clustering. Due to situations such as this one, hierarchical
clustering can sometimes yield worse (i.e. less accurate) results than K-
means clustering for a given number of clusters.

The Hierarchical Clustering Algorithm

The hierarchical clustering dendrogram is obtained via an extremely simple
algorithm. We begin by defining some sort of dissimilarity measure between
each pair of observations. Most often, Euclidean distance is used; we will
discuss the choice of dissimilarity measure later in this chapter. The algo-
rithm proceeds iteratively. Starting out at the bottom of the dendrogram,
each of the n observations is treated as its own cluster. The two clusters
that are most similar to each other are then fused so that there now are
n−1 clusters. Next the two clusters that are most similar to each other are
fused again, so that there now are n − 2 clusters. The algorithm proceeds
in this fashion until all of the observations belong to one single cluster, and
the dendrogram is complete. Figure 12.13 depicts the first few steps of the
algorithm, for the data from Figure 12.12. To summarize, the hierarchical
clustering algorithm is given in Algorithm 12.3.

This algorithm seems simple enough, but one issue has not been ad-
dressed. Consider the bottom right panel in Figure 12.13. How did we
determine that the cluster {5, 7} should be fused with the cluster {8}?
We have a concept of the dissimilarity between pairs of observations, but
how do we define the dissimilarity between two clusters if one or both of
the clusters contains multiple observations? The concept of dissimilarity
between a pair of observations needs to be extended to a pair of groups
of observations. This extension is achieved by developing the notion of
linkage, which defines the dissimilarity between two groups of observa-

linkage
tions. The four most common types of linkage—complete, average, single,
and centroid—are briefly described in Table 12.3. Average, complete, and
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Algorithm 12.3 Hierarchical Clustering

1. Begin with n observations and a measure (such as Euclidean dis-
tance) of all the

(n
2

)
= n(n− 1)/2 pairwise dissimilarities. Treat each

observation as its own cluster.

2. For i = n, n− 1, . . . , 2:

(a) Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least dissimilar
(that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendro-
gram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among
the i− 1 remaining clusters.

Linkage Description

Complete

Maximal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the largest of these
dissimilarities.

Single

Minimal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the smallest of these
dissimilarities. Single linkage can result in extended, trailing
clusters in which single observations are fused one-at-a-time.

Average

Mean intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the average of these
dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Centroid
linkage can result in undesirable inversions.

TABLE 12.3. A summary of the four most commonly-used types of linkage in
hierarchical clustering.

single linkage are most popular among statisticians. Average and complete
linkage are generally preferred over single linkage, as they tend to yield
more balanced dendrograms. Centroid linkage is often used in genomics,
but suffers from a major drawback in that an inversion can occur, whereby

inversion
two clusters are fused at a height below either of the individual clusters in
the dendrogram. This can lead to difficulties in visualization as well as in in-
terpretation of the dendrogram. The dissimilarities computed in Step 2(b)
of the hierarchical clustering algorithm will depend on the type of linkage
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FIGURE 12.13. An illustration of the first few steps of the hierarchical
clustering algorithm, using the data from Figure 12.12, with complete linkage
and Euclidean distance. Top Left: initially, there are nine distinct clusters,
{1}, {2}, . . . , {9}. Top Right: the two clusters that are closest together, {5} and
{7}, are fused into a single cluster. Bottom Left: the two clusters that are closest
together, {6} and {1}, are fused into a single cluster. Bottom Right: the two clus-
ters that are closest together using complete linkage, {8} and the cluster {5, 7},
are fused into a single cluster.

used, as well as on the choice of dissimilarity measure. Hence, the resulting
dendrogram typically depends quite strongly on the type of linkage used,
as is shown in Figure 12.14.

Choice of Dissimilarity Measure

Thus far, the examples in this chapter have used Euclidean distance as the
dissimilarity measure. But sometimes other dissimilarity measures might
be preferred. For example, correlation-based distance considers two obser-
vations to be similar if their features are highly correlated, even though the
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Average Linkage Complete Linkage Single Linkage

FIGURE 12.14. Average, complete, and single linkage applied to an example
data set. Average and complete linkage tend to yield more balanced clusters.

observed values may be far apart in terms of Euclidean distance. This is
an unusual use of correlation, which is normally computed between vari-
ables; here it is computed between the observation profiles for each pair
of observations. Figure 12.15 illustrates the difference between Euclidean
and correlation-based distance. Correlation-based distance focuses on the
shapes of observation profiles rather than their magnitudes.
The choice of dissimilarity measure is very important, as it has a strong

effect on the resulting dendrogram. In general, careful attention should be
paid to the type of data being clustered and the scientific question at hand.
These considerations should determine what type of dissimilarity measure
is used for hierarchical clustering.
For instance, consider an online retailer interested in clustering shoppers

based on their past shopping histories. The goal is to identify subgroups
of similar shoppers, so that shoppers within each subgroup can be shown
items and advertisements that are particularly likely to interest them. Sup-
pose the data takes the form of a matrix where the rows are the shoppers
and the columns are the items available for purchase; the elements of the
data matrix indicate the number of times a given shopper has purchased a
given item (i.e. a 0 if the shopper has never purchased this item, a 1 if the
shopper has purchased it once, etc.) What type of dissimilarity measure
should be used to cluster the shoppers? If Euclidean distance is used, then
shoppers who have bought very few items overall (i.e. infrequent users of
the online shopping site) will be clustered together. This may not be desir-
able. On the other hand, if correlation-based distance is used, then shoppers
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FIGURE 12.15. Three observations with measurements on 20 variables are
shown. Observations 1 and 3 have similar values for each variable and so there
is a small Euclidean distance between them. But they are very weakly correlated,
so they have a large correlation-based distance. On the other hand, observations
1 and 2 have quite different values for each variable, and so there is a large
Euclidean distance between them. But they are highly correlated, so there is a
small correlation-based distance between them.

with similar preferences (e.g. shoppers who have bought items A and B but
never items C or D) will be clustered together, even if some shoppers with
these preferences are higher-volume shoppers than others. Therefore, for
this application, correlation-based distance may be a better choice.
In addition to carefully selecting the dissimilarity measure used, one must

also consider whether or not the variables should be scaled to have stan-
dard deviation one before the dissimilarity between the observations is
computed. To illustrate this point, we continue with the online shopping
example just described. Some items may be purchased more frequently than
others; for instance, a shopper might buy ten pairs of socks a year, but a
computer very rarely. High-frequency purchases like socks therefore tend
to have a much larger effect on the inter-shopper dissimilarities, and hence
on the clustering ultimately obtained, than rare purchases like computers.
This may not be desirable. If the variables are scaled to have standard de-
viation one before the inter-observation dissimilarities are computed, then
each variable will in effect be given equal importance in the hierarchical
clustering performed. We might also want to scale the variables to have
standard deviation one if they are measured on different scales; otherwise,
the choice of units (e.g. centimeters versus kilometers) for a particular vari-
able will greatly affect the dissimilarity measure obtained. It should come
as no surprise that whether or not it is a good decision to scale the variables
before computing the dissimilarity measure depends on the application at
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FIGURE 12.16. An eclectic online retailer sells two items: socks and comput-
ers. Left: the number of pairs of socks, and computers, purchased by eight online
shoppers is displayed. Each shopper is shown in a different color. If inter-observa-
tion dissimilarities are computed using Euclidean distance on the raw variables,
then the number of socks purchased by an individual will drive the dissimilari-
ties obtained, and the number of computers purchased will have little effect. This
might be undesirable, since (1) computers are more expensive than socks and so
the online retailer may be more interested in encouraging shoppers to buy comput-
ers than socks, and (2) a large difference in the number of socks purchased by two
shoppers may be less informative about the shoppers’ overall shopping preferences
than a small difference in the number of computers purchased. Center: the same
data are shown, after scaling each variable by its standard deviation. Now the
two products will have a comparable effect on the inter-observation dissimilarities
obtained. Right: the same data are displayed, but now the y-axis represents the
number of dollars spent by each online shopper on socks and on computers. Since
computers are much more expensive than socks, now computer purchase history
will drive the inter-observation dissimilarities obtained.

hand. An example is shown in Figure 12.16. We note that the issue of
whether or not to scale the variables before performing clustering applies
to K-means clustering as well.

12.4.3 Practical Issues in Clustering

Clustering can be a very useful tool for data analysis in the unsupervised
setting. However, there are a number of issues that arise in performing
clustering. We describe some of these issues here.

Small Decisions with Big Consequences

In order to perform clustering, some decisions must be made.
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• Should the observations or features first be standardized in some way?
For instance, maybe the variables should be scaled to have standard
deviation one.

• In the case of hierarchical clustering,

– What dissimilarity measure should be used?

– What type of linkage should be used?

– Where should we cut the dendrogram in order to obtain clusters?

• In the case of K-means clustering, how many clusters should we look
for in the data?

Each of these decisions can have a strong impact on the results obtained.
In practice, we try several different choices, and look for the one with
the most useful or interpretable solution. With these methods, there is no
single right answer—any solution that exposes some interesting aspects of
the data should be considered.

Validating the Clusters Obtained

Any time clustering is performed on a data set we will find clusters. But we
really want to know whether the clusters that have been found represent
true subgroups in the data, or whether they are simply a result of clustering
the noise. For instance, if we were to obtain an independent set of observa-
tions, then would those observations also display the same set of clusters?
This is a hard question to answer. There exist a number of techniques for
assigning a p-value to a cluster in order to assess whether there is more
evidence for the cluster than one would expect due to chance. However,
there has been no consensus on a single best approach. More details can
be found in ESL.8

Other Considerations in Clustering

Both K-means and hierarchical clustering will assign each observation to
a cluster. However, sometimes this might not be appropriate. For instance,
suppose that most of the observations truly belong to a small number of
(unknown) subgroups, and a small subset of the observations are quite
different from each other and from all other observations. Then since K-
means and hierarchical clustering force every observation into a cluster, the
clusters found may be heavily distorted due to the presence of outliers that
do not belong to any cluster. Mixture models are an attractive approach
for accommodating the presence of such outliers. These amount to a soft
version of K-means clustering, and are described in ESL.

8ESL: The Elements of Statistical Learning by Hastie, Tibshirani and Friedman.
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In addition, clustering methods generally are not very robust to pertur-
bations to the data. For instance, suppose that we cluster n observations,
and then cluster the observations again after removing a subset of the n
observations at random. One would hope that the two sets of clusters ob-
tained would be quite similar, but often this is not the case!

A Tempered Approach to Interpreting the Results of Clustering

We have described some of the issues associated with clustering. However,
clustering can be a very useful and valid statistical tool if used properly. We
mentioned that small decisions in how clustering is performed, such as how
the data are standardized and what type of linkage is used, can have a large
effect on the results. Therefore, we recommend performing clustering with
different choices of these parameters, and looking at the full set of results
in order to see what patterns consistently emerge. Since clustering can be
non-robust, we recommend clustering subsets of the data in order to get a
sense of the robustness of the clusters obtained. Most importantly, we must
be careful about how the results of a clustering analysis are reported. These
results should not be taken as the absolute truth about a data set. Rather,
they should constitute a starting point for the development of a scientific
hypothesis and further study, preferably on an independent data set.

12.5 Lab: Unsupervised Learning

12.5.1 Principal Components Analysis

In this lab, we perform PCA on the USArrests data set, which is part of
the base R package. The rows of the data set contain the 50 states, in
alphabetical order.

> states <- row.names(USArrests)

> states

The columns of the data set contain the four variables.

> names(USArrests)

[1] "Murder" "Assault" "UrbanPop" "Rape"

We first briefly examine the data. We notice that the variables have vastly
different means.

> apply(USArrests , 2, mean)

Murder Assault UrbanPop Rape

7.79 170.76 65.54 21.23

Note that the apply() function allows us to apply a function—in this case,
the mean() function—to each row or column of the data set. The second
input here denotes whether we wish to compute the mean of the rows, 1,
or the columns, 2. We see that there are on average three times as many



12.5 Lab: Unsupervised Learning 533

rapes as murders, and more than eight times as many assaults as rapes.
We can also examine the variances of the four variables using the apply()

function.

> apply(USArrests , 2, var)

Murder Assault UrbanPop Rape

19.0 6945.2 209.5 87.7

Not surprisingly, the variables also have vastly different variances: the
UrbanPop variable measures the percentage of the population in each state
living in an urban area, which is not a comparable number to the num-
ber of rapes in each state per 100,000 individuals. If we failed to scale the
variables before performing PCA, then most of the principal components
that we observed would be driven by the Assault variable, since it has by
far the largest mean and variance. Thus, it is important to standardize the
variables to have mean zero and standard deviation one before performing
PCA.
We now perform principal components analysis using the prcomp() func-

prcomp()
tion, which is one of several functions in R that perform PCA.

> pr.out <- prcomp(USArrests , scale = TRUE)

By default, the prcomp() function centers the variables to have mean zero.
By using the option scale = TRUE, we scale the variables to have standard
deviation one. The output from prcomp() contains a number of useful quan-
tities.

> names(pr.out)

[1] "sdev" "rotation" "center" "scale" "x"

The center and scale components correspond to the means and standard
deviations of the variables that were used for scaling prior to implementing
PCA.

> pr.out$center

Murder Assault UrbanPop Rape

7.79 170.76 65.54 21.23

> pr.out$scale

Murder Assault UrbanPop Rape

4.36 83.34 14.47 9.37

The rotation matrix provides the principal component loadings; each col-
umn of pr.out$rotation contains the corresponding principal component
loading vector.9

> pr.out$rotation

PC1 PC2 PC3 PC4

Murder -0.536 0.418 -0.341 0.649

9This function names it the rotation matrix, because when we matrix-multiply the
X matrix by pr.out$rotation, it gives us the coordinates of the data in the rotated
coordinate system. These coordinates are the principal component scores.



534 12. Unsupervised Learning

Assault -0.583 0.188 -0.268 -0.743

UrbanPop -0.278 -0.873 -0.378 0.134

Rape -0.543 -0.167 0.818 0.089

We see that there are four distinct principal components. This is to be
expected because there are in general min(n − 1, p) informative principal
components in a data set with n observations and p variables.
Using the prcomp() function, we do not need to explicitly multiply the

data by the principal component loading vectors in order to obtain the
principal component score vectors. Rather the 50 × 4 matrix x has as its
columns the principal component score vectors. That is, the kth column is
the kth principal component score vector.

> dim(pr.out$x)

[1] 50 4

We can plot the first two principal components as follows:

> biplot(pr.out , scale = 0)

The scale = 0 argument to biplot() ensures that the arrows are scaled to
biplot()

represent the loadings; other values for scale give slightly different biplots
with different interpretations.
Notice that this figure is a mirror image of Figure 12.1. Recall that

the principal components are only unique up to a sign change, so we can
reproduce Figure 12.1 by making a few small changes:

> pr.out$rotation = -pr.out$rotation

> pr.out$x = -pr.out$x

> biplot(pr.out , scale = 0)

The prcomp() function also outputs the standard deviation of each prin-
cipal component. For instance, on the USArrests data set, we can access
these standard deviations as follows:

> pr.out$sdev

[1] 1.575 0.995 0.597 0.416

The variance explained by each principal component is obtained by squar-
ing these:

> pr.var <- pr.out$sdev^2

> pr.var

[1] 2.480 0.990 0.357 0.173

To compute the proportion of variance explained by each principal compo-
nent, we simply divide the variance explained by each principal component
by the total variance explained by all four principal components:

> pve <- pr.var / sum(pr.var)

> pve

[1] 0.6201 0.2474 0.0891 0.0434

We see that the first principal component explains 62.0% of the variance
in the data, the next principal component explains 24.7% of the variance,
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and so forth. We can plot the PVE explained by each component, as well
as the cumulative PVE, as follows:

> par(mfrow = c(1, 2))

> plot(pve , xlab = "Principal Component",

ylab = "Proportion of Variance Explained", ylim = c(0, 1),

type = "b")

> plot(cumsum(pve), xlab = "Principal Component",

ylab = "Cumulative Proportion of Variance Explained",

ylim = c(0, 1), type = "b")

The result is shown in Figure 12.3. Note that the function cumsum() com-
cumsum()

putes the cumulative sum of the elements of a numeric vector. For instance:

> a <- c(1, 2, 8, -3)

> cumsum(a)

[1] 1 3 11 8

12.5.2 Matrix Completion

We now re-create the analysis carried out on the USArrests data in Sec-
tion 12.3. We turn the data frame into a matrix, after centering and scaling
each column to have mean zero and variance one.

> X <- data.matrix(scale(USArrests))

> pcob <- prcomp(X)

> summary(pcob)

Importance of components:

PC1 PC2 PC3 PC4

Standard deviation 1.5749 0.9949 0.59713 0.41645

Proportion of Variance 0.6201 0.2474 0.08914 0.04336

Cumulative Proportion 0.6201 0.8675 0.95664 1.00000

We see that the first principal component explains 62% of the variance.
We saw in Section 12.2.2 that solving the optimization problem (12.6)

on a centered data matrix X is equivalent to computing the first M prin-
cipal components of the data. The singular value decomposition (SVD) is

singular
value de-
composition

a general algorithm for solving (12.6).

