
5.1 Method of Moments

This method was proposed by the British statistician Karl Pearson in 1894.
Suppose we have a population with p.d.f. f(x; �), where � is a scalar. For any
function g(X; �); we can de�ne its expectation (provided it is �nite) as

E [g(X; �)] =

Z 1

�1
g (x; �) f(x; �)dx

This expectation is called a population moment.
For example, the population mean is the �rst-order moment

� = �1(�) = E[X] �
Z 1

�1
xf(x; �)dx

with g(X; �) = X:
Similarly, we can de�ne moments of any order k:

�k(�) = E[X
k] �

Z 1

�1
xkf(x; �)dx

The population variance is also a moment, since it is an expectation of function
g(X;�) = (X � �)2 :

�2 = E
h
(X � �)2

i
Suppose that for some known function g(X; �)

E [g(X; �)] = 0 (4)

and we are interested in estimated the unknown parameter �: If we knew the
p.d.f. f(x; �), we could �nd the functional form of E [g(X; �)] as a function of �
and equate it to zero, i.e., get rid of the expectation sign. Then, we could �nd
� by simply solving the resulting equation. However, we don�t know f(x; �).
Yet, there is an alternative. Suppose we have a random sample fX1; :::; Xng.

Since Xi are i.i.d., g(Xi; �) are also i.i.d. Then, by the law of large numbers (dis-
cussed in class), the sample average 1

n

Pn
i=1 g(Xi; �)

p! E [g(X; �)] : This sug-
gests approximating E [g(X; �)] by 1

n

Pn
i=1 g(Xi; �). In other words, in equation

(4) we can replace the population moment E [g(X; �)] by its sample analogue
1
n

Pn
i=1 g(Xi; �):

1

n

nX
i=1

g(Xi;b�) = 0 (5)

and then solve the last equation for b�. Then, b� is called a method of moments
(MM) estimator of �.

We assumed that � is a scalar, so that (5) is one equation in one unknown.
In general, if � is am-dimensional vector and g(x; �) is anm-dimensional vector-
function that depends on the data x and the parameter, then a Mo estimator
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5 Methods for Constructing Estimators

In this section, we will consider di¤erent methods for constructing point 
estimators.



is de�ned as the solution to the system of m equations in m unknowns:

1

n

nX
i=1

g(Xi; �̂) = 0m�1

Because of sampling uncertainty, there is in general no guarantee that there
is always a solution for the sample moment conditions, in particular if g(x; �)
is nonlinear in � or the number of moment condition exceeds the dimension of
the parameter vector. In that case, we may instead de�ne an estimator as the
minimizer of a quadratic form of the sample moment vector

Qn(�) :=

"
1

n

nX
i=1

g(Xi; �)

#0
W

"
1

n

nX
i=1

g(Xi; �)

#

whereW is a known positive semi-de�nite matrix. An estimator of the form �̂ =
argmin�2�Q(�) is called a generalized method of moments (GMM) estimator
which plays an important role in econometrics.

Example 1. Poisson distribution.
Suppose X1; : : : ; Xn is an i.i.d. sample from a Poisson distribution with

unknown parameter �, i.e. Xi � Poisson(�). The distribution has only one
unknown parameter, and the �rst population moment (mean) is given by

� = E[X] = �

Therefore, the MM estimator of � is simple the sample mean, i.e., we replace
the population mean by the sample mean

�̂ = �Xn =
1

n

nX
i=1

Xi:

Thus, the MM estimator of � coincides with the sample mean.

Example 2. Uniform distribution
Let X � U [0; �] be a uniformly distributed random variable over an interval

depending on the unknown parameter �: The p.d.f. is

f(x) =

�
1
� if 0 � x � �
0 otherwise

How could we estimate �? For uniform distribution E[X] = �
2 . Now, in the

left-hand side of the last equation, replace the population mean by the sample
mean to get

1

n

nX
i=1

Xi =
�̂

2

Hence, the a method-of-moments estimator for � is �̂MM = 2 �Xn, where �Xn is
the sample mean.
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5.2 Maximum Likelihood Estimation

While the method of moments only tries to match a selected number of moments
of the population to their sample counterparts, we may alternatively construct
an estimator which makes the population distribution as a whole match the
sample distribution as closely as possible. This is what the maximum likelihood
estimator of a parameter � does, which is loosely speaking, the value which
"most likely" would have generated the observed sample.
Suppose we have an i.i.d. sample fX1; :::; Xng from the population with

p.d.f. f(x; �), which is known up to the parameter �. That is, X1; :::; Xn are
independent and identically distributed with the common p.d.f. f(x; �). Since
fX1; :::; Xng are independent, their joint p.d.f. or joint likelihood function is