> sX <- svd(X)

> names(sX)

[1] "d" "u" "v"

> round(sX$v, 3)

[,1] [,2] [,3] [,4]

[1,] -0.536 0.418 -0.341 0.649

[2,] -0.583 0.188 -0.268 -0.743

[3,] -0.278 -0.873 -0.378 0.134

[4,] -0.543 -0.167 0.818 0.089

The svd() function returns three components, u, d, and v. The matrix v
svd()

is equivalent to the loading matrix from principal components (up to an
unimportant sign flip).
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> pcob$rotation

PC1 PC2 PC3 PC4

Murder -0.536 0.418 -0.341 0.649

Assault -0.583 0.188 -0.268 -0.743

UrbanPop -0.278 -0.873 -0.378 0.134

Rape -0.543 -0.167 0.818 0.089

The matrix u is equivalent to the matrix of standardized scores, and the
standard deviations are in the vector d. We can recover the score vectors
using the output of svd(). They are identical to the score vectors output
by prcomp().

> t(sX$d * t(sX$u))

[,1] [,2] [,3] [,4]

[1,] -0.976 1.122 -0.440 0.155

[2,] -1.931 1.062 2.020 -0.434

[3,] -1.745 -0.738 0.054 -0.826

[4,] 0.140 1.109 0.113 -0.182

[5,] -2.499 -1.527 0.593 -0.339

...

> pcob$x

PC1 PC2 PC3 PC4

Alabama -0.976 1.122 -0.440 0.155

Alaska -1.931 1.062 2.020 -0.434

Arizona -1.745 -0.738 0.054 -0.826

Arkansas 0.140 1.109 0.113 -0.182

California -2.499 -1.527 0.593 -0.339

...

While it would be possible to carry out this lab using the prcomp() function,
here we use the svd() function in order to illustrate its use.
We now omit 20 entries in the 50 × 2 data matrix at random. We do

so by first selecting 20 rows (states) at random, and then selecting one of
the four entries in each row at random. This ensures that every row has at
least three observed values.

> nomit <- 20

> set.seed (15)

> ina <- sample(seq (50), nomit)

> inb <- sample (1:4, nomit , replace = TRUE)

> Xna <- X

> index.na <- cbind(ina , inb)

> Xna[index.na] <- NA

Here, ina contains 20 integers from 1 to 50; this represents the states that
are selected to contain missing values. And inb contains 20 integers from
1 to 4, representing the features that contain the missing values for each
of the selected states. To perform the final indexing, we create index.na,
a two-column matrix whose columns are ina and inb. We have indexed a
matrix with a matrix of indices!
We now write some code to implement Algorithm 12.1. We first write a

function that takes in a matrix, and returns an approximation to the matrix
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using the svd() function. This will be needed in Step 2 of Algorithm 12.1.
As mentioned earlier, we could do this using the prcomp() function, but
instead we use the svd() function for illustration.

> fit.svd <- function(X, M = 1) {

+ svdob <- svd(X)

+ with(svdob ,

u[, 1:M, drop = FALSE] %*%

(d[1:M] * t(v[, 1:M, drop = FALSE ]))

)

+ }

Here, we did not bother to explicitly call the return() function to return
a value from fit.svd(); however, the computed quantity is automatically
returned by R. We use the with() function to make it a little easier to index
the elements of svdob. As an alternative to using with(), we could have
written

svdob$u[, 1:M, drop = FALSE] %*%

(svdob$d[1:M]*t(svdob$v[, 1:M, drop = FALSE]))

inside the fit.svd() function.
To conduct Step 1 of the algorithm, we initialize Xhat — this is X̃ in

Algorithm 12.1 — by replacing the missing values with the column means
of the non-missing entries.

> Xhat <- Xna

> xbar <- colMeans(Xna , na.rm = TRUE)

> Xhat[index.na] <- xbar[inb]

Before we begin Step 2, we set ourselves up to measure the progress of
our iterations:

> thresh <- 1e-7

> rel_err <- 1

> iter <- 0

> ismiss <- is.na(Xna)

> mssold <- mean(( scale(Xna , xbar , FALSE)[! ismiss ])^2)

> mss0 <- mean(Xna[! ismiss ]^2)

Here ismiss is a new logical matrix with the same dimensions as Xna; a
given element equals TRUE if the corresponding matrix element is missing.
This is useful because it allows us to access both the missing and non-
missing entries. We store the mean of the squared non-missing elements
in mss0. We store the mean squared error of the non-missing elements of
the old version of Xhat in mssold. We plan to store the mean squared error
of the non-missing elements of the current version of Xhat in mss, and will
then iterate Step 2 of Algorithm 12.1 until the relative error, defined as
(mssold - mss) / mss0, falls below thresh = 1e-7.10

10Algorithm 12.1 tells us to iterate Step 2 until (12.14) is no longer decreasing. Deter-
mining whether (12.14) is decreasing requires us only to keep track of mssold - mss.
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In Step 2(a) of Algorithm 12.1, we approximate Xhat using fit.svd();
we call this Xapp. In Step 2(b), we use Xapp to update the estimates for
elements in Xhat that are missing in Xna. Finally, in Step 2(c), we compute
the relative error. These three steps are contained in this while() loop:

> while(rel_err > thresh) {

+ iter <- iter + 1

+ # Step 2(a)

+ Xapp <- fit.svd(Xhat , M = 1)

+ # Step 2(b)

+ Xhat[ismiss] <- Xapp[ismiss]

+ # Step 2(c)

+ mss <- mean (((Xna - Xapp)[! ismiss ])^2)

+ rel_err <- (mssold - mss) / mss0

+ mssold <- mss

+ cat("Iter:", iter , "MSS:", mss ,

+ "Rel. Err:", rel_err , "\n")

+ }

Iter: 1 MSS: 0.3822 Rel. Err: 0.6194

Iter: 2 MSS: 0.3705 Rel. Err: 0.0116

Iter: 3 MSS: 0.3693 Rel. Err: 0.0012

Iter: 4 MSS: 0.3691 Rel. Err: 0.0002

Iter: 5 MSS: 0.3691 Rel. Err: 2.1992e-05

Iter: 6 MSS: 0.3691 Rel. Err: 3.3760e-06

Iter: 7 MSS: 0.3691 Rel. Err: 5.4651e-07

Iter: 8 MSS: 0.3691 Rel. Err: 9.2531e-08

We see that after eight iterations, the relative error has fallen below thresh

= 1e-7, and so the algorithm terminates. When this happens, the mean
squared error of the non-missing elements equals 0.369.
Finally, we compute the correlation between the 20 imputed values and

the actual values:

> cor(Xapp[ismiss], X[ismiss ])

[1] 0.6535

In this lab, we implemented Algorithm 12.1 ourselves for didactic pur-
poses. However, a reader who wishes to apply matrix completion to their
data should use the softImpute package on CRAN, which provides a very

softImpute
efficient implementation of a generalization of this algorithm.

12.5.3 Clustering

K-Means Clustering

The function kmeans() performs K-means clustering in R. We begin with
kmeans()

a simple simulated example in which there truly are two clusters in the

However, in practice, we keep track of (mssold - mss) / mss0 instead: this makes
it so that the number of iterations required for Algorithm 12.1 to converge does not
depend on whether we multiplied the raw data X by a constant factor.
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data: the first 25 observations have a mean shift relative to the next 25
observations.

> set.seed (2)

> x <- matrix(rnorm (50 * 2), ncol = 2)

> x[1:25 , 1] <- x[1:25 , 1] + 3

> x[1:25 , 2] <- x[1:25 , 2] - 4

We now perform K-means clustering with K = 2.

> km.out <- kmeans(x, 2, nstart = 20)

The cluster assignments of the 50 observations are contained in
km.out$cluster.

> km.out$cluster

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

[29] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

The K-means clustering perfectly separated the observations into two clus-
ters even though we did not supply any group information to kmeans(). We
can plot the data, with each observation colored according to its cluster
assignment.

> par(mfrow = c(1, 2))

> plot(x, col = (km.out$cluster + 1),

main = "K-Means Clustering Results with K = 2",

xlab = "", ylab = "", pch = 20, cex = 2)

Here the observations can be easily plotted because they are two-dimensional.
If there were more than two variables then we could instead perform PCA
and plot the first two principal components score vectors.
In this example, we knew that there really were two clusters because

we generated the data. However, for real data, in general we do not know
the true number of clusters. We could instead have performed K-means
clustering on this example with K = 3.

> set.seed (4)

> km.out <- kmeans(x, 3, nstart = 20)

> km.out

K-means clustering with 3 clusters of sizes 17, 23, 10

Cluster means:

[,1] [,2]

1 3.7790 -4.5620

2 -0.3820 -0.0874

3 2.3002 -2.6962

Clustering vector:

[1] 1 3 1 3 1 1 1 3 1 3 1 3 1 3 1 3 1 1 1 1 1 3 1 1 1 2 2 2

[29] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 2 2 2

Within cluster sum of squares by cluster:

[1] 25.7409 52.6770 19.5614

(between_SS / total_SS = 79.3 %)

Available components:
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[1] "cluster" "centers" "totss"

[4] "withinss" "tot.withinss" "betweenss"

[7] "size" "iter" "ifault"

> plot(x, col = (km.out$cluster + 1),

main = "K-Means Clustering Results with K = 3",

xlab = "", ylab = "", pch = 20, cex = 2)

When K = 3, K-means clustering splits up the two clusters.
To run the kmeans() function in R with multiple initial cluster assign-

ments, we use the nstart argument. If a value of nstart greater than one
is used, then K-means clustering will be performed using multiple random
assignments in Step 1 of Algorithm 12.2, and the kmeans() function will
report only the best results. Here we compare using nstart = 1 to nstart

= 20.

> set.seed (4)

> km.out <- kmeans(x, 3, nstart = 1)

> km.out$tot.withinss

[1] 104.3319

> km.out <- kmeans(x, 3, nstart = 20)

> km.out$tot.withinss

[1] 97.9793

Note that km.out$tot.withinss is the total within-cluster sum of squares,
which we seek to minimize by performing K-means clustering (Equation
12.17). The individual within-cluster sum-of-squares are contained in the
vector km.out$withinss.
We strongly recommend always running K-means clustering with a large

value of nstart, such as 20 or 50, since otherwise an undesirable local
optimum may be obtained.
When performing K-means clustering, in addition to using multiple ini-

tial cluster assignments, it is also important to set a random seed using the
set.seed() function. This way, the initial cluster assignments in Step 1 can
be replicated, and the K-means output will be fully reproducible.

Hierarchical Clustering

The hclust() function implements hierarchical clustering in R. In the fol-
hclust()

lowing example we use the data from the previous lab to plot the hierar-
chical clustering dendrogram using complete, single, and average linkage
clustering, with Euclidean distance as the dissimilarity measure. We begin
by clustering observations using complete linkage. The dist() function is

dist()
used to compute the 50× 50 inter-observation Euclidean distance matrix.

> hc.complete <- hclust(dist(x), method = "complete")

We could just as easily perform hierarchical clustering with average or
single linkage instead:

> hc.average <- hclust(dist(x), method = "average")

> hc.single <- hclust(dist(x), method = "single")

We can now plot the dendrograms obtained using the usual plot() function.
The numbers at the bottom of the plot identify each observation.



12.5 Lab: Unsupervised Learning 541

> par(mfrow = c(1, 3))

> plot(hc.complete , main = "Complete Linkage",

xlab = "", sub = "", cex = .9)

> plot(hc.average , main = "Average Linkage",

xlab = "", sub = "", cex = .9)

> plot(hc.single , main = "Single Linkage",

xlab = "", sub = "", cex = .9)

To determine the cluster labels for each observation associated with a
given cut of the dendrogram, we can use the cutree() function:

cutree()

> cutree(hc.complete , 2)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

[30] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

> cutree(hc.average , 2)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

[30] 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2

> cutree(hc.single , 2)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

[30] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The second argument to cutree() is the number of clusters we wish to
obtain. For this data, complete and average linkage generally separate the
observations into their correct groups. However, single linkage identifies one
point as belonging to its own cluster. A more sensible answer is obtained
when four clusters are selected, although there are still two singletons.

> cutree(hc.single , 4)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 3 3 3

[30] 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3

To scale the variables before performing hierarchical clustering of the
observations, we use the scale() function:

scale()

> xsc <- scale(x)

> plot(hclust(dist(xsc), method = "complete"),

main = "Hierarchical Clustering with Scaled Features")

Correlation-based distance can be computed using the as.dist() func-
as.dist()

tion, which converts an arbitrary square symmetric matrix into a form that
the hclust() function recognizes as a distance matrix. However, this only
makes sense for data with at least three features since the absolute corre-
lation between any two observations with measurements on two features is
always 1. Hence, we will cluster a three-dimensional data set. This data set
does not contain any true clusters.

> x <- matrix(rnorm (30 * 3), ncol = 3)

> dd <- as.dist(1 - cor(t(x)))

> plot(hclust(dd, method = "complete"),

main = "Complete Linkage with Correlation -Based Distance",

xlab = "", sub = "")
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12.5.4 NCI60 Data Example

Unsupervised techniques are often used in the analysis of genomic data.
In particular, PCA and hierarchical clustering are popular tools. We illus-
trate these techniques on the NCI60 cancer cell line microarray data, which
consists of 6,830 gene expression measurements on 64 cancer cell lines.

> library(ISLR2)

> nci.labs <- NCI60$labs

> nci.data <- NCI60$data

Each cell line is labeled with a cancer type, given in nci.labs. We do not
make use of the cancer types in performing PCA and clustering, as these
are unsupervised techniques. But after performing PCA and clustering, we
will check to see the extent to which these cancer types agree with the
results of these unsupervised techniques.
The data has 64 rows and 6,830 columns.

> dim(nci.data)

[1] 64 6830

We begin by examining the cancer types for the cell lines.

> nci.labs [1:4]

[1] "CNS" "CNS" "CNS" "RENAL"

> table(nci.labs)

nci.labs

BREAST CNS COLON K562A -repro K562B -repro

7 5 7 1 1

LEUKEMIA MCF7A -repro MCF7D -repro MELANOMA NSCLC

6 1 1 8 9

OVARIAN PROSTATE RENAL UNKNOWN

6 2 9 1

PCA on the NCI60 Data

We first perform PCA on the data after scaling the variables (genes) to
have standard deviation one, although one could reasonably argue that it
is better not to scale the genes.

> pr.out <- prcomp(nci.data , scale = TRUE)

We now plot the first few principal component score vectors, in order to
visualize the data. The observations (cell lines) corresponding to a given
cancer type will be plotted in the same color, so that we can see to what
extent the observations within a cancer type are similar to each other. We
first create a simple function that assigns a distinct color to each element
of a numeric vector. The function will be used to assign a color to each of
the 64 cell lines, based on the cancer type to which it corresponds.

> Cols <- function(vec) {

+ cols <- rainbow(length(unique(vec)))

+ return(cols[as.numeric(as.factor(vec))])

+ }
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FIGURE 12.17. Projections of the NCI60 cancer cell lines onto the first three
principal components (in other words, the scores for the first three principal com-
ponents). On the whole, observations belonging to a single cancer type tend to
lie near each other in this low-dimensional space. It would not have been possible
to visualize the data without using a dimension reduction method such as PCA,
since based on the full data set there are

(
6,830

2

)
possible scatterplots, none of

which would have been particularly informative.

Note that the rainbow() function takes as its argument a positive integer,
rainbow()

and returns a vector containing that number of distinct colors. We now can
plot the principal component score vectors.

> par(mfrow = c(1, 2))

> plot(pr.out$x[, 1:2], col = Cols(nci.labs), pch = 19,

xlab = "Z1", ylab = "Z2")

> plot(pr.out$x[, c(1, 3)], col = Cols(nci.labs), pch = 19,

xlab = "Z1", ylab = "Z3")

The resulting plots are shown in Figure 12.17. On the whole, cell lines
corresponding to a single cancer type do tend to have similar values on the
first few principal component score vectors. This indicates that cell lines
from the same cancer type tend to have pretty similar gene expression
levels.
We can obtain a summary of the proportion of variance explained (PVE)

of the first few principal components using the summary() method for a
prcomp object (we have truncated the printout):

> summary(pr.out)

Importance of components:

PC1 PC2 PC3 PC4 PC5

Standard deviation 27.853 21.4814 19.8205 17.0326 15.9718

Proportion of Variance 0.114 0.0676 0.0575 0.0425 0.0374

Cumulative Proportion 0.114 0.1812 0.2387 0.2812 0.3185

Using the plot() function, we can also plot the variance explained by the
first few principal components.

> plot(pr.out)
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FIGURE 12.18. The PVE of the principal components of the NCI60 cancer cell
line microarray data set. Left: the PVE of each principal component is shown.
Right: the cumulative PVE of the principal components is shown. Together, all
principal components explain 100% of the variance.

Note that the height of each bar in the bar plot is given by squaring the
corresponding element of pr.out$sdev. However, it is more informative to
plot the PVE of each principal component (i.e. a scree plot) and the cu-
mulative PVE of each principal component. This can be done with just a
little work.

> pve <- 100 * pr.out$sdev^2 / sum(pr.out$sdev ^2)

> par(mfrow = c(1, 2))

> plot(pve , type = "o", ylab = "PVE",

xlab = "Principal Component", col = "blue")

> plot(cumsum(pve), type = "o", ylab = "Cumulative PVE",

xlab = "Principal Component", col = "brown3")

(Note that the elements of pve can also be computed directly from the sum-
mary, summary(pr.out)$importance[2, ], and the elements of cumsum(pve)

are given by summary(pr.out)$importance[3, ].) The resulting plots are
shown in Figure 12.18. We see that together, the first seven principal com-
ponents explain around 40% of the variance in the data. This is not a huge
amount of the variance. However, looking at the scree plot, we see that
while each of the first seven principal components explain a substantial
amount of variance, there is a marked decrease in the variance explained
by further principal components. That is, there is an elbow in the plot
after approximately the seventh principal component. This suggests that
there may be little benefit to examining more than seven or so principal
components (though even examining seven principal components may be
difficult).

Clustering the Observations of the NCI60 Data

We now proceed to hierarchically cluster the cell lines in the NCI60 data,
with the goal of finding out whether or not the observations cluster into
distinct types of cancer. To begin, we standardize the variables to have
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mean zero and standard deviation one. As mentioned earlier, this step is
optional and should be performed only if we want each gene to be on the
same scale.

> sd.data <- scale(nci.data)

We now perform hierarchical clustering of the observations using complete,
single, and average linkage. Euclidean distance is used as the dissimilarity
measure.

> par(mfrow = c(1, 3))

> data.dist <- dist(sd.data)

> plot(hclust(data.dist), xlab = "", sub = "", ylab = "",

labels = nci.labs , main = "Complete Linkage")

> plot(hclust(data.dist , method = "average"),

labels = nci.labs , main = "Average Linkage",

xlab = "", sub = "", ylab = "")

> plot(hclust(data.dist , method = "single"),

labels = nci.labs , main = "Single Linkage",

xlab = "", sub = "", ylab = "")

The results are shown in Figure 12.19. We see that the choice of linkage
certainly does affect the results obtained. Typically, single linkage will tend
to yield trailing clusters: very large clusters onto which individual observa-
tions attach one-by-one. On the other hand, complete and average linkage
tend to yield more balanced, attractive clusters. For this reason, complete
and average linkage are generally preferred to single linkage. Clearly cell
lines within a single cancer type do tend to cluster together, although the
clustering is not perfect. We will use complete linkage hierarchical cluster-
ing for the analysis that follows.
We can cut the dendrogram at the height that will yield a particular

number of clusters, say four:

> hc.out <- hclust(dist(sd.data))

> hc.clusters <- cutree(hc.out , 4)

> table(hc.clusters , nci.labs)

There are some clear patterns. All the leukemia cell lines fall in cluster 3,
while the breast cancer cell lines are spread out over three different clusters.
We can plot the cut on the dendrogram that produces these four clusters:

> par(mfrow = c(1, 1))

> plot(hc.out , labels = nci.labs)

> abline(h = 139, col = "red")

The abline() function draws a straight line on top of any existing plot
in R. The argument h = 139 plots a horizontal line at height 139 on the
dendrogram; this is the height that results in four distinct clusters. It is easy
to verify that the resulting clusters are the same as the ones we obtained
using cutree(hc.out, 4).
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FIGURE 12.19. The NCI60 cancer cell line microarray data, clustered with av-
erage, complete, and single linkage, and using Euclidean distance as the dissim-
ilarity measure. Complete and average linkage tend to yield evenly sized clusters
whereas single linkage tends to yield extended clusters to which single leaves are
fused one by one.
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Printing the output of hclust gives a useful brief summary of the object:

> hc.out

Call:

hclust(d = dist(sd.data))

Cluster method : complete

Distance : euclidean

Number of objects: 64

We claimed earlier in Section 12.4.2 that K-means clustering and hier-
archical clustering with the dendrogram cut to obtain the same number
of clusters can yield very different results. How do these NCI60 hierarchical
clustering results compare to what we get if we perform K-means clustering
with K = 4?

> set.seed (2)

> km.out <- kmeans(sd.data, 4, nstart = 20)

> km.clusters <- km.out$cluster

> table(km.clusters , hc.clusters)

hc.clusters

km.clusters 1 2 3 4

1 11 0 0 9

2 20 7 0 0

3 9 0 0 0

4 0 0 8 0

We see that the four clusters obtained using hierarchical clustering and K-
means clustering are somewhat different. Cluster 4 in K-means clustering is
identical to cluster 3 in hierarchical clustering. However, the other clusters
differ: for instance, cluster 2 in K-means clustering contains a portion of
the observations assigned to cluster 1 by hierarchical clustering, as well as
all of the observations assigned to cluster 2 by hierarchical clustering.
Rather than performing hierarchical clustering on the entire data matrix,

we can simply perform hierarchical clustering on the first few principal
component score vectors, as follows:

> hc.out <- hclust(dist(pr.out$x[, 1:5]))

> plot(hc.out , labels = nci.labs ,

main = "Hier. Clust. on First Five Score Vectors")

> table(cutree(hc.out , 4), nci.labs)

Not surprisingly, these results are different from the ones that we obtained
when we performed hierarchical clustering on the full data set. Sometimes
performing clustering on the first few principal component score vectors
can give better results than performing clustering on the full data. In this
situation, we might view the principal component step as one of denois-
ing the data. We could also perform K-means clustering on the first few
principal component score vectors rather than the full data set.
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12.6 Exercises

Conceptual

1. This problem involves the K-means clustering algorithm.

(a) Prove (12.18).

(b) On the basis of this identity, argue that the K-means clustering
algorithm (Algorithm 12.2) decreases the objective (12.17) at
each iteration.

2. Suppose that we have four observations, for which we compute a
dissimilarity matrix, given by

⎡

⎢⎢⎣

0.3 0.4 0.7
0.3 0.5 0.8
0.4 0.5 0.45
0.7 0.8 0.45

⎤

⎥⎥⎦ .

For instance, the dissimilarity between the first and second obser-
vations is 0.3, and the dissimilarity between the second and fourth
observations is 0.8.

(a) On the basis of this dissimilarity matrix, sketch the dendrogram
that results from hierarchically clustering these four observa-
tions using complete linkage. Be sure to indicate on the plot the
height at which each fusion occurs, as well as the observations
corresponding to each leaf in the dendrogram.

(b) Repeat (a), this time using single linkage clustering.

(c) Suppose that we cut the dendrogram obtained in (a) such that
two clusters result. Which observations are in each cluster?

(d) Suppose that we cut the dendrogram obtained in (b) such that
two clusters result. Which observations are in each cluster?

(e) It is mentioned in the chapter that at each fusion in the den-
drogram, the position of the two clusters being fused can be
swapped without changing the meaning of the dendrogram. Draw
a dendrogram that is equivalent to the dendrogram in (a), for
which two or more of the leaves are repositioned, but for which
the meaning of the dendrogram is the same.

3. In this problem, you will perform K-means clustering manually, with
K = 2, on a small example with n = 6 observations and p = 2
features. The observations are as follows.
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Obs. X1 X2

1 1 4
2 1 3
3 0 4
4 5 1
5 6 2
6 4 0

(a) Plot the observations.

(b) Randomly assign a cluster label to each observation. You can
use the sample() command in R to do this. Report the cluster
labels for each observation.

(c) Compute the centroid for each cluster.

(d) Assign each observation to the centroid to which it is closest, in
terms of Euclidean distance. Report the cluster labels for each
observation.

(e) Repeat (c) and (d) until the answers obtained stop changing.

(f) In your plot from (a), color the observations according to the
cluster labels obtained.

4. Suppose that for a particular data set, we perform hierarchical clus-
tering using single linkage and using complete linkage. We obtain two
dendrograms.

(a) At a certain point on the single linkage dendrogram, the clus-
ters {1, 2, 3} and {4, 5} fuse. On the complete linkage dendro-
gram, the clusters {1, 2, 3} and {4, 5} also fuse at a certain point.
Which fusion will occur higher on the tree, or will they fuse at
the same height, or is there not enough information to tell?

(b) At a certain point on the single linkage dendrogram, the clusters
{5} and {6} fuse. On the complete linkage dendrogram, the clus-
ters {5} and {6} also fuse at a certain point. Which fusion will
occur higher on the tree, or will they fuse at the same height, or
is there not enough information to tell?

5. In words, describe the results that you would expect if you performed
K-means clustering of the eight shoppers in Figure 12.16, on the
basis of their sock and computer purchases, with K = 2. Give three
answers, one for each of the variable scalings displayed. Explain.

6. We saw in Section 12.2.2 that the principal component loading and
score vectors provide an approximation to a matrix, in the sense of
(12.5). Specifically, the principal component score and loading vectors
solve the optimization problem given in (12.6).
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Now, suppose that theM principal component score vectors zim, m =
1, . . . ,M , are known. Using (12.6), explain that the first M princi-
pal component loading vectors φjm, m = 1, . . . ,M , can be obtaining
by performing M separate least squares linear regressions. In each
regression, the principal component score vectors are the predictors,
and one of the features of the data matrix is the response.

Applied

7. In the chapter, we mentioned the use of correlation-based distance
and Euclidean distance as dissimilarity measures for hierarchical clus-
tering. It turns out that these two measures are almost equivalent: if
each observation has been centered to have mean zero and standard
deviation one, and if we let rij denote the correlation between the ith
and jth observations, then the quantity 1− rij is proportional to the
squared Euclidean distance between the ith and jth observations.

On the USArrests data, show that this proportionality holds.

Hint: The Euclidean distance can be calculated using the dist() func-
tion, and correlations can be calculated using the cor() function.

8. In Section 12.2.3, a formula for calculating PVE was given in Equa-
tion 12.10. We also saw that the PVE can be obtained using the sdev

output of the prcomp() function.

On the USArrests data, calculate PVE in two ways:

(a) Using the sdev output of the prcomp() function, as was done in
Section 12.2.3.

(b) By applying Equation 12.10 directly. That is, use the prcomp()

function to compute the principal component loadings. Then,
use those loadings in Equation 12.10 to obtain the PVE.

These two approaches should give the same results.

Hint: You will only obtain the same results in (a) and (b) if the same
data is used in both cases. For instance, if in (a) you performed
prcomp() using centered and scaled variables, then you must center
and scale the variables before applying Equation 12.10 in (b).

9. Consider the USArrests data. We will now perform hierarchical clus-
tering on the states.

(a) Using hierarchical clustering with complete linkage and
Euclidean distance, cluster the states.

(b) Cut the dendrogram at a height that results in three distinct
clusters. Which states belong to which clusters?
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(c) Hierarchically cluster the states using complete linkage and Eu-
clidean distance, after scaling the variables to have standard de-
viation one.

(d) What effect does scaling the variables have on the hierarchical
clustering obtained? In your opinion, should the variables be
scaled before the inter-observation dissimilarities are computed?
Provide a justification for your answer.

10. In this problem, you will generate simulated data, and then perform
PCA and K-means clustering on the data.

(a) Generate a simulated data set with 20 observations in each of
three classes (i.e. 60 observations total), and 50 variables.

Hint: There are a number of functions in R that you can use to
generate data. One example is the rnorm() function; runif() is
another option. Be sure to add a mean shift to the observations
in each class so that there are three distinct classes.

(b) Perform PCA on the 60 observations and plot the first two prin-
cipal component score vectors. Use a different color to indicate
the observations in each of the three classes. If the three classes
appear separated in this plot, then continue on to part (c). If
not, then return to part (a) and modify the simulation so that
there is greater separation between the three classes. Do not
continue to part (c) until the three classes show at least some
separation in the first two principal component score vectors.

(c) Perform K-means clustering of the observations with K = 3.
How well do the clusters that you obtained in K-means cluster-
ing compare to the true class labels?

Hint: You can use the table() function in R to compare the true
class labels to the class labels obtained by clustering. Be careful
how you interpret the results: K-means clustering will arbitrarily
number the clusters, so you cannot simply check whether the true
class labels and clustering labels are the same.

(d) Perform K-means clustering with K = 2. Describe your results.

(e) Now perform K-means clustering with K = 4, and describe your
results.

(f) Now perform K-means clustering with K = 3 on the first two
principal component score vectors, rather than on the raw data.
That is, perform K-means clustering on the 60 × 2 matrix of
which the first column is the first principal component score
vector, and the second column is the second principal component
score vector. Comment on the results.
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(g) Using the scale() function, perform K-means clustering with
K = 3 on the data after scaling each variable to have standard
deviation one. How do these results compare to those obtained
in (b)? Explain.

11. Write an R function to perform matrix completion as in Algorithm 12.1,
and as outlined in Section 12.5.2. In each iteration, the function
should keep track of the relative error, as well as the iteration count.
Iterations should continue until the relative error is small enough or
until some maximum number of iterations is reached (set a default
value for this maximum number). Furthermore, there should be an
option to print out the progress in each iteration.

Test your function on the Boston data. First, standardize the features
to have mean zero and standard deviation one using the scale() func-
tion. Run an experiment where you randomly leave out an increasing
(and nested) number of observations from 5% to 30%, in steps of
5%. Apply Algorithm 12.1 with M = 1, 2, . . . , 8. Display the approx-
imation error as a function of the fraction of observations that are
missing, and the value of M , averaged over 10 repetitions of the ex-
periment.

12. In Section 12.5.2, Algorithm 12.1 was implemented using the svd()

function. However, given the connection between the svd() function
and the prcomp() function highlighted in the lab, we could have in-
stead implemented the algorithm using prcomp().

Write a function to implement Algorithm 12.1 that makes use of
prcomp() rather than svd().

13. On the book website, www.statlearning.com, there is a gene expres-
sion data set (Ch12Ex13.csv) that consists of 40 tissue samples with
measurements on 1,000 genes. The first 20 samples are from healthy
patients, while the second 20 are from a diseased group.

(a) Load in the data using read.csv(). You will need to select
header = F.

(b) Apply hierarchical clustering to the samples using correlation-
based distance, and plot the dendrogram. Do the genes separate
the samples into the two groups? Do your results depend on the
type of linkage used?

(c) Your collaborator wants to know which genes differ the most
across the two groups. Suggest a way to answer this question,
and apply it here.



13
Multiple Testing

Thus far, this textbook has mostly focused on estimation and its close
cousin, prediction. In this chapter, we instead focus on hypothesis testing,
which is key to conducting inference. We remind the reader that inference
was briefly discussed in Chapter 2.
While Section 13.1 provides a brief review of null hypotheses, p-values,

test statistics, and other key ideas in hypothesis testing, this chapter as-
sumes that the reader has had previous exposure to these topics. In par-
ticular, we will not focus on why or how to conduct a hypothesis test —
a topic on which entire books can be (and have been) written! Instead, we
will assume that the reader is interested in testing some particular set of
null hypotheses, and has a specific plan in mind for how to conduct the
tests and obtain p-values.
Much of the emphasis in classical statistics focuses on testing a single null

hypothesis, such as H0: the mean blood pressure of mice in the control group
equals the mean blood pressure of mice in the treatment group. Of course,
we would probably like to discover that there is a difference between the
mean blood pressure in the two groups. But for reasons that will become
clear, we construct a null hypothesis corresponding to no difference.
In contemporary settings, we are often faced with huge amounts of data,

and consequently may wish to test a great many null hypotheses. For in-
stance, rather than simply testing H0, we might want to test m null hy-
potheses, H01, . . . ,H0m, where H0j: the mean value of the jth biomarker
among mice in the control group equals the mean value of the jth biomarker
among mice in the treatment group. When conducting multiple testing, we
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need to be very careful about how we interpret the results, in order to avoid
erroneously rejecting far too many null hypotheses.
This chapter discusses classical as well as more contemporary ways to

conduct multiple testing in a big-data setting. In Section 13.2, we highlight
the challenges associated with multiple testing. Classical solutions to these
challenges are presented in Section 13.3, and more contemporary solutions
in Sections 13.4 and 13.5.
In particular, Section 13.4 focuses on the false discovery rate. The no-

tion of the false discovery rate dates back to the 1990s. It quickly rose in
popularity in the early 2000s, when large-scale data sets began to come out
of genomics. These datasets were unique not only because of their large
size,1 but also because they were typically collected for exploratory pur-
poses: researchers collected these datasets in order to test a huge number
of null hypotheses, rather than just a very small number of pre-specified
null hypotheses. Today, of course, huge datasets are collected without a
pre-specified null hypothesis across virtually all fields. As we will see, the
false discovery rate is perfectly-suited for this modern-day reality.
This chapter naturally centers upon p-values, which are a classical ap-

proach in statistics to quantify the results of a hypothesis test. At the time
of writing of this book (2020), p-values have recently been the topic of
extensive commentary in the social science research community, to the ex-
tent that some social science journals have gone so far as to ban the use
of p-values altogether! We will simply comment that when properly under-
stood and applied, p-values provide a powerful tool for drawing inferential
conclusions from our data.