L(�) � f(X1; �)f(X2; �):::f(Xn; �) =
nY
i=1

f(Xi; �) (6)

The Maximum Likelihood estimator (MLE) b�MLE , is the value of � that
maximizes the likelihood function. Intuitively, b�MLE maximizes the likelihood
(or probability) that the data comes from the speci�ed distribution. Note that
we haven�t said anything about whether the random variables Xi are continuous
or discrete, so that the p.d.f. entering the likelihood can be either a density or
a probability mass function, or a hybrid between the two if the distribution is
mixed continuous-discrete.
It is usually much easier to work with the logarithm of the likelihood func-

tion:

lnL(�) =
nX
i=1

ln f(Xi; �)

Maximization of likelihood function (6) is equivalent to maximization of the
logarithm of the likelihood function since the log transformation is strictly in-
creasing. That is, the value of � that maximizes any increasing function of
L(�;X1; :::; Xn) will also maximize L(�;X1; :::; Xn). Thus, b�MLE solves the
problem:

max
�
lnL(�) =

nX
i=1

ln f(Xi; �): (7)

Assuming that ln [f(Xi; �)] is di¤erentiable, the necessary condition for max-
imum is given by:

@ lnL(b�MLE)

@�
=

nX
i=1

@ ln
h
f(Xi;b�MLE)

i
@�

= 0: (8)

This necessary condition will often be also su¢ cient for maximum, and therefore,b�MLE could be found by setting the �rst condition (8) to zero and solving for
�.

Example 1. Bernoulli Distribution
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Let X1; :::; Xn be a random sample from the Bernoulli distribution with a
probability distribution:

P (X = x) = �x(1� �)1�x; 0 < � < 1:

The joint likelihood function is then given by

L(�) =
nY
i=1

�Xi(1� �)1�Xi = �y(1� �)n�y

where y =
Pn

i=1Xi is the number of times X takes on the value 1. Taking the
natural logs gives

lnL(�) = y ln � + (n� y) ln(1� �):
First, consider the case when 0 < y < n, the di¤erentiating and setting the
derivative to zero yields

@ lnL

@�
=
yb� � n� y1� b� = 0 =) b�MLE = n

�1
nX
i=1

Xi:

Example 2. Poisson Distribution
Let X1; :::; Xn be a random sample from the Poisson distribution:

f(x; �) = �xe��=x!; x = 0; 1; 2; :::; 0 < � <1
E(X) = V ar(X) = �

The likelihood and log likelihood functions are

L(�) =
nY
i=1

e���Xi=Xi! =
e�n���XiYn

i=1
Xi!

and

lnL(�) = �n�+
nX
i=1

Xi ln�� ln
"
nY
i=1

Xi!

#
:

Di¤erentiating the log likelihood, we have

@ lnL

@�
= �n+ 1

�

nX
i=1

Xi:

Setting the derivative to zero gives

�n+ 1b�
nX
i=1

Xi = 0 =) b�MLE = n
�1

nX
i=1

Xi = X:

That is the MLE estimator of the mean of Poisson distribution is the same as
the MM estimator and equals the sample mean, which, as we know, is unbiased.
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Example 3. Normal distribution
Suppose X � N(�; �2), and we want to estimate the parameters � and �2

from an i.i.d. sample X1; : : : ; Xn. The likelihood function is

L(�) =
nY
i=1

1p
2��

e�
(Xi��)

2

2�2

It turns out that it�s much easier to maximize the log-likelihood,

lnL(�) =
nX
i=1

ln

�
1p
2��

e�
(Xi��)

2

2�2

�

=

nX
i=1

�
ln

1p
2��

� (Xi � �)
2

2�2

�

= �n
2
ln(2��2)� 1

2�2

nX
i=1

(Xi � �)2

To �nd the maximum, we take the derivatives with respect to � and �2, and set
them equal to zero:

0 =
1

2b�2
nX
i=1

2(Xi � �̂), �̂ =
1

n

nX
i=1

Xi

Thus, a MLE of � is the sample mean, which was shown to be unbiased.
Similarly,

0 = �n
2

2�

2�b�2+ 1

2
�b�2�2

nX
i=1

(Xi��̂)2 , b�2 = 1

n

nX
i=1

(Xi��̂)2 =
1

n

nX
i=1

(Xi� �Xn)2

As shown earlier, b�2 is a biased estimator for �2: So, in general, MLE may be
biased.

13