13.1 A Quick Review of Hypothesis Testing

Hypothesis tests provide a rigorous statistical framework for answering
simple “yes-or-no” questions about data, such as the following:

1. Is the coefficient βj in a linear regression of Y onto X1, . . . , Xp equal
to zero?2

2. Is there a difference in the mean blood pressure of laboratory mice in
the control group and laboratory mice in the treatment group?3

1Microarray data was viewed as “big data” at the time, although by today’s stan-
dards, this label seems quaint: a microarray dataset can be (and typically was) stored
in a Microsoft Excel spreadsheet!

2This hypothesis test was discussed on page 67 of Chapter 3.
3The “treatment group” refers to the set of mice that receive an experimental treat-

ment, and the “control group” refers to those that do not.
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In Section 13.1.1, we briefly review the steps involved in hypothesis test-
ing. Section 13.1.2 discusses the different types of mistakes, or errors, that
can occur in hypothesis testing.

13.1.1 Testing a Hypothesis

Conducting a hypothesis test typically proceeds in four steps. First, we de-
fine the null and alternative hypotheses. Next, we construct a test statistic
that summarizes the strength of evidence against the null hypothesis. We
then compute a p-value that quantifies the probability of having obtained
a comparable or more extreme value of the test statistic under the null
hypothesis. Finally, based on the p-value, we decide whether to reject the
null hypothesis. We now briefly discuss each of these steps in turn.

Step 1: Define the Null and Alternative Hypotheses

In hypothesis testing, we divide the world into two possibilities: the null
hypothesis and the alternative hypothesis. The null hypothesis, denoted H0, null

hypothesis

alternative
hypothesis

is the default state of belief about the world4. For instance, null hypotheses
associated with the two questions posed earlier in this chapter are as follows:

1. The coefficient βj in a linear regression of Y onto X1, . . . , Xp equals
zero.

2. There is no difference between the mean blood pressure of mice in
the control and treatment groups.

The null hypothesis is boring by construction: it may well be true, but we
might hope that our data will tell us otherwise.
The alternative hypothesis, denoted Ha, represents something different

and unexpected: for instance, that there is a difference between the mean
blood pressure of the mice in the two groups. Typically, the alternative
hypothesis simply posits that the null hypothesis does not hold: if the null
hypothesis states that there is no difference between A and B, then the
alternative hypothesis states that there is a difference between A and B.
It is important to note that the treatment of H0 and Ha is asymmetric.

H0 is treated as the default state of the world, and we focus on using data
to reject H0. If we reject H0, then this provides evidence in favor of Ha. We
can think of rejecting H0 as making a discovery about our data: namely, we
are discovering that H0 does not hold! By contrast, if we fail to reject H0,
then our findings are more nebulous: we will not know whether we failed
to reject H0 because our sample size was too small (in which case testing
H0 again on a larger or higher-quality dataset might lead to rejection), or
whether we failed to reject H0 because H0 really holds.

4H0 is pronounced “H naught” or “H zero”.
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Step 2: Construct the Test Statistic

Next, we wish to use our data in order to find evidence for or against
the null hypothesis. In order to do this, we must compute a test statistic,

test statistic
denoted T , which summarizes the extent to which our data are consistent
with H0. The way in which we construct T depends on the nature of the
null hypothesis that we are testing.
To make things concrete, let xt

1, . . . , x
t
nt

denote the blood pressure mea-
surements for the nt mice in the treatment group, and let xc

1, . . . , x
c
nc

denote
the blood pressure measurements for the nc mice in the control group, and
µt = E(Xt), µc = E(Xc). To testH0 : µt = µc, we make use of a two-sample
t-statistic,5 defined as

two-sample
t-statisticT =

µ̂t − µ̂c

s
√

1
nt

+ 1
nc

(13.1)

where µ̂t =
1
nt

∑nt

i=1 x
t
i, µ̂c =

1
nc

∑nc

i=1 x
c
i , and

s =

√
(nt − 1)s2t + (nc − 1)s2c

nt + nc − 2
(13.2)

is an estimator of the pooled standard deviation of the two samples.6 Here,
s2t and s2c are unbiased estimators of the variance of the blood pressure in
the treatment and control groups, respectively. A large (absolute) value of
T provides evidence against H0 : µt = µc, and hence evidence in support
of Ha : µt ̸= µc.

Step 3: Compute the p-Value

In the previous section, we noted that a large (absolute) value of a two-
sample t-statistic provides evidence against H0. This begs the question: how
large is large? In other words, how much evidence against H0 is provided
by a given value of the test statistic?
The notion of a p-value provides us with a way to formalize as well as

p-value
answer this question. The p-value is defined as the probability of observing
a test statistic equal to or more extreme than the observed statistic, under
the assumption that H0 is in fact true. Therefore, a small p-value provides
evidence against H0.
To make this concrete, suppose that T = 2.33 for the test statistic in

(13.1). Then, we can ask: what is the probability of having observed such
a large value of T , if indeed H0 holds? It turns out that under H0, the

5The t-statistic derives its name from the fact that, under H0, it follows a t-
distribution.

6Note that (13.2) assumes that the control and treatment groups have equal variance.
Without this assumption, (13.2) would take a slightly different form.
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FIGURE 13.1. The density function for the N(0, 1) distribution, with the ver-
tical line indicating a value of 2.33. 1% of the area under the curve falls to the
right of the vertical line, so there is only a 2% chance of observing a N(0, 1) value
that is greater than 2.33 or less than −2.33. Therefore, if a test statistic has a
N(0, 1) null distribution, then an observed test statistic of T = 2.33 leads to a
p-value of 0.02.

distribution of T in (13.1) follows approximately a N(0, 1) distribution7 —
that is, a normal distribution with mean 0 and variance 1. This distribution
is displayed in Figure 13.1. We see that the vast majority — 98% — of the
N(0, 1) distribution falls between −2.33 and 2.33. This means that under
H0, we would expect to see such a large value of |T | only 2% of the time.
Therefore, the p-value corresponding to T = 2.33 is 0.02.
The distribution of the test statistic under H0 (also known as the test

statistic’s null distribution) will depend on the details of what type of null
null
distributionhypothesis is being tested, and what type of test statistic is used. In gen-

eral, most commonly-used test statistics follow a well-known statistical
distribution under the null hypothesis — such as a normal distribution,
a t-distribution, a χ2-distribution, or an F -distribution — provided that
the sample size is sufficiently large and that some other assumptions hold.
Typically, the R function that is used to compute a test statistic will make
use of this null distribution in order to output a p-value. In Section 13.5,
we will see an approach to estimate the null distribution of a test statistic
using re-sampling; in many contemporary settings, this is a very attractive
option, as it exploits the availability of fast computers in order to avoid
having to make potentially problematic assumptions about the data.

7More precisely, assuming that the observations are drawn from a normal distribution,
then T follows a t-distribution with nt + nc − 2 degrees of freedom. Provided that nt +
nc−2 is larger than around 40, this is very well-approximated by a N(0, 1) distribution.
In Section 13.5, we will see an alternative and often more attractive way to approximate
the null distribution of T , which avoids making stringent assumptions about the data.
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The p-value is perhaps one of the most used and abused notions in all of
statistics. In particular, it is sometimes said that the p-value is the probabil-
ity that H0 holds, i.e., that the null hypothesis is true. This is not correct!
The one and only correct interpretation of the p-value is as the fraction
of the time that we would expect to see such an extreme value of the test
statistic8 if we repeated the experiment many many times, provided H0

holds.
In Step 2 we computed a test statistic, and noted that a large (absolute)

value of the test statistic provides evidence against H0. In Step 3 the test
statistic was converted to a p-value, with small p-values providing evidence
against H0. What, then, did we accomplish by converting the test statistic
from Step 2 into a p-value in Step 3? To answer this question, suppose
a data analyst conducts a statistical test, and reports a test statistic of
T = 17.3. Does this provide strong evidence against H0? It’s impossible
to know, without more information: in particular, we would need to know
what value of the test statistic should be expected, under H0. This is exactly
what a p-value gives us. In other words, a p-value allows us to transform
our test statistic, which is measured on some arbitrary and uninterpretable
scale, into a number between 0 and 1 that can be more easily interpreted.

Step 4: Decide Whether to Reject the Null Hypothesis

Once we have computed a p-value corresponding to H0, it remains for
us to decide whether or not to reject H0. (We do not usually talk about
“accepting” H0: instead, we talk about “failing to reject” H0.) A small
p-value indicates that such a large value of the test statistic is unlikely to
occur under H0, and thereby provides evidence against H0. If the p-value
is sufficiently small, then we will want to reject H0 (and, therefore, make
a “discovery”). But how small is small enough to reject H0?
It turns out that the answer to this question is very much in the eyes

of the beholder, or more specifically, the data analyst. The smaller the p-
value, the stronger the evidence against H0. In some fields, it is typical to
reject H0 if the p-value is below 0.05; this means that, if H0 holds, we would
expect to see such a small p-value no more than 5% of the time.9 However,

8A one-sided p-value is the probability of seeing such an extreme value of the test
statistic; e.g. the probability of seeing a test statistic greater than or equal to T = 2.33.
A two-sided p-value is the probability of seeing such an extreme value of the absolute
test statistic; e.g. the probability of seeing a test statistic greater than or equal to 2.33
or less than or equal to −2.33. The default recommendation is to report a two-sided
p-value rather than a one-sided p-value, unless there is a clear and compelling reason
that only one direction of the test statistic is of scientific interest.

9Though a threshold of 0.05 to reject H0 is ubiquitous in some areas of science, we
advise against blind adherence to this arbitrary choice. Furthermore, a data analyst
should typically report the p-value itself, rather than just whether or not it exceeds a
specified threshold value.
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Truth
H0 Ha

Decision
Reject H0 Type I Error Correct
Do Not Reject H0 Correct Type II Error

TABLE 13.1. A summary of the possible scenarios associated with testing the
null hypothesis H0. Type I errors are also known as false positives, and Type II
errors as false negatives.

in other fields, a much higher burden of proof is required: for example, in
some areas of physics, it is typical to reject H0 only if the p-value is below
10−9!
In the example displayed in Figure 13.1, if we use a threshold of 0.05 as

our cut-off for rejecting the null hypothesis, then we will reject the null. By
contrast, if we use a threshold of 0.01, then we will fail to reject the null.
These ideas are formalized in the next section.

13.1.2 Type I and Type II Errors

If the null hypothesis holds, then we say that it is a true null hypothesis;
true null
hypothesisotherwise, it is a false null hypothesis. For instance, if we test H0 : µt = µc

false null
hypothesis

as in Section 13.1.1, and there is indeed no difference in the population
mean blood pressure for mice in the treatment group and mice in the
control group, then H0 is true; otherwise, it is false. Of course, we do not
know a priori whether H0 is true or whether it is false: this is why we need
to conduct a hypothesis test!
Table 13.1 summarizes the possible scenarios associated with testing the

null hypothesis H0.10 Once the hypothesis test is performed, the row of the
table is known (based on whether or not we have rejected H0); however, it
is impossible for us to know which column we are in. If we reject H0 when
H0 is false (i.e., when Ha is true), or if we do not reject H0 when it is true,
then we arrived at the correct result. However, if we erroneously reject H0

when H0 is in fact true, then we have committed a Type I error. The Type I
Type I error

error rate is defined as the probability of making a Type I error given that
Type I error
rateH0 holds, i.e., the probability of incorrectly rejecting H0. Alternatively, if

we do not reject H0 when H0 is in fact false, then we have committed a
Type II error. The power of the hypothesis test is defined as the probability

Type II
error
power

of not making a Type II error given that Ha holds, i.e., the probability of
correctly rejecting H0.

10There are parallels between Table 13.1 and Table 4.6, which has to do with the
output of a binary classifier. In particular, recall from Table 4.6 that a false positive
results from predicting a positive (non-null) label when the true label is in fact negative
(null). This is closely related to a Type I error, which results from rejecting the null
hypothesis when in fact the null hypothesis holds.
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Ideally we would like both the Type I and Type II error rates to be small.
But in practice, this is hard to achieve! There typically is a trade-off: we
can make the Type I error small by only rejecting H0 if we are quite sure
that it doesn’t hold; however, this will result in an increase in the Type II
error. Alternatively, we can make the Type II error small by rejecting H0

in the presence of even modest evidence that it does not hold, but this will
cause the Type I error to be large. In practice, we typically view Type I
errors as more “serious” than Type II errors, because the former involves
declaring a scientific finding that is not correct. Hence, when we perform
hypothesis testing, we typically require a low Type I error rate — e.g.,
at most α = 0.05 — while trying to make the Type II error small (or,
equivalently, the power large).
It turns out that there is a direct correspondence between the p-value

threshold that causes us to reject H0, and the Type I error rate. By only
rejecting H0 when the p-value is below α, we ensure that the Type I error
rate will be less than or equal to α.

13.2 The Challenge of Multiple Testing

In the previous section, we saw that rejecting H0 if the p-value is below
(say) 0.01 provides us with a simple way to control the Type I error for H0

at level 0.01: if H0 is true, then there is no more than a 1% probability that
we will reject it. But now suppose that we wish to test m null hypotheses,
H01, . . . ,H0m. Will it do to simply reject all null hypotheses for which the
corresponding p-value falls below (say) 0.01? Stated another way, if we
reject all null hypotheses for which the p-value falls below 0.01, then how
many Type I errors should we expect to make?
As a first step towards answering this question, consider a stockbroker

who wishes to drum up new clients by convincing them of her trading
acumen. She tells 1,024 (1,024 = 210) potential new clients that she can
correctly predict whether Apple’s stock price will increase or decrease for 10
days running. There are 210 possibilities for how Apple’s stock price might
change over the course of these 10 days. Therefore, she emails each client
one of these 210 possibilities. The vast majority of her potential clients
will find that the stockbroker’s predictions are no better than chance (and
many will find them to be even worse than chance). But a broken clock is
right twice a day, and one of her potential clients will be really impressed
to find that her predictions were correct for all 10 of the days! And so the
stockbroker gains a new client.
What happened here? Does the stockbroker have any actual insight into

whether Apple’s stock price will increase or decrease? No. How, then, did
she manage to predict Apple’s stock price perfectly for 10 days running?
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The answer is that she made a lot of guesses, and one of them happened
to be exactly right.
How does this relate to multiple testing? Suppose that we flip 1,024 fair

coins11 ten times each. Then we would expect (on average) one coin to
come up all tails. (There’s a 1/210 = 1/1,024 chance that any single coin
will come up all tails. So if we flip 1,024 coins, then we expect one coin to
come up all tails, on average.) If one of our coins comes up all tails, then
we might therefore conclude that this particular coin is not fair. In fact, a
standard hypothesis test for the null hypothesis that this particular coin
is fair would lead to a p-value below 0.002!12 But it would be incorrect to
conclude that the coin is not fair: in fact, the null hypothesis holds, and we
just happen to have gotten ten tails in a row by chance.
These examples illustrate the main challenge of multiple testing: when

multiple
testingtesting a huge number of null hypotheses, we are bound to get some very

small p-values by chance. If we make a decision about whether to reject each
null hypothesis without accounting for the fact that we have performed a
very large number of tests, then we may end up rejecting a great number
of true null hypotheses — that is, making a large number of Type I errors.
How severe is the problem? Recall from the previous section that if we

reject a single null hypothesis, H0, if its p-value is less than, say, α = 0.01,
then there is a 1% chance of making a false rejection if H0 is in fact true.
Now what if we test m null hypotheses, H01, . . . ,H0m, all of which are true?
There’s a 1% chance of rejecting any individual null hypothesis; therefore,
we expect to falsely reject approximately 0.01×m null hypotheses. If m =
10,000, then that means that we expect to falsely reject 100 null hypotheses
by chance! That is a lot of Type I errors.
The crux of the issue is as follows: rejecting a null hypothesis if the p-value

is below α controls the probability of falsely rejecting that null hypothesis
at level α. However, if we do this for m null hypotheses, then the chance of
falsely rejecting at least one of the m null hypotheses is quite a bit higher!
We will investigate this issue in greater detail, and pose a solution to it, in
Section 13.3.

13.3 The Family-Wise Error Rate

In the following sections, we will discuss testing multiple hypotheses while
controlling the probability of making at least one Type I error.

11A fair coin is one that has an equal chance of landing heads or tails.
12Recall that the p-value is the probability of observing data at least this extreme,

under the null hypothesis. If the coin is fair, then the probability of observing at least
ten tails is (1/2)10 = 1/1,024 < 0.001. The p-value is therefore 2/1,024 < 0.002, since
this is the probability of observing ten heads or ten tails.
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H0 is True H0 is False Total
Reject H0 V S R
Do Not Reject H0 U W m−R
Total m0 m−m0 m

TABLE 13.2. A summary of the results of testing m null hypotheses. A given
null hypothesis is either true or false, and a test of that null hypothesis can either
reject or fail to reject it. In practice, the individual values of V , S, U , and W are
unknown. However, we do have access to V +S = R and U +W = m−R, which
are the numbers of null hypotheses rejected and not rejected, respectively.

13.3.1 What is the Family-Wise Error Rate?

Recall that the Type I error rate is the probability of rejecting H0 if H0 is
true. The family-wise error rate (FWER) generalizes this notion to the set-

family-wise
error rateting of m null hypotheses, H01, . . . ,H0m, and is defined as the probability

of making at least one Type I error. To state this idea more formally, con-
sider Table 13.2, which summarizes the possible outcomes when performing
m hypothesis tests. Here, V represents the number of Type I errors (also
known as false positives or false discoveries), S the number of true posi-
tives, U the number of true negatives, and W the number of Type II errors
(also known as false negatives). Then the family-wise error rate is given by

FWER = Pr(V ≥ 1). (13.3)

A strategy of rejecting any null hypothesis for which the p-value is below
α (i.e. controlling the Type I error for each null hypothesis at level α) leads
to a FWER of

FWER(α) = 1− Pr(V = 0)

= 1− Pr(do not falsely reject any null hypotheses)

= 1− Pr
(⋂m

j=1 {do not falsely reject H0j}
)
. (13.4)

Recall from basic probability that if two events A and B are independent,
then Pr(A∩B) = Pr(A) Pr(B). Therefore, if we make the additional rather
strong assumptions that the m tests are independent and that all m null
hypotheses are true, then

FWER(α) = 1−
m∏

j=1

(1− α) = 1− (1− α)m. (13.5)

Hence, if we test only one null hypothesis, then FWER(α) = 1− (1−α)1 =
α, so the Type I error rate and the FWER are equal. However, if we perform
m = 100 independent tests, then FWER(α) = 1− (1−α)100. For instance,
taking α = 0.05 leads to a FWER of 1 − (1 − 0.05)100 = 0.994. In other
words, we are virtually guaranteed to make at least one Type I error!
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FIGURE 13.2. The family-wise error rate, as a function of the number of hy-
potheses tested (displayed on the log scale), for three values of α: α = 0.05 (or-
ange), α = 0.01 (blue), and α = 0.001 (purple). The dashed line indicates 0.05.
For example, in order to control the FWER at 0.05 when testing m = 50 null
hypotheses, we must control the Type I error for each null hypothesis at level
α = 0.001.

Figure 13.2 displays (13.5) for various values of m, the number of hy-
potheses, and α, the Type I error. We see that setting α = 0.05 results in
a high FWER even for moderate m. With α = 0.01, we can test no more
than five null hypotheses before the FWER exceeds 0.05. Only for very
small values, such as α = 0.001, do we manage to ensure a small FWER,
at least for moderately-sized m.
We now briefly return to the example in Section 13.1.1, in which we

consider testing a single null hypothesis of the form H0 : µt = µc using a
two-sample t-statistic. Recall from Figure 13.1 that in order to guarantee
that the Type I error does not exceed 0.02, we decide whether or not to
reject H0 using a cutpoint of 2.33 (i.e. we reject H0 if |T | ≥ 2.33). Now,
what if we wish to test 10 null hypotheses using two-sample t-statistics,
instead of just one? We will see in Section 13.3.2 that we can guarantee
that the FWER does not exceed 0.02 by rejecting only null hypotheses
for which the p-value falls below 0.002. This corresponds to a much more
stringent cutpoint of 3.09 (i.e. we should reject H0j only if its test statistic
|Tj | ≥ 3.09, for j = 1, . . . , 10). In other words, controlling the FWER at
level α amounts to a much higher bar, in terms of evidence required to
reject any given null hypothesis, than simply controlling the Type I error
for each null hypothesis at level α.
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Manager Mean, x̄ Standard Deviation, s t-statistic p-value
One 3.0 7.4 2.86 0.006
Two -0.1 6.9 -0.10 0.918
Three 2.8 7.5 2.62 0.012
Four 0.5 6.7 0.53 0.601
Five 0.3 6.8 0.31 0.756

TABLE 13.3. The first two columns correspond to the sample mean and sample
standard deviation of the percentage excess return, over n = 50 months, for the
first five managers in the Fund dataset. The last two columns provide the t-statistic
(
√
n · X̄/S) and associated p-value for testing H0j : µj = 0, the null hypothesis

that the (population) mean return for the jth hedge fund manager equals zero.

13.3.2 Approaches to Control the Family-Wise Error Rate

In this section, we briefly survey some approaches to control the FWER.
We will illustrate these approaches on the Fund dataset, which records the
monthly percentage excess returns for 2,000 fund managers over n = 50
months.13 Table 13.3 provides relevant summary statistics for the first five
managers.
We first present the Bonferroni method and Holm’s step-down proce-

dure, which are very general-purpose approaches for controlling the FWER
that can be applied whenever m p-values have been computed, regardless
of the form of the null hypotheses, the choice of test statistics, or the
(in)dependence of the p-values. We then briefly discuss Tukey’s method
and Scheffé’s method in order to illustrate the fact that, in certain sit-
uations, more specialized approaches for controlling the FWER may be
preferable.

The Bonferroni Method

As in the previous section, suppose we wish to test H01, . . . ,H0m. Let Aj

denote the event that we make a Type I error for the jth null hypothesis,
for j = 1, . . . ,m. Then

FWER(α) = Pr(falsely reject at least one null hypothesis)

= Pr(∪mj=1Aj)

≤
m∑

j=1

Pr(Aj). (13.6)

In (13.6), the inequality results from the fact that for any two events A
and B, Pr(A ∪ B) ≤ Pr(A) + Pr(B), regardless of whether A and B are

13Excess returns correspond to the additional return the fund manager achieves be-
yond the market’s overall return. So if the market increases by 5% during a given period
and the fund manager achieves a 7% return, their excess return would be 7%−5% = 2%.
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independent. The Bonferroni method, or Bonferroni correction, sets the
threshold for rejecting each hypothesis test to α/m, so that Pr(Aj) ≤ α/m.
Equation 13.6 implies that

FWER(α) ≤ m× α

m
= α,

so this procedure controls the FWER at level α. For instance, in order to
control the FWER at level 0.1 while testing m = 100 null hypotheses, the
Bonferroni procedure requires us to control the Type I error for each null
hypothesis at level 0.1/100 = 0.001, i.e. to reject all null hypotheses for
which the p-value is below 0.001.
We now consider the Fund dataset in Table 13.3. If we control the Type

I error at level α = 0.05 for each fund manager separately, then we will
conclude that the first and third managers have significantly non-zero ex-
cess returns; in other words, we will reject H01 : µ1 = 0 and H03 : µ3 = 0.
However, as discussed in previous sections, this procedure does not account
for the fact that we have tested multiple hypotheses, and therefore it will
lead to a FWER greater than 0.05. If we instead wish to control the FWER
at level 0.05, then, using a Bonferroni correction, we must control the Type
I error for each individual manager at level α/m = 0.05/5 = 0.01. Conse-
quently, we will reject the null hypothesis only for the first manager, since
the p-values for all other managers exceed 0.01. The Bonferroni correction
gives us peace of mind that we have not falsely rejected too many null
hypotheses, but for a price: we reject few null hypotheses, and thus will
typically make quite a few Type II errors.
The Bonferroni correction is by far the best-known and most commonly-

used multiplicity correction in all of statistics. Its ubiquity is due in large
part to the fact that it is very easy to understand and simple to implement,
and also from the fact that it successfully controls Type I error regardless
of whether the m hypothesis tests are independent. However, as we will see,
it is typically neither the most powerful nor the best approach for multiple
testing correction. In particular, the Bonferroni correction can be quite
conservative, in the sense that the true FWER is often quite a bit lower
than the nominal (or target) FWER; this results from the inequality in
(13.6). By contrast, a less conservative procedure might allow us to control
the FWER while rejecting more null hypotheses, and therefore making
fewer Type II errors.

Holm’s Step-Down Procedure

Holm’s method, also known as Holm’s step-down procedure or the Holm-
Holm’s
methodBonferroni method, is an alternative to the Bonferroni procedure. Holm’s

method controls the FWER, but it is less conservative than Bonferroni, in
the sense that it will reject more null hypotheses, typically resulting in fewer
Type II errors and hence greater power. The procedure is summarized in
Algorithm 13.1. The proof that this method controls the FWER is similar
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Algorithm 13.1 Holm’s Step-Down Procedure to Control the FWER

1. Specify α, the level at which to control the FWER.

2. Compute p-values, p1, . . . , pm, for the m null hypotheses
H01, . . . ,H0m.

3. Order the m p-values so that p(1) ≤ p(2) ≤ · · · ≤ p(m).

4. Define

L = min

{
j : p(j) >

α

m+ 1− j

}
. (13.7)

5. Reject all null hypotheses H0j for which pj < p(L).

to, but slightly more complicated than, the argument in (13.6) that the
Bonferroni method controls the FWER. It is worth noting that in Holm’s
procedure, the threshold that we use to reject each null hypothesis — p(L)

in Step 5 — actually depends on the values of all m of the p-values. (See the
definition of L in (13.7).) This is in contrast to the Bonferroni procedure,
in which to control the FWER at level α, we reject any null hypotheses for
which the p-value is below α/m, regardless of the other p-values. Holm’s
method makes no independence assumptions about the m hypothesis tests,
and is uniformly more powerful than the Bonferroni method — it will
always reject at least as many null hypotheses as Bonferroni — and so it
should always be preferred.
We now consider applying Holm’s method to the first five fund managers

in the Fund dataset in Table 13.3, while controlling the FWER at level 0.05.
The ordered p-values are p(1) = 0.006, p(2) = 0.012, p(3) = 0.601, p(4) =
0.756 and p(5) = 0.918. The Holm procedure rejects the first two null
hypotheses, because p(1) = 0.006 < 0.05/(5 + 1 − 1) = 0.01 and p(2) =
0.012 < 0.05/(5 + 1 − 2) = 0.0125, but p(3) = 0.601 > 0.05/(5 + 1 − 3) =
0.167, which implies that L = 3. We note that, in this setting, Holm is
more powerful than Bonferroni: the former rejects the null hypotheses for
the first and third managers, whereas the latter rejects the null hypothesis
only for the first manager.
Figure 13.3 provides an illustration of the Bonferroni and Holm methods

on three simulated data sets in a setting involving m = 10 hypothesis tests,
of which m0 = 2 of the null hypotheses are true. Each panel displays the
ten corresponding p-values, ordered from smallest to largest, and plotted
on a log scale. The eight red points represent the false null hypotheses, and
the two black points represent the true null hypotheses. We wish to control
the FWER at level 0.05. The Bonferroni procedure requires us to reject all
null hypotheses for which the p-value is below 0.005; this is represented by
the black horizontal line. The Holm procedure requires us to reject all null
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FIGURE 13.3. Each panel displays, for a separate simulation, the sorted
p-values for tests of m = 10 null hypotheses. The p-values corresponding to the
m0 = 2 true null hypotheses are displayed in black, and the rest are in red. When
controlling the FWER at level 0.05, the Bonferroni procedure rejects all null hy-
potheses that fall below the black line, and the Holm procedure rejects all null
hypotheses that fall below the blue line. The region between the blue and black
lines indicates null hypotheses that are rejected using the Holm procedure but not
using the Bonferroni procedure. In the center panel, the Holm procedure rejects
one more null hypothesis than the Bonferroni procedure. In the right-hand panel,
it rejects five more null hypotheses.

hypotheses that fall below the blue line. The blue line always lies above the
black line, so Holm will always reject more tests than Bonferroni; the region
between the two lines corresponds to the hypotheses that are only rejected
by Holm. In the left-hand panel, both Bonferroni and Holm successfully
reject seven of the eight false null hypotheses. In the center panel, Holm
successfully rejects all eight of the false null hypotheses, while Bonferroni
fails to reject one. In the right-hand panel, Bonferroni only rejects three of
the false null hypotheses, while Holm rejects all eight. Neither Bonferroni
nor Holm makes any Type I errors in these examples.

Two Special Cases: Tukey’s Method and Scheffé’s Method

Bonferroni’s method and Holm’s method can be used in virtually any set-
ting in which we wish to control the FWER for m null hypotheses: they
make no assumptions about the nature of the null hypotheses, the type
of test statistic used, or the (in)dependence of the p-values. However, in
certain very specific settings, we can achieve higher power by controlling
the FWER using approaches that are more tailored to the task at hand.
Tukey’s method and Scheffé’s method provide two such examples.
Table 13.3 indicates that for the Fund dataset, Managers One and Two

have the greatest difference in their sample mean returns. This finding
might motivate us to test the null hypothesis H0 : µ1 = µ2, where µj is the
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(population) mean return for the jth fund manager. A two-sample t-test
(13.1) for H0 yields a p-value of 0.0349, suggesting modest evidence against
H0. However, this p-value is misleading, since we decided to compare the
average returns of Managers One and Two only after having examined the
returns for all five managers; this essentially amounts to having performed
m = 5 × (5 − 1)/2 = 10 hypothesis tests, and selecting the one with the
smallest p-value. This suggests that in order to control the FWER at level
0.05, we should make a Bonferroni correction for m = 10 hypothesis tests,
and therefore should only reject a null hypothesis for which the p-value
is below 0.005. If we do this, then we will be unable to reject the null
hypothesis that Managers One and Two have identical performance.
However, in this setting, a Bonferroni correction is actually a bit too

stringent, since it fails to consider the fact that the m = 10 hypothesis
tests are all somewhat related: for instance, Managers Two and Five have
similar mean returns, as do Managers Two and Four; this guarantees that
the mean returns of Managers Four and Five are similar. Stated another
way, the m p-values for the m pairwise comparisons are not independent.
Therefore, it should be possible to control the FWER in a way that is
less conservative. This is exactly the idea behind Tukey’s method: when

Tukey’s
methodperforming m = G(G − 1)/2 pairwise comparisons of G means, it allows

us to control the FWER at level α while rejecting all null hypotheses for
which the p-value falls below αT , for some αT > α/m.
Figure 13.4 illustrates Tukey’s method on three simulated data sets in a

setting with G = 6 means, with µ1 = µ2 = µ3 = µ4 = µ5 ̸= µ6. Therefore,
of the m = G(G − 1)/2 = 15 null hypotheses of the form H0 : µj = µk,
ten are true and five are false. In each panel, the true null hypotheses
are displayed in black, and the false ones are in red. The horizontal lines
indicate that Tukey’s method always results in at least as many rejections
as Bonferroni’s method. In the left-hand panel, Tukey correctly rejects two
more null hypotheses than Bonferroni.
Now, suppose that we once again examine the data in Table 13.3, and no-

tice that Managers One and Three have higher mean returns than Managers
Two, Four, and Five. This might motivate us to test the null hypothesis

H0 :
1

2
(µ1 + µ3) =

1

3
(µ2 + µ4 + µ5) . (13.8)

(Recall that µj is the population mean return for the jth hedge fund
manager.) It turns out that we could test (13.8) using a variant of the
two-sample t-test presented in (13.1), leading to a p-value of 0.004. This
suggests strong evidence of a difference between Mangers One and Three
compared to Managers Two, Four, and Five. However, there is a problem:
we decided to test the null hypothesis in (13.8) only after peeking at the
data in Table 13.3. In a sense, this means that we have conducted multiple
testing. In this setting, using Bonferroni to control the FWER at level α
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FIGURE 13.4. Each panel displays, for a separate simulation, the sorted
p-values for tests of m = 15 hypotheses, corresponding to pairwise tests for the
equality of G = 6 means. The m0 = 10 true null hypotheses are displayed in black,
and the rest are in red. When controlling the FWER at level 0.05, the Bonferroni
procedure rejects all null hypotheses that fall below the black line, whereas Tukey
rejects all those that fall below the blue line. Thus, Tukey’s method has slightly
higher power than Bonferroni’s method. Controlling the Type I error without ad-
justing for multiple testing involves rejecting all those that fall below the green
line.

would require a p-value threshold of α/m, for an extremely large value of
m14.
Scheffé’s method is designed for exactly this setting. It allows us to com-

Scheffé’s
methodpute a value αS such that rejecting the null hypothesis H0 in (13.8) if the

p-value is below αS will control the Type I error at level α. It turns out that
for the Fund example, in order to control the Type I error at level α = 0.05,
we must set αS = 0.002. Therefore, we are unable to reject H0 in (13.8), de-
spite the apparently very small p-value of 0.004. An important advantage of
Scheffé’s method is that we can use this same threshold of αS = 0.002 in or-
der to perform a pairwise comparison of any split of the managers into two
groups: for instance, we could also test H0 : 1

3 (µ1 + µ2 + µ3) =
1
2 (µ4 + µ5)

and H0 : 1
4 (µ1 + µ2 + µ3 + µ4) = µ5 using the same threshold of 0.002,

without needing to further adjust for multiple testing.
To summarize, Holm’s procedure and Bonferroni’s procedure are very

general approaches for multiple testing correction that can be applied un-
der all circumstances. However, in certain special cases, more powerful pro-
cedures for multiple testing correction may be available, in order to control
the FWER while achieving higher power (i.e. committing fewer Type II

14In fact, calculating the “correct” value of m is quite technical, and outside the scope
of this book.
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FIGURE 13.5. In a simulation setting in which 90% of the m null hypothe-
ses are true, we display the power (the fraction of false null hypotheses that we
successfully reject) as a function of the family-wise error rate. The curves corre-
spond to m = 10 (orange), m = 100 (blue), and m = 500 (purple). As the value
of m increases, the power decreases. The vertical dashed line indicates a FWER
of 0.05.

errors) than would be possible using Holm or Bonferroni. In this section,
we have illustrated two such examples.

13.3.3 Trade-Off Between the FWER and Power

In general, there is a trade-off between the FWER threshold that we choose,
and our power to reject the null hypotheses. Recall that power is defined
as the number of false null hypotheses that we reject divided by the total
number of false null hypotheses, i.e. S/(m−m0) using the notation of Ta-
ble 13.2. Figure 13.5 illustrates the results of a simulation setting involving
m null hypotheses, of which 90% are true and the remaining 10% are false;
power is displayed as a function of the FWER. In this particular simulation
setting, when m = 10, a FWER of 0.05 corresponds to power of approxi-
mately 60%. However, as m increases, the power decreases. With m = 500,
the power is below 0.2 at a FWER of 0.05, so that we successfully reject
only 20% of the false null hypotheses.
Figure 13.5 indicates that it is reasonable to control the FWER when m

takes on a small value, like 5 or 10. However, for m = 100 or m = 1,000,
attempting to control the FWER will make it almost impossible to reject
any of the false null hypotheses. In other words, the power will be extremely
low.



13.4 The False Discovery Rate 571

Why is this the case? Recall that, using the notation in Table 13.2, the
FWER is defined as Pr(V ≥ 1) (13.3). In other other words, controlling the
FWER at level α guarantees that the data analyst is very unlikely (with
probability no more than α) to reject any true null hypotheses, i.e. to have
any false positives. In order to make good on this guarantee when m is
large, the data analyst may be forced to reject very few null hypotheses, or
perhaps even none at all (since if R = 0 then also V = 0; see Table 13.2).
This is scientifically uninteresting, and typically results in very low power,
as in Figure 13.5.
In practice, when m is large, we may be willing to tolerate a few false

positives, in the interest of making more discoveries, i.e. more rejections of
the null hypothesis. This is the motivation behind the false discovery rate,
which we present next.

13.4 The False Discovery Rate

13.4.1 Intuition for the False Discovery Rate

As we just discussed, when m is large, then trying to prevent any false
positives (as in FWER control) is simply too stringent. Instead, we might
try to make sure that the ratio of false positives (V ) to total positives
(V + S = R) is sufficiently low, so that most of the rejected null hypothe-
ses are not false positives. The ratio V/R is known as the false discovery
proportion (FDP).

false
discovery
proportion

It might be tempting to ask the data analyst to control the FDP: to
make sure that no more than, say, 20% of the rejected null hypotheses are
false positives. However, in practice, controlling the FDP is an impossible
task for the data analyst, since she has no way to be certain, on any par-
ticular dataset, which hypotheses are true and which are false. This is very
similar to the fact that the data analyst can control the FWER, i.e. she
can guarantee that Pr(V ≥ 1) ≤ α for any pre-specified α, but she cannot
guarantee that V = 0 on any particular dataset (short of failing to reject
any null hypotheses, i.e. setting R = 0).
Therefore, we instead control the false discovery rate (FDR)15, defined

false
discovery
rate

as

FDR = E(FDP) = E(V/R). (13.9)

When we control the FDR at (say) level q = 20%, we are rejecting as many
null hypotheses as possible while guaranteeing that no more than 20% of
those rejected null hypotheses are false positives, on average.

15If R = 0, then we replace the ratio V/R with 0, to avoid computing 0/0. Formally,
FDR = E(V/R|R > 0)Pr(R > 0).
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In the definition of the FDR in (13.9), the expectation is taken over the
population from which the data are generated. For instance, suppose we
control the FDR for m null hypotheses at q = 0.2. This means that if we
repeat this experiment a huge number of times, and each time control the
FDR at q = 0.2, then we should expect that, on average, 20% of the rejected
null hypotheses will be false positives. On a given dataset, the fraction of
false positives among the rejected hypotheses may be greater than or less
than 20%.
Thus far, we have motivated the use of the FDR from a pragmatic per-

spective, by arguing that when m is large, controlling the FWER is simply
too stringent, and will not lead to “enough” discoveries. An additional mo-
tivation for the use of the FDR is that it aligns well with the way that data
are often collected in contemporary applications. As datasets continue to
grow in size across a variety of fields, it is increasingly common to conduct a
huge number of hypothesis tests for exploratory, rather than confirmatory,
purposes. For instance, a genomic researcher might sequence the genomes
of individuals with and without some particular medical condition, and
then, for each of 20,000 genes, test whether sequence variants in that gene
are associated with the medical condition of interest. This amounts to per-
forming m = 20,000 hypothesis tests. The analysis is exploratory in nature,
in the sense that the researcher does not have any particular hypothesis
in mind; instead she wishes to see whether there is modest evidence for
the association between each gene and the disease, with a plan to further
investigate any genes for which there is such evidence. She is likely willing
to tolerate some number of false positives in the set of genes that she will
investigate further; thus, the FWER is not an appropriate choice. How-
ever, some correction for multiple testing is required: it would not be a
good idea for her to simply investigate all genes with p-values less than
(say) 0.05, since we would expect 1,000 genes to have such small p-values
simply by chance, even if no genes are associated with the disease (since
0.05 × 20,000 = 1,000). Controlling the FDR for her exploratory analysis
at 20% guarantees that — on average — no more than 20% of the genes
that she investigates further are false positives.
It is worth noting that unlike p-values, for which a threshold of 0.05

is typically viewed as the minimum standard of evidence for a “positive”
result, and a threshold of 0.01 or even 0.001 is viewed as much more com-
pelling, there is no standard accepted threshold for FDR control. Instead,
the choice of FDR threshold is typically context-dependent, or even dataset-
dependent. For instance, the genomic researcher in the previous example
might seek to control the FDR at a threshold of 10% if the planned follow-
up analysis is time-consuming or expensive. Alternatively, a much larger
threshold of 30% might be suitable if she plans an inexpensive follow-up
analysis.
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13.4.2 The Benjamini-Hochberg Procedure

We now focus on the task of controlling the FDR: that is, deciding which
null hypotheses to reject while guaranteeing that the FDR, E(V/R), is less
than or equal to some pre-specified value q. In order to do this, we need
some way to connect the p-values, p1, . . . , pm, from the m null hypotheses
to the desired FDR value, q. It turns out that a very simple procedure,
outlined in Algorithm 13.2, can be used to control the FDR.

Algorithm 13.2 Benjamini-Hochberg Procedure to Control the FDR

1. Specify q, the level at which to control the FDR.

2. Compute p-values, p1, . . . , pm, for the m null hypotheses
H01, . . . ,H0m.

3. Order the m p-values so that p(1) ≤ p(2) ≤ · · · ≤ p(m).

4. Define
L = max{j : p(j) < qj/m}. (13.10)

5. Reject all null hypotheses H0j for which pj ≤ p(L).

Algorithm 13.2 is known as the Benjamini-Hochberg procedure. The crux
Benjamini-
Hochberg
procedure

of this procedure lies in (13.10). For example, consider again the first five
managers in the Fund dataset, presented in Table 13.3. (In this example,
m = 5, although typically we control the FDR in settings involving a much
greater number of null hypotheses.) We see that p(1) = 0.006 < 0.05× 1/5,
p(2) = 0.012 < 0.05 × 2/5, p(3) = 0.601 > 0.05 × 3/5, p(4) = 0.756 >
0.05 × 4/5, and p(5) = 0.918 > 0.05 × 5/5. Therefore, to control the FDR
at 5%, we reject the null hypotheses that the first and third fund managers
perform no better than chance.
As long as the m p-values are independent or only mildly dependent,

then the Benjamini-Hochberg procedure guarantees16 that

FDR ≤ q.

In other words, this procedure ensures that, on average, no more than a
fraction q of the rejected null hypotheses are false positives. Remarkably,
this holds regardless of how many null hypotheses are true, and regardless
of the distribution of the p-values for the null hypotheses that are false.
Therefore, the Benjamini-Hochberg procedure gives us a very easy way to
determine, given a set of m p-values, which null hypotheses to reject in
order to control the FDR at any pre-specified level q.

16However, the proof is well beyond the scope of this book.
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FIGURE 13.6. Each panel displays the same set of m = 2,000 ordered p-values
for the Fund data. The green lines indicate the p-value thresholds corresponding
to FWER control, via the Bonferroni procedure, at levels α = 0.05 (left), α = 0.1
(center), and α = 0.3 (right). The orange lines indicate the p-value thresholds
corresponding to FDR control, via Benjamini-Hochberg, at levels q = 0.05 (left),
q = 0.1 (center), and q = 0.3 (right). When the FDR is controlled at level q = 0.1,
146 null hypotheses are rejected (center); the corresponding p-values are shown
in blue. When the FDR is controlled at level q = 0.3, 279 null hypotheses are
rejected (right); the corresponding p-values are shown in blue.

There is a fundamental difference between the Bonferroni procedure of
Section 13.3.2 and the Benjamini-Hochberg procedure. In the Bonferroni
procedure, in order to control the FWER for m null hypotheses at level
α, we must simply reject null hypotheses for which the p-value is below
α/m. This threshold of α/m does not depend on anything about the data
(beyond the value of m), and certainly does not depend on the p-values
themselves. By contrast, the rejection threshold used in the Benjamini-
Hochberg procedure is more complicated: we reject all null hypotheses for
which the p-value is less than or equal to the Lth smallest p-value, where
L is itself a function of all m p-values, as in (13.10). Therefore, when con-
ducting the Benjamini-Hochberg procedure, we cannot plan out in advance
what threshold we will use to reject p-values; we need to first see our data.
For instance, in the abstract, there is no way to know whether we will reject
a null hypothesis corresponding to a p-value of 0.01 when using an FDR
threshold of 0.1 with m = 100; the answer depends on the values of the
other m− 1 p-values. This property of the Benjamini-Hochberg procedure
is shared by the Holm procedure, which also involves a data-dependent
p-value threshold.
Figure 13.6 displays the results of applying the Bonferroni and Benjamini-

Hochberg procedures on the Fund data set, using the full set of m = 2,000
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fund managers, of which the first five were displayed in Table 13.3. When
the FWER is controlled at level 0.3 using Bonferroni, only one null hypoth-
esis is rejected; that is, we can conclude only that a single fund manager is
beating the market. This is despite the fact that a substantial portion of
the m = 2,000 fund managers appear to have beaten the market without
performing correction for multiple testing — for instance, 13 of them have
p-values below 0.001. By contrast, when the FDR is controlled at level 0.3,
we can conclude that 279 fund managers are beating the market: we expect
that no more than around 279×0.3 = 83.7 of these fund managers had good
performance only due to chance. Thus, we see that FDR control is much
milder — and more powerful — than FWER control, in the sense that it
allows us to reject many more null hypotheses, with a cost of substantially
more false positives.
The Benjamini-Hochberg procedure has been around since the mid-1990s.

While a great many papers have been published since then proposing alter-
native approaches for FDR control that can perform better in particular
scenarios, the Benjamini-Hochberg procedure remains a very useful and
widely-applicable approach.

13.5 A Re-Sampling Approach to p-Values and
False Discovery Rates

Thus far, the discussion in this chapter has assumed that we are interested
in testing a particular null hypothesis H0 using a test statistic T , which
has some known (or assumed) distribution under H0, such as a normal
distribution, a t-distribution, a χ2-distribution, or an F -distribution. This
is referred to as the theoretical null distribution. We typically rely upon

theoretical
null
distribution

the availability of a theoretical null distribution in order to obtain a p-
value associated with our test statistic. Indeed, for most of the types of
null hypotheses that we might be interested in testing, a theoretical null
distribution is available, provided that we are willing to make stringent
assumptions about our data.
However, if our null hypothesis H0 or test statistic T is somewhat un-

usual, then it may be the case that no theoretical null distribution is avail-
able. Alternatively, even if a theoretical null distribution exists, then we
may be wary of relying upon it, perhaps because some assumption that is
required for it to hold is violated. For instance, maybe the sample size is
too small.
In this section, we present a framework for performing inference in this

setting, which exploits the availability of fast computers in order to approx-
imate the null distribution of T , and thereby to obtain a p-value. While this
framework is very general, it must be carefully instantiated for a specific
problem of interest. Therefore, in what follows, we consider a specific ex-
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ample in which we wish to test whether the means of two random variables
are equal, using a two-sample t-test.
The discussion in this section is more challenging than the preceding

sections in this chapter, and can be safely skipped by a reader who is
content to use the theoretical null distribution to compute p-values for his
or her test statistics.

13.5.1 A Re-Sampling Approach to the p-Value

We return to the example of Section 13.1.1, in which we wish to test whether
the mean of a random variable X equals the mean of a random variable Y ,
i.e. H0 : E(X) = E(Y ), against the alternative Ha : E(X) ̸= E(Y ). Given
nX independent observations from X and nY independent observations
from Y , the two-sample t-statistic takes the form

T =
µ̂X − µ̂Y

s
√

1
nX

+ 1
nY

(13.11)

where µ̂X = 1
nX

∑nX

i=1 xi, µ̂Y = 1
nY

∑nY

i=1 yi, s =
√

(nX−1)s2X+(nY −1)s2Y
nX+nY −2 ,

and s2X and s2Y are unbiased estimators of the variances in the two groups.
A large (absolute) value of T provides evidence against H0.
If nX and nY are large, then T in (13.11) approximately follows a N(0, 1)

distribution. But if nX and nY are small, then in the absence of a strong
assumption about the distribution of X and Y , we do not know the the-
oretical null distribution of T .17 In this case, it turns out that we can
approximate the null distribution of T using a re-sampling approach, or

re-sampling
more specifically, a permutation approach.

permutation
To do this, we conduct a thought experiment. If H0 holds, so that E(X) =

E(Y ), and we make the stronger assumption that the distributions of X
and Y are the same, then the distribution of T is invariant under swapping
observations of X with observations of Y . That is, if we randomly swap
some of the observations in X with the observations in Y , then the test
statistic T in (13.11) computed based on this swapped data has the same
distribution as T based on the original data. This is true only if H0 holds,
and the distributions of X and Y are the same.
This suggests that in order to approximate the null distribution of T ,

we can take the following approach. We randomly permute the nX + nY

observations B times, for some large value of B, and each time we compute

17If we assume that X and Y are normally distributed, then T in (13.11) follows a
t-distribution with nX +nY − 2 degrees of freedom under H0. However, in practice, the
distribution of random variables is rarely known, and so it can be preferable to perform
a re-sampling approach instead of making strong and unjustified assumptions. If the
results of the re-sampling approach disagree with the results of assuming a theoretical
null distribution, then the results of the re-sampling approach are more trustworthy.
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(13.11). We let T ∗1, . . . , T ∗B denote the values of (13.11) on the permuted
data. These can be viewed as an approximation of the null distribution
of T under H0. Recall that by definition, a p-value is the probability of
observing a test statistic at least this extreme under H0. Therefore, to
compute a p-value for T , we can simply compute

p-value =

∑B
b=1 1(|T∗b|≥|T |)

B
, (13.12)

the fraction of permuted datasets for which the value of the test statistic
is at least as extreme as the value observed on the original data. This
procedure is summarized in Algorithm 13.3.

Algorithm 13.3 Re-Sampling p-Value for a Two-Sample t-Test

1. Compute T , defined in (13.11), on the original data x1, . . . , xnX and
y1, . . . , ynY .

2. For b = 1, . . . , B, where B is a large number (e.g. B = 10,000):

(a) Permute the nX +nY observations at random. Call the first nX

permuted observations x∗
1, . . . , x

∗
nX

, and call the remaining nY

observations y∗1 , . . . , y
∗
nY

.

(b) Compute (13.11) on the permuted data x∗
1, . . . , x

∗
nX

and
y∗1 , . . . , y

∗
nY

, and call the result T ∗b.

3. The p-value is given by
∑B

b=1 1(|T∗b|≥|T |)
B .

We try out this procedure on the Khan dataset, which consists of expres-
sion measurements for 2,308 genes in four sub-types of small round blood
cell tumors, a type of cancer typically seen in children. This dataset is part
of the ISLR2 package. We restrict our attention to the two sub-types for
which the most observations are available: rhabdomyosarcoma (nX = 29)
and Burkitt’s lymphoma (nY = 25).
A two-sample t-test for the null hypothesis that the 11th gene’s mean

expression values are equal in the two groups yields T = −2.09. Using
the theoretical null distribution, which is a t52 distribution (since nX +
nY − 2 = 52), we obtain a p-value of 0.041. (Note that a t52 distribution
is virtually indistinguishable from a N(0, 1) distribution.) If we instead
apply Algorithm 13.3 with B = 10,000, then we obtain a p-value of 0.042.
Figure 13.7 displays the theoretical null distribution, the re-sampling null
distribution, and the actual value of the test statistic (T = −2.09) for this
gene. In this example, we see very little difference between the p-values
obtained using the theoretical null distribution and the re-sampling null
distribution.
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Null Distribution of Test Statistic for 11th Gene
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FIGURE 13.7. The 11th gene in the Khan dataset has a test statistic of
T = −2.09. Its theoretical and re-sampling null distributions are almost identical.
The theoretical p-value equals 0.041 and the re-sampling p-value equals 0.042.

By contrast, Figure 13.8 shows an analogous set of results for the 877th
gene. In this case, there is a substantial difference between the theoretical
and re-sampling null distributions, which results in a difference between
their p-values.
In general, in settings with a smaller sample size or a more skewed data

distribution (so that the theoretical null distribution is less accurate), the
difference between the re-sampling and theoretical p-values will tend to
be more pronounced. In fact, the substantial difference between the re-
sampling and theoretical null distributions in Figure 13.8 is due to the
fact that a single observation in the 877th gene is very far from the other
observations, leading to a very skewed distribution.

13.5.2 A Re-Sampling Approach to the False Discovery Rate

Now, suppose that we wish to control the FDR for m null hypotheses,
H01, . . . ,H0m, in a setting in which either no theoretical null distribution
is available, or else we simply prefer to avoid the use of a theoretical null dis-
tribution. As in Section 13.5.1, we make use of a two-sample t-statistic for
each hypothesis, leading to the test statistics T1, . . . , Tm. We could simply
compute a p-value for each of the m null hypotheses, as in Section 13.5.1,
and then apply the Benjamini-Hochberg procedure of Section 13.4.2 to
these p-values. However, it turns out that we can do this in a more direct
way, without even needing to compute p-values.
Recall from Section 13.4 that the FDR is defined as E(V/R), using the

notation in Table 13.2. In order to estimate the FDR via re-sampling, we
first make the following approximation:

FDR = E

(
V

R

)
≈ E(V )

R
. (13.13)
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Null Distribution of Test Statistic for 877th Gene
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FIGURE 13.8. The 877th gene in the Khan dataset has a test statistic of
T = −0.57. Its theoretical and re-sampling null distributions are quite different.
The theoretical p-value equals 0.571, and the re-sampling p-value equals 0.673.

Now suppose we reject any null hypothesis for which the test statistic
exceeds c in absolute value. Then computing R in the denominator on the
right-hand side of (13.13) is straightforward: R =

∑m
j=1 1(|Tj |≥c).

However, the numerator E(V ) on the right-hand side of (13.13) is more
challenging. This is the expected number of false positives associated with
rejecting any null hypothesis for which the test statistic exceeds c in abso-
lute value. At the risk of stating the obvious, estimating V is challenging
because we do not know which of H01, . . . ,H0m are really true, and so we
do not know which rejected hypotheses are false positives. To overcome this
problem, we take a re-sampling approach, in which we simulate data under
H01, . . . ,H0m, and then compute the resulting test statistics. The number
of re-sampled test statistics that exceed c provides an estimate of V .
In greater detail, in the case of a two-sample t-statistic (13.11) for each

of the null hypotheses H01, . . . ,H0m, we can estimate E(V ) as follows. Let

x(j)
1 , . . . , x(j)

nX and y(j)1 , . . . , y(j)nY denote the data associated with the jth
null hypothesis, j = 1, . . . ,m. We permute these nX + nY observations at
random, and then compute the t-statistic on the permuted data. For this
permuted data, we know that all of the null hypotheses H01, . . . ,H0m hold;
therefore, the number of permuted t-statistics that exceed the threshold c in
absolute value provides an estimate for E(V ). This estimate can be further
improved by repeating the permutation process B times, for a large value
of B, and averaging the results.
Algorithm 13.4 details this procedure.18 It provides what is known as a

plug-in estimate of the FDR, because the approximation in (13.13) allows us

18To implement Algorithm 13.4 efficiently, the same set of permutations in Step 2(b)i.
should be used for all m null hypotheses. An example of such an efficient implementation
can be found in the R package samr.
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Algorithm 13.4 Plug-In FDR for a Two-Sample T -Test

1. Select a threshold c, where c > 0.

2. For j = 1, . . . ,m:

(a) Compute T (j), the two-sample t-statistic (13.11) for the null

hypothesis H0j on the basis of the original data, x(j)
1 , . . . , x(j)

nX

and y(j)1 , . . . , y(j)nY .

(b) For b = 1, . . . , B, where B is a large number (e.g. B = 10,000):

i. Permute the nX +nY observations at random. Call the first
nX observations x∗(j)

1 , . . . , x∗(j)
nX , and call the remaining ob-

servations y∗(j)1 , . . . , y∗(j)nY .

ii. Compute (13.11) on the permuted data x∗(j)
1 , . . . , x∗(j)

nX and

y∗(j)1 , . . . , y∗(j)nY , and call the result T (j),∗b.

3. Compute R =
∑m

j=1 1(|T (j)|≥c).

4. Compute V̂ =

∑B
b=1

∑m
j=1 1(|T (j),∗b|≥c)

B .

5. The estimated FDR associated with the threshold c is V̂ /R.

to estimate the FDR by plugging R into the denominator and an estimate
for E(V ) into the numerator.
We apply the re-sampling approach to the FDR from Algorithm 13.4,

as well as the Benjamini-Hochberg approach from Algorithm 13.2 using
theoretical p-values, to the m = 2,308 genes in the Khan dataset. Results are
shown in Figure 13.9. We see that for a given number of rejected hypotheses,
the estimated FDRs are almost identical for the two methods.
We began this section by noting that in order to control the FDR for m

hypothesis tests using a re-sampling approach, we could simply compute
m re-sampling p-values as in Section 13.5.1, and then apply the Benjamini-
Hochberg procedure of Section 13.4.2 to these p-values. It turns out that if
we define the jth re-sampling p-value as

pj =

∑m
j′=1

∑B
b=1 1(|T∗b

j′ |≥|Tj |)

Bm
(13.14)

for j = 1, . . . ,m, instead of as in (13.12), then applying the Benjamini-
Hochberg procedure to these re-sampled p-values is exactly equivalent to
Algorithm 13.4. Note that (13.14) is an alternative to (13.12) that pools
the information across all m hypothesis tests in approximating the null
distribution.
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FIGURE 13.9. For j = 1, . . . ,m = 2,308, we tested the null hypothesis that
for the jth gene in the Khan dataset, the mean expression in Burkitt’s lymphoma
equals the mean expression in rhabdomyosarcoma. For each value of k from 1 to
2,308, the y-axis displays the estimated FDR associated with rejecting the null hy-
potheses corresponding to the k smallest p-values. The orange dashed curve shows
the FDR obtained using the Benjamini-Hochberg procedure, whereas the blue solid
curve shows the FDR obtained using the re-sampling approach of Algorithm 13.4,
with B = 10,000. There is very little difference between the two FDR estimates.
According to either estimate, rejecting the null hypothesis for the 500 genes with
the smallest p-values corresponds to an FDR of around 17.7%.

13.5.3 When Are Re-Sampling Approaches Useful?

In Sections 13.5.1 and 13.5.2, we considered testing null hypotheses of the
form H0 : E(X) = E(Y ) using a two-sample t-statistic (13.11), for which we
approximated the null distribution via a re-sampling approach. We saw that
using the re-sampling approach gave us substantially different results from
using the theoretical p-value approach in Figure 13.8, but not in Figure 13.7.
In general, there are two settings in which a re-sampling approach is

particularly useful:

1. Perhaps no theoretical null distribution is available. This may be the
case if you are testing an unusual null hypothesis H0, or using an
unsual test statistic T .

2. Perhaps a theoretical null distribution is available, but the assump-
tions required for its validity do not hold. For instance, the two-
sample t-statistic in (13.11) follows a tnX+nY −2 distribution only if
the observations are normally distributed. Furthermore, it follows a
N(0, 1) distribution only if nX and nY are quite large. If the data are
non-normal and nX and nY are small, then p-values that make use
of the theoretical null distribution will not be valid (i.e. they will not
properly control the Type I error).

In general, if you can come up with a way to re-sample or permute
your observations in order to generate data that follow the null distribu-
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tion, then you can compute p-values or estimate the FDR using variants
of Algorithms 13.3 and 13.4. In many real-world settings, this provides a
powerful tool for hypothesis testing when no out-of-box hypothesis tests are
available, or when the key assumptions underlying those out-of-box tests
are violated.

13.6 Lab: Multiple Testing

13.6.1 Review of Hypothesis Tests

We begin by performing some one-sample t-tests using the t.test() func-
t.test()

tion. First we create 100 variables, each consisting of 10 observations. The
first 50 variables have mean 0.5 and variance 1, while the others have mean
0 and variance 1.

> set.seed (6)

> x <- matrix(rnorm (10 * 100), 10, 100)

> x[, 1:50] <- x[, 1:50] + 0.5

The t.test() function can perform a one-sample or a two-sample t-test.
By default, a one-sample test is performed. To begin, we test H0 : µ1 = 0,
the null hypothesis that the first variable has mean zero.

> t.test(x[, 1], mu = 0)

One Sample t-test

data: x[, 1]

t = 2.08, df = 9, p-value = 0.067

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.05171 1.26243

sample estimates:

mean of x

0.6054

The p-value comes out to 0.067, which is not quite low enough to reject
the null hypothesis at level α = 0.05. In this case, µ1 = 0.5, so the null
hypothesis is false. Therefore, we have made a Type II error by failing to
reject the null hypothesis when the null hypothesis is false.
We now test H0j : µj = 0 for j = 1, . . . , 100. We compute the 100 p-

values, and then construct a vector recording whether the jth p-value is
less than or equal to 0.05, in which case we reject H0j , or greater than 0.05,
in which case we do not reject H0j , for j = 1, . . . , 100.

> p.values <- rep(0, 100)

> for (i in 1:100)

+ p.values[i] <- t.test(x[, i], mu = 0)$p.value

> decision <- rep("Do not reject H0", 100)

> decision[p.values <= .05] <- "Reject H0"

Since this is a simulated data set, we can create a 2 × 2 table similar to
Table 13.2.
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> table(decision ,

c(rep("H0 is False", 50), rep("H0 is True", 50))

)

decision H0 is False H0 is True

Do not reject H0 40 47

Reject H0 10 3

Therefore, at level α = 0.05, we reject just 10 of the 50 false null hypotheses,
and we incorrectly reject 3 of the true null hypotheses. Using the notation
from Section 13.3, we have W = 40, U = 47, S = 10, and V = 3. Note
that the rows and columns of this table are reversed relative to Table 13.2.
We have set α = 0.05, which means that we expect to reject around 5% of
the true null hypotheses. This is in line with the 2 × 2 table above, which
indicates that we rejected V = 3 of the 50 true null hypotheses.
In the simulation above, for the false null hypotheses, the ratio of the

mean to the standard deviation was only 0.5/1 = 0.5. This amounts to
quite a weak signal, and it resulted in a high number of Type II errors. If
we instead simulate data with a stronger signal, so that the ratio of the
mean to the standard deviation for the false null hypotheses equals 1, then
we make only 9 Type II errors.

> x <- matrix(rnorm (10 * 100), 10, 100)

> x[, 1:50] <- x[, 1:50] + 1

> for (i in 1:100)

+ p.values[i] <- t.test(x[, i], mu = 0)$p.value

> decision <- rep("Do not reject H0", 100)

> decision[p.values <= .05] <- "Reject H0"

> table(decision ,

c(rep("H0 is False", 50), rep("H0 is True", 50))

)

decision H0 is False H0 is True

Do not reject H0 9 49

Reject H0 41 1

13.6.2 The Family-Wise Error Rate

Recall from (13.5) that if the null hypothesis is true for each of m indepen-
dent hypothesis tests, then the FWER is equal to 1− (1−α)m. We can use
this expression to compute the FWER for m = 1, . . . , 500 and α = 0.05,
0.01, and 0.001.

> m <- 1:500

> fwe1 <- 1 - (1 - 0.05)^m

> fwe2 <- 1 - (1 - 0.01)^m

> fwe3 <- 1 - (1 - 0.001)^m

We plot these three vectors in order to reproduce Figure 13.2. The red,
blue, and green lines correspond to α = 0.05, 0.01, and 0.001, respectively.

> par(mfrow = c(1, 1))

> plot(m, fwe1 , type = "l", log = "x", ylim = c(0, 1), col = 2,
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ylab = "Family - Wise Error Rate",

xlab = "Number of Hypotheses")

> lines(m, fwe2 , col = 4)

> lines(m, fwe3 , col = 3)

> abline(h = 0.05, lty = 2)

As discussed previously, even for moderate values of m such as 50, the
FWER exceeds 0.05 unless α is set to a very low value, such as 0.001. Of
course, the problem with setting α to such a low value is that we are likely
to make a number of Type II errors: in other words, our power is very low.
We now conduct a one-sample t-test for each of the first five managers

in the Fund dataset, in order to test the null hypothesis that the jth fund
manager’s mean return equals zero, H0j : µj = 0.

> library(ISLR2)

> fund.mini <- Fund[, 1:5]

> t.test(fund.mini[, 1], mu = 0)

One Sample t-test

data: fund.mini[, 1]

t = 2.86, df = 49, p-value = 0.006

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

0.8923 5.1077

sample estimates:

mean of x

3

> fund.pvalue <- rep(0, 5)

> for (i in 1:5)

+ fund.pvalue[i] <- t.test(fund.mini[, i], mu = 0)$p.value

> fund.pvalue

[1] 0.00620 0.91827 0.01160 0.60054 0.75578

The p-values are low for Managers One and Three, and high for the other
three managers. However, we cannot simply reject H01 and H03, since this
would fail to account for the multiple testing that we have performed.
Instead, we will conduct Bonferroni’s method and Holm’s method to control
the FWER.
To do this, we use the p.adjust() function. Given the p-values, the func-

p.adjust()
tion outputs adjusted p-values, which can be thought of as a new set of

adjusted
p-valuesp-values that have been corrected for multiple testing. If the adjusted p-

value for a given hypothesis is less than or equal to α, then that hypothesis
can be rejected while maintaining a FWER of no more than α. In other
words, the adjusted p-values resulting from the p.adjust() function can
simply be compared to the desired FWER in order to determine whether
or not to reject each hypothesis.
For example, in the case of Bonferroni’s method, the raw p-values are

multiplied by the total number of hypotheses, m, in order to obtain the
adjusted p-values. (However, adjusted p-values are not allowed to exceed
1.)
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> p.adjust(fund.pvalue , method = "bonferroni")

[1] 0.03101 1.00000 0.05800 1.00000 1.00000

> pmin(fund.pvalue * 5, 1)

[1] 0.03101 1.00000 0.05800 1.00000 1.00000

Therefore, using Bonferroni’s method, we are able to reject the null hy-
pothesis only for Manager One while controlling the FWER at 0.05.
By contrast, using Holm’s method, the adjusted p-values indicate that

we can reject the null hypotheses for Managers One and Three at a FWER
of 0.05.

> p.adjust(fund.pvalue , method = "holm")

[1] 0.03101 1.00000 0.04640 1.00000 1.00000

As discussed previously, Manager One seems to perform particularly well,
whereas Manager Two has poor performance.

> apply(fund.mini , 2, mean)

Manager1 Manager2 Manager3 Manager4 Manager5

3.0 -0.1 2.8 0.5 0.3

Is there evidence of a meaningful difference in performance between these
two managers? Performing a paired t-test using the t.test() function re-

paired t-test
sults in a p-value of 0.038, suggesting a statistically significant difference.

> t.test(fund.mini[, 1], fund.mini[, 2], paired = T)

Paired t-test

data: fund.mini[, 1] and fund.mini[, 2]

t = 2.13, df = 49, p-value = 0.038

alternative hypothesis: true difference in means is not equal

to 0

95 percent confidence interval:

0.1725 6.0275

sample estimates:

mean of the differences

3.1

However, we decided to perform this test only after examining the data
and noting that Managers One and Two had the highest and lowest mean
performances. In a sense, this means that we have implicitly performed(5
2

)
= 5(5 − 1)/2 = 10 hypothesis tests, rather than just one, as discussed

in Section 13.3.2. Hence, we use the TukeyHSD() function to apply Tukey’s
TukeyHSD()

method in order to adjust for multiple testing. This function takes as input
the output of an ANOVA regression model, which is essentially just a linear

ANOVA
regression in which all of the predictors are qualitative. In this case, the
response consists of the monthly excess returns achieved by each manager,
and the predictor indicates the manager to which each return corresponds.

> returns <- as.vector(as.matrix(fund.mini))

> manager <- rep(c("1", "2", "3", "4", "5"), rep(50, 5))

> a1 <- aov(returns ∼ manager)

> TukeyHSD(x = a1)

Tukey multiple comparisons of means
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95% family -wise confidence level

Fit: aov(formula = returns ∼ manager)

$manager

diff lwr upr p adj

2-1 -3.1 -6.9865 0.7865 0.1862

3-1 -0.2 -4.0865 3.6865 0.9999

4-1 -2.5 -6.3865 1.3865 0.3948

5-1 -2.7 -6.5865 1.1865 0.3152

3-2 2.9 -0.9865 6.7865 0.2453

4-2 0.6 -3.2865 4.4865 0.9932

5-2 0.4 -3.4865 4.2865 0.9986

4-3 -2.3 -6.1865 1.5865 0.4820

5-3 -2.5 -6.3865 1.3865 0.3948

5-4 -0.2 -4.0865 3.6865 0.9999

The TukeyHSD() function provides confidence intervals for the difference
between each pair of managers (lwr and upr), as well as a p-value. All of
these quantities have been adjusted for multiple testing. Notice that the
p-value for the difference between Managers One and Two has increased
from 0.038 to 0.186, so there is no longer clear evidence of a difference
between the managers’ performances. We can plot the confidence intervals
for the pairwise comparisons using the plot() function.

> plot(TukeyHSD(x = a1))

The result can be seen in Figure 13.10.

13.6.3 The False Discovery Rate

Now we perform hypothesis tests for all 2,000 fund managers in the Fund

dataset. We perform a one-sample t-test of H0j : µj = 0, which states that
the jth fund manager’s mean return is zero.

> fund.pvalues <- rep(0, 2000)

> for (i in 1:2000)

+ fund.pvalues[i] <- t.test(Fund[, i], mu = 0)$p.value

There are far too many managers to consider trying to control the FWER.
Instead, we focus on controlling the FDR: that is, the expected fraction of
rejected null hypotheses that are actually false positives. The p.adjust()

function can be used to carry out the Benjamini-Hochberg procedure.

> q.values.BH <- p.adjust(fund.pvalues , method = "BH")

> q.values.BH [1:10]

[1] 0.08989 0.99149 0.12212 0.92343 0.95604 0.07514 0.07670

[8] 0.07514 0.07514 0.07514

The q-values output by the Benjamini-Hochberg procedure can be inter-
q-values

preted as the smallest FDR threshold at which we would reject a particular
null hypothesis. For instance, a q-value of 0.1 indicates that we can reject
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FIGURE 13.10. 95% confidence intervals comparing each pair of managers on
the Fund data, using Tukey’s method to adjust for multiple testing. All of the
confidence intervals overlap zero, so none of the differences among managers are
statistically significant when controlling the FWER at level 0.05.

the corresponding null hypothesis at an FDR of 10% or greater, but that
we cannot reject the null hypothesis at an FDR below 10%.
If we control the FDR at 10%, then for how many of the fund managers

can we reject H0j : µj = 0?

> sum(q.values.BH <= .1)

[1] 146

We find that 146 of the 2,000 fund managers have a q-value below 0.1;
therefore, we are able to conclude that 146 of the fund managers beat the
market at an FDR of 10%. Only about 15 (10% of 146) of these fund
managers are likely to be false discoveries. By contrast, if we had instead
used Bonferroni’s method to control the FWER at level α = 0.1, then we
would have failed to reject any null hypotheses!

> sum(fund.pvalues <= (0.1 / 2000))

[1] 0

Figure 13.6 displays the ordered p-values, p(1) ≤ p(2) ≤ · · · ≤ p(2000), for
the Fund dataset, as well as the threshold for rejection by the Benjamini-
Hochberg procedure. Recall that the Benjamini-Hochberg procedure search-
es for the largest p-value such that p(j) < qj/m, and rejects all hypotheses
for which the p-value is less than or equal to p(j). In the code below, we
implement the Benjamini-Hochberg procedure ourselves, in order to illus-
trate how it works. We first order the p-values. We then identify all p-values
that satisfy p(j) < qj/m (wh.ps). Finally, wh indexes all p-values that are
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less than or equal to the largest p-value in wh.ps. Therefore, wh indexes the
p-values rejected by the Benjamini-Hochberg procedure.

> ps <- sort(fund.pvalues)

> m <- length(fund.pvalues)

> q <- 0.1

> wh.ps <- which(ps < q * (1:m) / m)

> if (length(wh.ps) >0) {

+ wh <- 1:max(wh.ps)

+ } else {

+ wh <- numeric (0)

+ }

We now reproduce the middle panel of Figure 13.6.

> plot(ps , log = "xy", ylim = c(4e-6, 1), ylab = "P-Value",

xlab = "Index", main = "")

> points(wh, ps[wh], col = 4)

> abline(a = 0, b = (q / m), col = 2, untf = TRUE)

> abline(h = 0.1 / 2000, col = 3)

13.6.4 A Re-Sampling Approach

Here, we implement the re-sampling approach to hypothesis testing using
the Khan dataset, which we investigated in Section 13.5. First, we merge
the training and testing data, which results in observations on 83 patients
for 2,308 genes.

> attach(Khan)

> x <- rbind(xtrain , xtest)

> y <- c(as.numeric(ytrain), as.numeric(ytest))

> dim(x)

[1] 83 2308

> table(y)

y

1 2 3 4

11 29 18 25

There are four classes of cancer. For each gene, we compare the mean ex-
pression in the second class (rhabdomyosarcoma) to the mean expression in
the fourth class (Burkitt’s lymphoma). Performing a standard two-sample
t-test on the 11th gene produces a test-statistic of −2.09 and an associ-
ated p-value of 0.0412, suggesting modest evidence of a difference in mean
expression levels between the two cancer types.

> x <- as.matrix(x)

> x1 <- x[which(y == 2), ]

> x2 <- x[which(y == 4), ]

> n1 <- nrow(x1)

> n2 <- nrow(x2)

> t.out <- t.test(x1[, 11], x2[, 11], var.equal = TRUE)

> TT <- t.out$statistic
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> TT

t

-2.0936

> t.out$p.value

[1] 0.04118

However, this p-value relies on the assumption that under the null hypoth-
esis of no difference between the two groups, the test statistic follows a
t-distribution with 29 + 25 − 2 = 52 degrees of freedom. Instead of using
this theoretical null distribution, we can randomly split the 54 patients
into two groups of 29 and 25, and compute a new test statistic. Under the
null hypothesis of no difference between the groups, this new test statis-
tic should have the same distribution as our original one. Repeating this
process 10,000 times allows us to approximate the null distribution of the
test statistic. We compute the fraction of the time that our observed test
statistic exceeds the test statistics obtained via re-sampling.

> set.seed (1)

> B <- 10000

> Tbs <- rep(NA, B)

> for (b in 1:B) {

+ dat <- sample(c(x1[, 11], x2[, 11]))

+ Tbs[b] <- t.test(dat [1:n1], dat[(n1 + 1):(n1 + n2)],

var.equal = TRUE

)$statistic

+ }

> mean((abs(Tbs) >= abs(TT)))

[1] 0.0416

This fraction, 0.0416, is our re-sampling-based p-value. It is almost identical
to the p-value of 0.0412 obtained using the theoretical null distribution.
We can plot a histogram of the re-sampling-based test statistics in order

to reproduce Figure 13.7.

> hist(Tbs , breaks = 100, xlim = c(-4.2, 4.2), main = "",

xlab = "Null Distribution of Test Statistic", col = 7)

> lines(seq(-4.2, 4.2, len = 1000) ,

dt(seq(-4.2, 4.2, len = 1000),

df = (n1 + n2 - 2)

) * 1000, col = 2, lwd = 3)

> abline(v = TT, col = 4, lwd = 2)

> text(TT + 0.5, 350, paste("T = ", round(TT, 4), sep = ""),

col = 4)

The re-sampling-based null distribution is almost identical to the theoret-
ical null distribution, which is displayed in red.
Finally, we implement the plug-in re-sampling FDR approach outlined

in Algorithm 13.4. Depending on the speed of your computer, calculating
the FDR for all 2,308 genes in the Khan dataset may take a while. Hence,
we will illustrate the approach on a random subset of 100 genes. For each
gene, we first compute the observed test statistic, and then produce 10,000



590 13. Multiple Testing

re-sampled test statistics. This may take a few minutes to run. If you are
in a rush, then you could set B equal to a smaller value (e.g. B = 500).

> m <- 100

> set.seed (1)

> index <- sample(ncol(x1), m)

> Ts <- rep(NA, m)

> Ts.star <- matrix(NA, ncol = m, nrow = B)

> for (j in 1:m) {

+ k <- index[j]

+ Ts[j] <- t.test(x1[, k], x2[, k],

var.equal = TRUE

)$statistic

+ for (b in 1:B) {

+ dat <- sample(c(x1[, k], x2[, k]))

+ Ts.star[b, j] <- t.test(dat[1:n1],

dat[(n1 + 1):(n1 + n2)], var.equal = TRUE

)$statistic

+ }

+ }

Next, we compute the number of rejected null hypotheses R, the estimated
number of false positives V̂ , and the estimated FDR, for a range of thresh-
old values c in Algorithm 13.4. The threshold values are chosen using the
absolute values of the test statistics from the 100 genes.

> cs <- sort(abs(Ts))

> FDRs <- Rs <- Vs <- rep(NA, m)

> for (j in 1:m) {

+ R <- sum(abs(Ts) >= cs[j])

+ V <- sum(abs(Ts.star) >= cs[j]) / B

+ Rs[j] <- R

+ Vs[j] <- V

+ FDRs[j] <- V / R

+ }

Now, for any given FDR, we can find the genes that will be rejected. For
example, with the FDR controlled at 0.1, we reject 15 of the 100 null
hypotheses. On average, we would expect about one or two of these genes
(i.e. 10% of 15) to be false discoveries. At an FDR of 0.2, we can reject
the null hypothesis for 28 genes, of which we expect around six to be
false discoveries. The variable index is needed here since we restricted our
analysis to just 100 randomly-selected genes.

> max(Rs[FDRs <= .1])

[1] 15

> sort(index[abs(Ts) >= min(cs[FDRs < .1])])

[1] 29 465 501 554 573 729 733 1301 1317 1640 1646

[12] 1706 1799 1942 2159

> max(Rs[FDRs <= .2])

[1] 28

> sort(index[abs(Ts) >= min(cs[FDRs < .2])])

[1] 29 40 287 361 369 465 501 554 573 679 729
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FIGURE 13.11. The estimated false discovery rate versus the number of rejected
null hypotheses, for 100 genes randomly selected from the Khan dataset.

[12] 733 990 1069 1073 1301 1317 1414 1639 1640 1646 1706

[23] 1799 1826 1942 1974 2087 2159

The next line generates Figure 13.11, which is similar to Figure 13.9, except
that it is based on only a subset of the genes.

> plot(Rs , FDRs , xlab = "Number of Rejections", type = "l",

ylab = "False Discovery Rate", col = 4, lwd = 3)

As noted in the chapter, much more efficient implementations of the re-
sampling approach to FDR calculation are available, using e.g. the samr

package in R.

13.7 Exercises

Conceptual

1. Suppose we test m null hypotheses, all of which are true. We control
the Type I error for each null hypothesis at level α. For each sub-
problem, justify your answer.

(a) In total, how many Type I errors do we expect to make?

(b) Suppose that the m tests that we perform are independent.
What is the family-wise error rate associated with these m tests?

Hint: If two events A and B are independent, then Pr(A∩B) =
Pr(A) Pr(B).

(c) Suppose that m = 2, and that the p-values for the two tests are
positively correlated, so that if one is small then the other will
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Null Hypothesis p-value
H01 0.0011
H02 0.031
H03 0.017
H04 0.32
H05 0.11
H06 0.90
H07 0.07
H08 0.006
H09 0.004
H10 0.0009

TABLE 13.4. p-values for Exercise 4 in Section 13.6.

tend to be small as well, and if one is large then the other will
tend to be large. How does the family-wise error rate associated
with these m = 2 tests qualitatively compare to the answer in
(b) with m = 2?

Hint: First, suppose that the two p-values are perfectly correlated.

(d) Suppose again that m = 2, but that now the p-values for the
two tests are negatively correlated, so that if one is large then
the other will tend to be small. How does the family-wise error
rate associated with these m = 2 tests qualitatively compare to
the answer in (b) with m = 2?

Hint: First, suppose that whenever one p-value is less than α,
then the other will be greater than α. In other words, we can
never reject both null hypotheses.

2. Suppose that we test m hypotheses, and control the Type I error for
each hypothesis at level α. Assume that all m p-values are indepen-
dent, and that all null hypotheses are true.

(a) Let the random variable Aj equal 1 if the jth null hypothesis is
rejected, and 0 otherwise. What is the distribution of Aj?

(b) What is the distribution of
∑m

j=1 Aj?

(c) What is the standard deviation of the number of Type I errors
that we will make?

3. Suppose we test m null hypotheses, and control the Type I error for
the jth null hypothesis at level αj , for j = 1, . . . ,m. Argue that the
family-wise error rate is no greater than

∑m
j=1 αj .

4. Suppose we test m = 10 hypotheses, and obtain the p-values shown
in Table 13.4.
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(a) Suppose that we wish to control the Type I error for each null
hypothesis at level α = 0.05. Which null hypotheses will we
reject?

(b) Now suppose that we wish to control the FWER at level α =
0.05. Which null hypotheses will we reject? Justify your answer.

(c) Now suppose that we wish to control the FDR at level q = 0.05.
Which null hypotheses will we reject? Justify your answer.

(d) Now suppose that we wish to control the FDR at level q = 0.2.
Which null hypotheses will we reject? Justify your answer.

(e) Of the null hypotheses rejected at FDR level q = 0.2, approxi-
mately how many are false positives? Justify your answer.

5. For this problem, you will make up p-values that lead to a certain
number of rejections using the Bonferroni and Holm procedures.

(a) Give an example of five p-values (i.e. five numbers between 0 and
1 which, for the purpose of this problem, we will interpret as p-
values) for which both Bonferroni’s method and Holm’s method
reject exactly one null hypothesis when controlling the FWER
at level 0.1.

(b) Now give an example of five p-values for which Bonferroni re-
jects one null hypothesis and Holm rejects more than one null
hypothesis at level 0.1.

6. For each of the three panels in Figure 13.3, answer the following
questions:

(a) How many false positives, false negatives, true positives, true
negatives, Type I errors, and Type II errors result from applying
the Bonferroni procedure to control the FWER at level α =
0.05?

(b) How many false positives, false negatives, true positives, true
negatives, Type I errors, and Type II errors result from applying
the Holm procedure to control the FWER at level α = 0.05?

(c) What is the false discovery rate associated with using the Bon-
ferroni procedure to control the FWER at level α = 0.05?

(d) What is the false discovery rate associated with using the Holm
procedure to control the FWER at level α = 0.05?

(e) How would the answers to (a) and (c) change if we instead used
the Bonferroni procedure to control the FWER at level α =
0.001?
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Applied

7. This problem makes use of the Carseats dataset in the ISLR2 package.

(a) For each quantitative variable in the dataset besides Sales, fit
a linear model to predict Sales using that quantitative variable.
Report the p-values associated with the coefficients for the vari-
ables. That is, for each model of the form Y = β0 + β1X + ϵ,
report the p-value associated with the coefficient β1. Here, Y
represents Sales and X represents one of the other quantitative
variables.

(b) Suppose we control the Type I error at level α = 0.05 for the
p-values obtained in (a). Which null hypotheses do we reject?

(c) Now suppose we control the FWER at level 0.05 for the p-values.
Which null hypotheses do we reject?

(d) Finally, suppose we control the FDR at level 0.2 for the p-values.
Which null hypotheses do we reject?

8. In this problem, we will simulate data from m = 100 fund managers.

> set.seed (1)

> n <- 20

> m <- 100

> X <- matrix(rnorm(n * m), ncol = m)

These data represent each fund manager’s percentage returns for each
of n = 20 months. We wish to test the null hypothesis that each
fund manager’s percentage returns have population mean equal to
zero. Notice that we simulated the data in such a way that each fund
manager’s percentage returns do have population mean zero; in other
words, all m null hypotheses are true.

(a) Conduct a one-sample t-test for each fund manager, and plot a
histogram of the p-values obtained.

(b) If we control Type I error for each null hypothesis at level α =
0.05, then how many null hypotheses do we reject?

(c) If we control the FWER at level 0.05, then how many null hy-
potheses do we reject?

(d) If we control the FDR at level 0.05, then how many null hy-
potheses do we reject?

(e) Now suppose we “cherry-pick” the 10 fund managers who per-
form the best in our data. If we control the FWER for just these
10 fund managers at level 0.05, then how many null hypothe-
ses do we reject? If we control the FDR for just these 10 fund
managers at level 0.05, then how many null hypotheses do we
reject?
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(f) Explain why the analysis in (e) is misleading.
Hint: The standard approaches for controlling the FWER and
FDR assume that all tested null hypotheses are adjusted for mul-
tiplicity, and that no “cherry-picking” of the smallest p-values
has occurred. What goes wrong if we cherry-pick?
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